NAWEA 2015 SYMPOSIUM

Size: px
Start display at page:

Download "NAWEA 2015 SYMPOSIUM"

Transcription

1 Aerodynamics and Aeroacoustics of Spanwise Wavy Trailing Edge Flatback Airfoils: Design Improvement Seung Joon Yang James D. Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering, University of Maryland NAWEA 2015 SYMPOSIUM Spanwise Wavy Trailing Edge Airfoil 1/ 31 NAWEA 2015

2 Outline Introduction Flatback airfoil drag and noise emission Numerical methods Wavy trailing edge design Wavy trailing edge modification Results and discussions Aerodynamic Characteristics Aeroacoustic Characteristics Conclusion Spanwise Wavy Trailing Edge Airfoil 2/ 31 NAWEA 2015

3 Introduction and Motivation Wind power generation is proportional to square of rotor blade length! * IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation 2011 Higher power generation requires larger blades Demands a structurally robust blade Thicker Airfoil at inboard sections (~40% of blade span!) Spanwise Wavy Trailing Edge Airfoil 3/ 31 NAWEA 2015

4 Introduction: Flatback Airfoil Aerodynamics Sharp TE Flatback TE Advantages Flatback TE airfoil has superior lift performance; delayed stall on upper surface Structurally robust blade design compared to sharp TE airfoil * Baker, Experimental Analysis of Thick Blunt Trailing Edge wind turbine Airfoils, 2006 Spanwise Wavy Trailing Edge Airfoil 4/ 31 NAWEA 2015

5 Introduction: Flatback Airfoil Aerodynamics Sharp TE Flatback TE Flatback TE Sharp TE Increase in drag Disadvantages Flatback TE airfoil suffers from higher drag, lower max L/D Higher acoustical signature compared to sharp TE * Baker, Experimental Analysis of Thick Blunt Trailing Edge wind turbine Airfoils, 2006 Spanwise Wavy Trailing Edge Airfoil 5/ 31 NAWEA 2015

6 Introduction: Flatback Airfoil Noise Emission Flatback TE AoA 4, Re = 3,000,000 Strong vortex shedding Sharp TE Noise spectrum Vortex shedding pattern Disadvantages Flatback TE airfoil high tonal noise Generated by pressure fluctuations at TE because of strong nearly 2-D spanwise coherent vortex shedding * Dale E. Berg and M. Barone, Aerodynamic and Aeroacoustic Properties of a Flatback Airfoil, WINDPOWER 2008, Houston, 2008 Spanwise Wavy Trailing Edge Airfoil 6/ 31 NAWEA 2015

7 Introduction: Spanwise Wavy Trailing Edge Modification Baseline Proposed solution Introduce streamwise vorticity to disintegrate/breakdown spanwise coherent vortex structure Can the trailing edge geometry be modified to reduce drag and noise while maintaining aerodynamic efficiency? Other solutions Splitter plate, serrated TE add on devices * Seung Joon Yang and James D. Baeder, Aerodynamic Drag and Aeroacoustic Noise Mitigation of Flatback Airfoil with Spanwise Wavy Trailng Edge, 33 rd Wind Energy Symposium at Scitech 2015, Kisimmee, FL, 2015 Spanwise Wavy Trailing Edge Airfoil 7/ 31 NAWEA 2015

8 Numerical methods RANS LES hybrid method (OVERTURNS, GPURANS3D) - Laminar Turbulent transition modeling ; γ Re θθ transition model with S-A turbulence model - Delayed Detached Eddy Simulation (DDES) - Spatial reconstruction ; 5 th order WENO - Time marching; Diagonal Alternating Direction Implicit (DADI) - GPU accelerated computation ; Deepthought II cluster at UMD (40 gpu nodes) ; Nvidia Tesla K20m GPUs Nvidia Tesla K20m Processor core 2496 Processor core clock Memory Memory clock Band width 706 MHz 5 GB 2.6 GHz 208 GB/sec * Deepthought II Cluster at UMD, College Park Spanwise Wavy Trailing Edge Airfoil 8/ 31 NAWEA 2015

9 Mesh Generation 271 x 141 x 61 ~ 2.33 milion grid points for each airfoil geometries 50C distance away in the normal to surface direction resolution; Δy/c ~ 5.0µ (y+ ~ 0.8) Validation! 0.5C in span direction 104 grid points at the trailing edge 102 grid points upper/bottom surface near the trailing edge * Seung Joon Yang and James D. Baeder, Aerodynamic Drag and Aeroacoustic Noise Mitigation of Flatback Airfoil with Spanwise Wavy Trailng Edge, 33 rd Wind Energy Symposium at Scitech 2015, Kisimmee, FL, 2015 Spanwise Wavy Trailing Edge Airfoil 9/ 31 NAWEA 2015

10 Wavy trailing edge design: Previous Designs Baseline 1/2flatback-4cyc/C 3/4flatback-4cyc/C Wave formula y = y mmm y mmm local thickness = y 2 cos ω 2ππ l y mmm 4 cyc/c better than 2 cyc/c or 8 cyc/c * James D. Baeder and Seung Joon Yang, Wavy Trailing-Edge Flatback Aerodynamics Using a GPU-Accelerated Navier-Stokes Solver, EWEA Offshoer, Copenhagen, Denmark, 2015, March Spanwise Wavy Trailing Edge Airfoil 10/ 31 NAWEA 2015

11 Baseline Results Base-line cases A. FB (TE thickness 17.50% of C, flatback TE) B. FB (TE thickness 4.62% of C, sharp TE) FB FB Strong nearly 2-D spanwise vortex structure with flatback airfoil Weak spanwise vortex structure with sharp trailing edge airfoil * Seung Joon Yang and James D. Baeder, Aerodynamic Drag and Aeroacoustic Noise Mitigation of Flatback Airfoil with Spanwise Wavy Trailng Edge, 33 rd Wind Energy Symposium at Scitech 2015, Kisimmee, FL, 2015 Spanwise Wavy Trailing Edge Airfoil 11/ 31 NAWEA 2015

12 Previous Wavy Trailing Edge: Flowfield 3/4 flatback 4cyc/C 1/2 flatback 4cyc/C With shallow wavy pattern, still span-wise vortex structure With deeper wavy pattern, more stream-wise vortex structure However, relatively unstable flow at the wave troughs * James D. Baeder and Seung Joon Yang, Wavy Trailing-Edge Flatback Aerodynamics Using a GPU-Accelerated Navier-Stokes Solver, EWEA Offshoer, Copenhagen, Denmark, 2015 Spanwise Wavy Trailing Edge Airfoil 12/ 31 NAWEA 2015

13 Previous Wavy Trailing Edge: Aerodynamic Performance With shallow wavy pattern, higher lift and reduced drag With deeper wavy pattern, too much loss of lift * James D. Baeder and Seung Joon Yang, Wavy Trailing-Edge Flatback Aerodynamics Using a GPU-Accelerated Navier-Stokes Solver, EWEA Offshoer, Copenhagen, Denmark, 2015 Spanwise Wavy Trailing Edge Airfoil 13/ 31 NAWEA 2015

14 Previous Wavy Trailing Edge: Potential Problems Previous wavy TE Loss of blade volume at troughs weaken blade structural strength? Wavy modification make any difficulty during manufacturing stage? * Seung Joon Yang and James D. Baeder, Aerodynamic Drag and Aeroacoustic Noise Mitigation of Flatback Airfoil with Spanwise Wavy Trailng Edge, 33 rd Wind Energy Symposium at Scitech 2015, Kisimmee, FL, 2015 Spanwise Wavy Trailing Edge Airfoil 1/ 31 NAWEA 2015

15 Design Improvements: Design #1 Can we remove wavy structure on upper surface? Lower half way cut (only Bottom surface wavy TE ) Previous wavy TE Camber recovery helps aerodynamic performance Lower half way cut wavy TE Larger blade volume with design #1 Better manufacturability Spanwise Wavy Trailing Edge Airfoil 2/ 31 NAWEA 2015

16 Design Improvements: Design #2 Can we start wavy structure closer to TE? 90%C cut (wavy TE at 90% of Chord) Previous wavy TE Can we get rid of 2-D spanwise vortex structure With the New Designs?? Wavy TE at 90% of chord Larger blade volume with design #2 Better manufacturability Spanwise Wavy Trailing Edge Airfoil 3/ 31 NAWEA 2015

17 Improved Wavy Trailing Edge Designs A. Lower half cut 3/4 flatback B. Lower half cut 1/2 flatback C. 90C cut 3/4 flatback D. 90C cut 1/2 flatback Structurally enhanced designs A. Lower half cut 3/4 flatback (min. TE thickness 15.38% of C) B. Lower half cut 1/2 flatback (min. TE thickness 13.12% of C) C. 90C cut 3/4 flatback (min. TE thickness 13.12% of C) D. 90C cut 1/2 flatback (min. TE thickness 8.75% of C) Spanwise Wavy Trailing Edge Airfoil 4/ 31 NAWEA 2015

18 Results and Discussion: Flowfield (Iso-vorticity mag.) FB (flatback TE) Lower half cut 3/4 flatback Lower half cut 1/2 flatback FB (sharp TE) 90C cut 3/4 flatback 90C cut 1/2 flatback Lower half cut 3/4 flatback, still has spanwise coherent vortex structure Lower half cut 1/2 flatback, has more streamwise vorticity 90C cut designs work better to break up spanwise vortex Spanwise Wavy Trailing Edge Airfoil 5/ 31 NAWEA 2015

19 Results and Discussion: Flowfield (Vorticity contours) Aerodynamic characteristics; Trailing edge vortex shedding pattern Lower half cut 3/4 flatback Crest Lower half cut 1/2 flatback Crest Trough Trough Both Lower half cut airfoils have similar vortex shedding patterns along span. With shallow wave (3/4 flatback), strong 2-D coherent vortex structure. With deep wave (1/2 flatback), vortex strength now weaken and vortex core is formed at further downstream. Spanwise Wavy Trailing Edge Airfoil 6/ 31 NAWEA 2015

20 Results and Discussion: Flowfield (Vorticity contours) Aerodynamic characteristics; Trailing edge vortex shedding pattern Lower half cut 3/4 flatback Lower half cut 1/2 flatback Trough Crest Trough Crest Both Lower half cut airfoils have similar vortex shedding patterns along span. With shallow wave (3/4 flatback), strong 2-D coherent vortex structure. With deep wave (1/2 flatback), vortex strength now weaken and vortex core is formed at further downstream. Spanwise Wavy Trailing Edge Airfoil 7/ 31 NAWEA 2015

21 Results and Discussion: Flowfield (Vorticity contours) Aerodynamic characteristics; Trailing edge vortex shedding pattern 90C cut 3/4 flatback Crest 90C cut 1/2 flatback Crest Trough Trough With 90%C cut designs, now entirely different vortex shedding patterns at the crest and trough. Now vortex structure is more like 3-D, affected by streamwise vorticity. Spanwise Wavy Trailing Edge Airfoil 8/ 31 NAWEA 2015

22 Results and Discussion: Flowfield (Vorticity contours) Aerodynamic characteristics; Trailing edge vortex shedding pattern 90C cut 3/4 flatback 90C cut 1/2 flatback Trough Crest Trough Crest With 90%C cut designs, now entirely different vortex shedding patterns at the crest and trough. Now vortex structure is more like 3-D, affected by streamwise vorticity. Spanwise Wavy Trailing Edge Airfoil 9/ 31 NAWEA 2015

23 Results and Discussion: Lift vs. AoA Lower half cut 3/4 flatback Lower half cut 1/2 flatback 90C cut 3/4 flatback 90C cut 1/2 flatback Lower half cut 3/4 flatback, only small amount of lift loss. Lower half cut 1/2 flatback, 90C 3/4 flatback, some lift loss, but not a lot. 90C 1/2 flatback, too much loss of lift. (not eligible to be an improved design) Spanwise Wavy Trailing Edge Airfoil 10/ 31 NAWEA 2015

24 Results and Discussion: Lift vs. Drag Polar Lower half cut 3/4 flatback Lower half cut 1/2 flatback 90C cut 3/4 flatback Lower half cut 3/4 flatback, only little amount of lift loss, but too much drag (not eligible as a drag reduced design) Lower half cut 1/2 flatback, 90C 3/4 flatback, some of lift loss, but not a lot and large drag reduction (down to 1/3 of the original flatback design) Spanwise Wavy Trailing Edge Airfoil 11/ 31 NAWEA 2015

25 Results and Discussion: Lift / Drag Map Lower half cut 1/2 flatback 90C cut 3/4 flatback Lower half cut 1/2 flatback, 90C 3/4 flatback have better aerodynamic performance than the original flatback aifoil for both moderate and high angle of attack. 90C 3/4 flatback has broader performance coverage than lower halfway cut 1/2 flatback. Spanwise Wavy Trailing Edge Airfoil 12/ 31 NAWEA 2015

26 Results and Discussion: Acoutic Measurement Details Aeroacoustic characteristics; measurement details - 3 pressure fluctuation measurement points at 3C distance from TE - 0.5C distances between 3 locations - Freestream M = 0.3, Re = 666,000, AoA = 12 SPL db = 10 log 10 ( p 2 p rrr 2 ), 1kHz sampling rates for 1 sec Spanwise Wavy Trailing Edge Airfoil 13/ 31 NAWEA 2015

27 Results and Discussion: Sound Pressure Level Lower half cut 3/4 flatback Lower half cut 1/2 flatback 90C cut 3/4 flatback 90C cut 1/2 flatback Noise emissions reduced about 20 db by the improved wavy trailing edge. Regarding aerodynamic performance, the lower half cut 1/2 and 90C 3/4 flatback may be the best designs acoustic-wise. Spanwise Wavy Trailing Edge Airfoil 14/ 31 NAWEA 2015

28 Results and Discussion: Noise Spectrum (by FFT) peak [db] Const. thickness flatback TE: Tonal noise at low frequency range Noise peak is alleviated by the improved designs. Spanwise Wavy Trailing Edge Airfoil 15/ 31 NAWEA 2015

29 Results and Discussion / Overall Overall (AoA 12 ) Min. TE thic kness Cl Cd Cl/Cd Acoustics Lower half cut 3/4 flatback High Drag High noise 15.38% of C Lower half cut 1/2 flatback 90C cut 3/4 flatback 13.12% of C Best Performance! 13.12% of C C cut 1/2 flatback Low Lift 8.75% of C Best Performance: 90%C cut ¾ flatback & Lower half cut ½ flatback! Spanwise Wavy Trailing Edge Airfoil 16/ 31 NAWEA 2015

30 Conclusions Aerodynamic Performance Larger blade volume with the lower half cut and 90%C cut wavy trailing edges 90%C cut wavy TE more effective to break down spanwise vortex compared to the lower half cut Lower half cut wavy TE 1/2 flatback: small lift loss & large drag reduction, consequently high L/D 90%C cut wavy TE 1/2 flatback: although dramatic drag reduction, too much lift loss, consequently low L/D 90%C cut wavy TE 3/4 flatback: small lift loss & large drag reduction, consequently high L/D Acoustic Noise Reduction Strong magnitude tonal noise peaks at low frequency (100~170 Hz) with const. Flatback airfoil, was reduced up to 20 db (mitigated down to the sharp TE noise level) by the improved designs Although best acoutic noise reduction design is the 90%C cut wavy TE 1/2 flatback, however, relatively worse aerodynamic performance. Best aerodynamic and aeroacoustic performance: Lower half cut wavy TE 1/2 flatback / 90%C cut wavy TE 3/4 flatback Future work Combine to investigate lower half 90%C cut wavy TE 1/2 flatback Spanwise Wavy Trailing Edge Airfoil 17/ 31 NAWEA 2015

31 NAWEA 2015 SYMPOSIUM THANK YOU Acknowledgements UMD supercomputing resources Use of Deepthought II computing cluster Research sponsored by State of Maryland (MHEC/MEA) Spanwise Wavy Trailing Edge Airfoil 18/ 31 NAWEA 2015

Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade Journal of Physics: Conference Series PAPER OPEN ACCESS Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade To cite this article: SJ Yang and J D Baeder 2016 J. Phys.: Conf. Ser. 753 022060

More information

Computational Analysis of Blunt Trailing Edge NACA 0012 Airfoil

Computational Analysis of Blunt Trailing Edge NACA 0012 Airfoil Computational Analysis of Blunt Trailing Edge NACA 2 Airfoil Anusha K Department of Aerospace Engineering Madras Institute of Technology, India anusugan7@gmail.com Abstract Blunt trailing edge airfoil

More information

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES Herning / October 3 / 2017 By Jesper Madsen Chief Engineer, Aerodynamics & Acoustics WIND ENERGY DENMARK Annual Event 2017 Agenda 1. Aerodynamic design and

More information

APPLICATION OF RESEARCH RESULTS AT LM WIND POWER

APPLICATION OF RESEARCH RESULTS AT LM WIND POWER APPLICATION OF RESEARCH RESULTS AT LM WIND POWER Herning / March 27 / 2014 By Jesper Madsen Chief Engineer Aerodynamics and Acoustics AGENDA 1. EUDP Projects 1. DANAERO MW 2. Optimization of vortex generators

More information

Trailing edge noise production, prediction and control

Trailing edge noise production, prediction and control Trailing edge noise production, prediction and control Con Doolan, Danielle Moreau, Elias Arcondoulis and Cristobal Albarracin School of Mechanical Engineering, University of Adelaide, South Australia,

More information

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record Liu, X., Azarpeyvand, M., & Joseph, P. (2015). On the acoustic and aerodynamic performance of serrated airfoils. Paper presented at The 22nd International Congress on Sound and Vibration, Florence, France.

More information

Effect of Co-Flow Jet over an Airfoil: Numerical Approach

Effect of Co-Flow Jet over an Airfoil: Numerical Approach Contemporary Engineering Sciences, Vol. 7, 2014, no. 17, 845-851 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2014.4655 Effect of Co-Flow Jet over an Airfoil: Numerical Approach Md. Riajun

More information

Wind tunnel effects on wingtip vortices

Wind tunnel effects on wingtip vortices 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-325 Wind tunnel effects on wingtip vortices Xin Huang 1, Hirofumi

More information

NUMERICAL SIMULATION OF ACTIVE FLOW CONTROL BASED ON STREAMWISE VORTICES FOR A BLUNT TRAILING EDGE AIRFOIL

NUMERICAL SIMULATION OF ACTIVE FLOW CONTROL BASED ON STREAMWISE VORTICES FOR A BLUNT TRAILING EDGE AIRFOIL BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, 20-24 2008 NUMERICAL SIMULATION OF ACTIVE FLOW CONTROL BASED ON STREAMWISE VORTICES FOR A BLUNT TRAILING

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

Numerical simulation of a flat back airfoil for wind turbine applications.

Numerical simulation of a flat back airfoil for wind turbine applications. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 4-2010 Numerical simulation of a flat back airfoil for wind turbine applications.

More information

The Effect of Blade Thickness and Angle of Attack on Broadband Fan Noise

The Effect of Blade Thickness and Angle of Attack on Broadband Fan Noise The Effect of Blade Thickness and Angle of Attack on Broadband Fan Noise Stewart Glegg Florida Atlantic University and William Devenport Virginia Tech Work Supported by ONR, Prog. Manager: Dr. Ron Joslin

More information

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC!

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC! OUTLINE TACOMA NARROWS BRIDGE FLOW REGIME PAST A CYLINDER VORTEX SHEDDING MODES OF VORTEX SHEDDING PARALLEL & OBLIQUE FLOW PAST A SPHERE AND A CUBE SUMMARY TACOMA NARROWS BRIDGE, USA THE BRIDGE COLLAPSED

More information

A comparison of NACA 0012 and NACA 0021 self-noise at low Reynolds number

A comparison of NACA 0012 and NACA 0021 self-noise at low Reynolds number A comparison of NACA 12 and NACA 21 self-noise at low Reynolds number A. Laratro, M. Arjomandi, B. Cazzolato, R. Kelso Abstract The self-noise of NACA 12 and NACA 21 airfoils are recorded at a Reynolds

More information

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft , July 1-3, 2015, London, U.K. Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft Pooja Pragati, Sudarsan Baskar Abstract This paper provides a practical design of a new concept of massive

More information

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability.

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability. Aerodynamics: Introduction Aerodynamics deals with the motion of objects in air. These objects can be airplanes, missiles or road vehicles. The Table below summarizes the aspects of vehicle performance

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

Reduction of Skin Friction Drag in Wings by Employing Riblets

Reduction of Skin Friction Drag in Wings by Employing Riblets Reduction of Skin Friction Drag in Wings by Employing Riblets Kousik Kumaar. R 1 Assistant Professor Department of Aeronautical Engineering Nehru Institute of Engineering and Technology Coimbatore, India

More information

Anna University Regional office Tirunelveli

Anna University Regional office Tirunelveli Effect of Tubercle Leading Edge Control Surface on the Performance of the Double Delta Wing Fighter Aircraft P Sharmila 1, S Rajakumar 2 1 P.G. Scholar, 2 Assistant Professor, Mechanical Department Anna

More information

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME) Volume 2, Issue 1 (214) ISSN 232 46 (Online) Experimental and Theoretical Investigation for the Improvement of the Aerodynamic

More information

NUMERICAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF NACA AIRFOIL WITH A GURNEY FLAP

NUMERICAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF NACA AIRFOIL WITH A GURNEY FLAP Int. J. Mech. Eng. & Rob. Res. 2012 MasoudJahanmorad Nouri et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved NUMERICAL INVESTIGATION

More information

Lecture # 08: Boundary Layer Flows and Drag

Lecture # 08: Boundary Layer Flows and Drag AerE 311L & AerE343L Lecture Notes Lecture # 8: Boundary Layer Flows and Drag Dr. Hui H Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A y AerE343L #4: Hot wire measurements

More information

Aeroacoustic and Aerodynamic Performances of an Aerofoil Subjected to Sinusoidal Leading Edges

Aeroacoustic and Aerodynamic Performances of an Aerofoil Subjected to Sinusoidal Leading Edges Aeroacoustic and Aerodynamic Performances of an Aerofoil Subjected to Sinusoidal Leading Edges Tze Pei Chong 1, Alexandros Vathylakis 2, Archie McEwen 3, Foster Kemsley 4, Chioma Muhammad 5 and Saarim

More information

Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound

Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound Andreas Fischer Helge Aagaard Madsen Knud Abildgaard Kragh Franck Bertagnolio DTU Wind Energy Technical University

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces AIAA-24-5 Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces Hak-Tae Lee, Ilan M. Kroo Stanford University, Stanford, CA 9435 Abstract Miniature trailing edge effectors

More information

Influence of wing span on the aerodynamics of wings in ground effect

Influence of wing span on the aerodynamics of wings in ground effect Influence of wing span on the aerodynamics of wings in ground effect Sammy Diasinos 1, Tracie J Barber 2 and Graham Doig 2 Abstract A computational fluid dynamics study of the influence of wing span has

More information

Computational Analysis of Cavity Effect over Aircraft Wing

Computational Analysis of Cavity Effect over Aircraft Wing World Engineering & Applied Sciences Journal 8 (): 104-110, 017 ISSN 079-04 IDOSI Publications, 017 DOI: 10.589/idosi.weasj.017.104.110 Computational Analysis of Cavity Effect over Aircraft Wing 1 P. Booma

More information

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS The sources of a graphical material used in this lecture are: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013.

More information

Computational Analysis of the S Airfoil Aerodynamic Performance

Computational Analysis of the S Airfoil Aerodynamic Performance Computational Analysis of the 245-3S Airfoil Aerodynamic Performance Luis Velazquez-Araque and Jiří Nožička 2 Department of Mechanical Engineering National University of Táchira, San Cristóbal 5, Venezuela

More information

Research Article Numerical Analysis of Wind Turbine Airfoil Aerodynamic Performance with Leading Edge Bump

Research Article Numerical Analysis of Wind Turbine Airfoil Aerodynamic Performance with Leading Edge Bump Mathematical Problems in Engineering Volume 25, Article ID 493253, 8 pages http://dx.doi.org/.55/25/493253 Research Article Numerical Analysis of Wind Turbine Airfoil Aerodynamic Performance with Leading

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) Unit D-1: Aerodynamics of 3-D Wings Page 1 of 5 AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics of 3-D Wings D-: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics

More information

Turbulence Modelling of Deep Dynamic Stall at Low Reynolds Number

Turbulence Modelling of Deep Dynamic Stall at Low Reynolds Number , June 30 - July 2, 2010, London, U.K. Turbulence Modelling of Deep Dynamic Stall at Low Reynolds Number Shengyi Wang, Lin Ma, Derek B Ingham, Mohamed Pourkashanian and Zhi Tao Abstract The unsteady separated

More information

This is the author s final accepted version.

This is the author s final accepted version. Ibrahim, I.H., Joy, J. and New, T.N. (2016) Numerical Investigation on Flow Separation Control of Low Reynolds Number Sinusoidal Aerofoils. In: 46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum,

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span) Lift for a Finite Wing all real wings are finite in span (airfoils are considered as infinite in the span) The lift coefficient differs from that of an airfoil because there are strong vortices produced

More information

et al. [25], Noack et al. [26] for circular cylinder flows, Van Oudheusden [27] for square cylinder and Durgesh [28] for a flat plate model. The first two modes appear as phase-shifted versions of each

More information

Incompressible Flow over Airfoils

Incompressible Flow over Airfoils Road map for Chap. 4 Incompressible Flow over Airfoils Aerodynamics 2015 fall - 1 - < 4.1 Introduction > Incompressible Flow over Airfoils Incompressible flow over airfoils Prandtl (20C 초 ) Airfoil (2D)

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodynamics I UNIT C: 2-D Airfoils C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory AE301 Aerodynamics I : List of Subjects

More information

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT Chapter-6 EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT 6.1 Introduction The gurney flap (wicker bill) was a small flat tab projecting from the trailing edge of a wing. Typically it

More information

WESEP 594 Research Seminar

WESEP 594 Research Seminar WESEP 594 Research Seminar Aaron J Rosenberg Department of Aerospace Engineering Iowa State University Major: WESEP Co-major: Aerospace Engineering Motivation Increase Wind Energy Capture Betz limit: 59.3%

More information

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap U.Praveenkumar 1, E.T.Chullai 2 M.Tech Student, School of Aeronautical Science, Hindustan University,

More information

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine International Journal of Engineering & Applied Sciences (IJEAS) International Journal of Engineering Applied Sciences (IJEAS) Vol.9, Issue 3 (2017) 75-86 Vol.x, Issue x(201x)x-xx http://dx.doi.org/10.24107/ijeas.332075

More information

Part III: Airfoil Data. Philippe Giguère

Part III: Airfoil Data. Philippe Giguère Part III: Airfoil Data Philippe Giguère Former Graduate Research Assistant (now with GE Wind Energy) Department of Aerospace Engineering University of Illinois at Urbana-Champaign Steady-State Aerodynamics

More information

Numerical simulations of a large offshore wind turbine exposed to turbulent inflow conditions

Numerical simulations of a large offshore wind turbine exposed to turbulent inflow conditions 9 th European Seminar OWEMES 2017 Numerical simulations of a large offshore wind turbine exposed to turbulent inflow conditions Galih Bangga, Giorgia Guma, Thorsten Lutz and Ewald Krämer Institute of Aerodynamics

More information

High fidelity gust simulations around a transonic airfoil

High fidelity gust simulations around a transonic airfoil High fidelity gust simulations around a transonic airfoil AEROGUST Workshop 27 th - 28 th April 2017, University of Liverpool Presented by B. Tartinville (Numeca) Outline of the presentation 1Objectives

More information

Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD

Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD Risø-R-1543(EN) Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD Jeppe Johansen and Niels N. Sørensen Risø National Laboratory Roskilde Denmark February 26 Author: Jeppe Johansen

More information

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE Jung-Hyun Kim*, Kyu-Hong

More information

Lecture # 08: Boundary Layer Flows and Controls

Lecture # 08: Boundary Layer Flows and Controls AerE 344 Lecture Notes Lecture # 8: Boundary Layer Flows and Controls Dr. Hui Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A Flow Separation on an Airfoil Quantification

More information

Pitching Airfoil Performance Enhancement Using Co-Flow Jet Flow Control at High Mach Number

Pitching Airfoil Performance Enhancement Using Co-Flow Jet Flow Control at High Mach Number AIAA SciTech 3-7 January 24, National Harbor, Maryland 52nd Aerospace Sciences Meeting AIAA 24-95 Pitching Airfoil Performance Enhancement Using Co-Flow Jet Flow Control at High Mach Number Alexis Lefebvre,

More information

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD Vivek V. Kulkarni Department of Mechanical Engineering KLS Gogte Institute of Technology, Belagavi, Karnataka Dr. Anil T.R. Department

More information

Senior mechanical energy conversion trends

Senior mechanical energy conversion trends Senior mechanical energy conversion trends Introduction and Analysis to fan blade profile and CFD Simulation Of An Appropriate Blade Profile for improving energy efficiency HAMED ROSTAMALIZADEH 95742906

More information

SIMULATION OF TIP LEAKAGE FLOW AROUND PARTIAL SQUEALER RIMS IN AXIAL TURBINES

SIMULATION OF TIP LEAKAGE FLOW AROUND PARTIAL SQUEALER RIMS IN AXIAL TURBINES SIMULATION OF TIP LEAKAGE FLOW AROUND PARTIAL SQUEALER RIMS IN AXIAL TURBINES Levent Kavurmacioglu 1, Debashis Dey 2 & Cengiz Camci 3 Department of Aerospace Engineering Turbomachinery Heat Transfer Laboratory

More information

GEOMETRY TIP CAP EFFECTS ON FORMATION AND NEAR WAKE EVOLUTION OF THE ROTOR TIP VORTICES

GEOMETRY TIP CAP EFFECTS ON FORMATION AND NEAR WAKE EVOLUTION OF THE ROTOR TIP VORTICES 36th AIAA Fluid Dynamics Conference and Exhibit 5-8 June 2006, San Francisco, California AIAA 2006-3376 GEOMETRY TIP CAP EFFECTS ON FORMATION AND NEAR WAKE EVOLUTION OF THE ROTOR TIP VORTICES Roxana Vasilescu

More information

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Razeen Ridhwan, Mohamed Alshaleeh, Arunvinthan S Abstract: In the Aerodynamic performance of wind turbine blade by

More information

Design of the LRP airfoil series using 2D CFD

Design of the LRP airfoil series using 2D CFD Journal of Physics: Conference Series OPEN ACCESS Design of the LRP airfoil series using 2D CFD To cite this article: Frederik Zahle et al 2014 J. Phys.: Conf. Ser. 524 012020 View the article online for

More information

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1 Advances in Natural Science Vol. 3, No. 2, 2010, pp. 244-20 www.cscanada.net ISSN 171-7862 [PRINT] ISSN 171-7870 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Numerical

More information

Wake modelling for offshore wind turbine parks. Jens N. Sørensen Department of Wind Energy Technical University of Denmark

Wake modelling for offshore wind turbine parks. Jens N. Sørensen Department of Wind Energy Technical University of Denmark Wake modelling for offshore wind turbine parks Jens N. Sørensen Department of Wind Energy Technical University of Denmark Wake and Wind Farm Aerodynamics Basic questions and issues: How important is the

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

FLOW CONTROL APPLIED TO OUTER WING SLAT-EDGE PROBLEM: CFD & EXPERIMENT

FLOW CONTROL APPLIED TO OUTER WING SLAT-EDGE PROBLEM: CFD & EXPERIMENT FLOW CONTROL APPLIED TO OUTER WING SLAT-EDGE PROBLEM: CFD & EXPERIMENT IAP 30 March 2017 Tel-Aviv University (TAU) IAI: I. Detinis, M. Steinbuch, S. Segal TAU: M. Lagutin & A. Seifert This study is part

More information

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE Lemes, Rodrigo Cristian,

More information

Investigation of Active Flow Control on an Extremely Thick Wind Turbine Airfoil. Kanin Homsrivaranon

Investigation of Active Flow Control on an Extremely Thick Wind Turbine Airfoil. Kanin Homsrivaranon Investigation of Active Flow Control on an Extremely Thick Wind Turbine Airfoil By Kanin Homsrivaranon Submitted to the graduate program in Aerospace Engineering and the Graduate Faculty of the University

More information

Air Craft Winglet Design and Performance: Cant Angle Effect

Air Craft Winglet Design and Performance: Cant Angle Effect Journal of Robotics and Mechanical Engineering Research Air Craft Winglet Design and Performance: Cant Angle Effect Eslam Said Abdelghany 1, Essam E Khalil 2*, Osama E Abdellatif 3 and Gamal elhariry 4

More information

DESIGN AND ANALYSIS OF NACA4420 WIND TURBINE AEROFOIL USING CFD

DESIGN AND ANALYSIS OF NACA4420 WIND TURBINE AEROFOIL USING CFD International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 6, June 2017, pp. 403 410, Article ID: IJMET_08_06_042 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=6

More information

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Numerical Analysis of Wings for UAV based on High-Lift Airfoils Numerical Analysis of Wings for UAV based on High-Lift Airfoils Sachin Srivastava Department of Aeronautical Engineering Malla Reddy College of Engineering & Technology, Hyderabad, Telangana, India Swetha

More information

FLOW SIMULATION OF AN SST CONFIGURATION AT LOW-SPEED AND HIGH-LIFT CONDITIONS

FLOW SIMULATION OF AN SST CONFIGURATION AT LOW-SPEED AND HIGH-LIFT CONDITIONS 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLOW SIMULATION OF AN SST CONFIGURATION AT LOW-SPEED AND HIGH-LIFT CONDITIONS Zhong Lei, Dong-Youn Kwak Supersonic Transport Team, Japan Aerospace

More information

CFD Studies on Triangular Micro-Vortex Generators in Flow Control

CFD Studies on Triangular Micro-Vortex Generators in Flow Control IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS CFD Studies on Triangular Micro-Vortex Generators in Flow Control To cite this article: V Yashodhar et al 2017 IOP Conf. Ser.:

More information

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL Int. J. Mech. Eng. & Rob. Res. 2012 Manjunath Ichchangi and Manjunath H, 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved CFD DESIGN STUDY

More information

EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP

EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP F.M. Catalano PhD.( catalano@sc.usp.br ) *, G. L. Brand * * Aerodynamic

More information

Numerical study of Wavy Blade Section for Wind Turbines

Numerical study of Wavy Blade Section for Wind Turbines Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical study of Wavy Blade Section for Wind Turbines To cite this article: C.M Kobæk and M.O.L Hansen 2016 J. Phys.: Conf. Ser. 753 022039 Recent

More information

A noise generation and propagation model for large wind farms

A noise generation and propagation model for large wind farms Wind Farm Noise: Paper ICA2016-86 A noise generation and propagation model for large wind farms Franck Bertagnolio (a) (a) DTU Wind Energy, Denmark, frba@dtu.dk Abstract A wind turbine noise calculation

More information

CFD VALIDATION STUDY OF NEXST-1 NEAR MACH 1

CFD VALIDATION STUDY OF NEXST-1 NEAR MACH 1 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD VALIDATION STUDY OF NEXST-1 NEAR ACH 1 Keizo Takenaka*, Kazuomi Yamamoto**, Ryoji Takaki** *itsubishi Heavy Industries, Ltd., 10 Oye-cho, inato-ku,

More information

Control of the Spanwise Distribution of Circulation on NACA 0012 and Flat Plate Wings

Control of the Spanwise Distribution of Circulation on NACA 0012 and Flat Plate Wings 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 2007, Reno, Nevada AIAA 2007-1121 Control of the Spanwise Distribution of Circulation on NACA 0012 and Flat Plate Wings D. Williams *, S. Doshi,

More information

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-213 1 Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped

More information

Navier Stokes analysis of lift-enhancing tabs on multi-element airfoils

Navier Stokes analysis of lift-enhancing tabs on multi-element airfoils Navier Stokes analysis of lift-enhancing tabs on multi-element airfoils Paul G. Carrannanto, Bruce L. Storms, James C. Ross, Russell M. Cummings Ford Motor Company, Dearborn, MI 48121, USA Aerospace Computing,

More information

Large Eddy Simulation of Wing Tip Vortex in the Near Field

Large Eddy Simulation of Wing Tip Vortex in the Near Field Large Eddy Simulation of Wing Tip Vortex in the Near Field Li Jiang Jiangang Cai Chaoqun Liu Technical Report 2007-13 http://www.uta.edu/math/preprint/ Large Eddy Simulation of Wing Tip Vortex in the Near

More information

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS www.mechieprojects.com CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS PRESENTATION OUTLINE AIM INTRODUCTION LITERATURE SURVEY CFD ANALYSIS OF AEROFOIL RESULTS CONCLUSIONS www.mechieprojects.com

More information

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car Structural Analysis of Formula One Racing Car Triya Nanalal Vadgama 1, Mr. Arpit Patel 2, Dr. Dipali Thakkar 3, Mr. Jignesh Vala 4 Department of Aeronautical Engineering, Sardar Vallabhbhai Patel Institute

More information

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Investigation on 3-D of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Rohit Jain 1, Mr. Sandeep Jain 2, Mr. Lokesh Bajpai 3 1PG Student, 2 Associate Professor, 3 Professor & Head 1 2 3

More information

Dynamic Stall For A Vertical Axis Wind Turbine In A Two-Dimensional Study

Dynamic Stall For A Vertical Axis Wind Turbine In A Two-Dimensional Study Abstracts of Conference Papers: TSBE EngD Conference, TSBE Centre, University of Reading, Whiteknights, RG6 Dynamic Stall For A Vertical Axis Wind Turbine In A Two-Dimensional Study R. Nobile 1,*, Dr M.

More information

Aerodynamics and Vortex Structures of a Flapping Airfoil in Forward Flight in Proximity of Ground

Aerodynamics and Vortex Structures of a Flapping Airfoil in Forward Flight in Proximity of Ground Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Spring 5-19-2017 Aerodynamics and Vortex

More information

The subsonic compressibility effect is added by replacing. with

The subsonic compressibility effect is added by replacing. with Swept Wings The main function of a swept wing is to reduce wave drag at transonic and supersonic speeds. Consider a straight wing and a swept wing in a flow with a free-stream velocity V. Assume that the

More information

Effect of Dimple on Aerodynamic Behaviour of Airfoil

Effect of Dimple on Aerodynamic Behaviour of Airfoil Effect of Dimple on Aerodynamic Behaviour of Airfoil Amit Kumar Saraf #1, Dr. Mahendra Pratap Singh *2, Dr. Tej Singh Chouhan #3 #1 Department of Mechanical Engineering, Jagannath University Jaipur, India

More information

2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil

2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil 2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil Akshay Basavaraj1 Student, Department of Aerospace Engineering, Amrita School of Engineering, Coimbatore 641 112, India1 Abstract: This

More information

Blade Design and Performance Analysis of Wind Turbine

Blade Design and Performance Analysis of Wind Turbine International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 1054-1061, April-June 2013 ICGSEE-2013[14 th 16 th March 2013] International Conference on Global Scenario

More information

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati Lecture-17 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lift: is used to support the weight of

More information

Effects of Leading-Edge Protection Tape on Wind Turbine Blade Performance

Effects of Leading-Edge Protection Tape on Wind Turbine Blade Performance Effects of Leading-Edge Protection Tape on Wind Turbine Blade Performance by Agrim Sareen, Chinmay A. Sapre and Michael S. Selig REPRINTED FROM WIND ENGINEERING VOLUME 36, NO. 5, 2012 MULTI-SCIENCE PUBLISHING

More information

AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE AERODYNAMIC CHARACTERISTICS AN OSCILLATORY PITCHING NACA0012 AEROFOIL

AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE AERODYNAMIC CHARACTERISTICS AN OSCILLATORY PITCHING NACA0012 AEROFOIL AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE AERODYNAMIC CHARACTERISTICS AN OSCILLATORY PITCHING NACA0012 AEROFOIL Ashim Yadav, Simon Prince & Jenny Holt School of Aerospace, Transport and Manufacturing,

More information

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil International Journal of Materials, Mechanics and Manufacturing, Vol. 3, No., February 2 Numerical and Experimental Investigations of Lift and Drag Performances of NACA Wind Turbine Airfoil İzzet Şahin

More information

Numerical Investigation of Flow Field and Effect of Varying Vortex Generator Location on Wing Performance

Numerical Investigation of Flow Field and Effect of Varying Vortex Generator Location on Wing Performance American Journal of Fluid Dynamics 2016, 6(1): 11-19 DOI: 10.5923/j.ajfd.20160601.02 Numerical Investigation of Flow Field and Effect of Varying Vortex Generator Location on Wing Performance Shubham Agarwal

More information

CFD development for wind energy aerodynamics

CFD development for wind energy aerodynamics CFD development for wind energy aerodynamics Hamid Rahimi, Bastian Dose, Bernhard Stoevesandt Fraunhofer IWES, Germany IEA Task 40 Kick-off Meeting 12.11.2017 Tokyo Agenda BEM vs. CFD for wind turbine

More information

CFD Analysis of Supercritical Airfoil with Different Camber

CFD Analysis of Supercritical Airfoil with Different Camber CFD Analysis of Supercritical Airfoil with Different Camber S.Manikandan 1, R.G.Bhuvana 2, Sowmya.A.Srinivasan 3 Assistant prof, Department of Aeronautical Engineering, Jeppiaar Engineering College, Chennai,

More information

Numerical computations of a tip vortex including gap with RANS and LES turbulence models

Numerical computations of a tip vortex including gap with RANS and LES turbulence models 1 Numerical computations of a tip vortex including gap with RANS and LES turbulence models J. Decaix & C. Münch-Alligné, HES SO Valais, Sion, Switzerland G. Balarac, LEGI, Grenoble, France 2 HYDRONET 2

More information

Principles of glider flight

Principles of glider flight Principles of glider flight [ Lecture 1: Lift, drag & glide performance ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher

More information

Validation of the CQU-DTU-LN1 series of airfoils

Validation of the CQU-DTU-LN1 series of airfoils Journal of Physics: Conference Series OPEN ACCESS Validation of the CQU-DTU-LN1 series of airfoils To cite this article: W Z Shen et al 2014 J. Phys.: Conf. Ser. 555 012093 View the article online for

More information

IJESRT: 8(1), January, 2019 ISSN:

IJESRT: 8(1), January, 2019 ISSN: IJESRT: 8(1), January, 2019 ISSN: 2277-9655 International Journal of Engineering Sciences & Research Technology (A Peer Reviewed Online Journal) Impact Factor: 5.164 IJESRT Chief Editor Dr. J.B. Helonde

More information

Self-noise of NACA 0012 and NACA 0021 airfoils at the onset of stall

Self-noise of NACA 0012 and NACA 0021 airfoils at the onset of stall Self-noise of NACA 12 and NACA 21 airfoils at the onset of stall Alex Laratro 1,*, Maziar Arjomandi 1, Benjamin Cazzolato 1, and Richard Kelso 1 1 School of Mechanical Engineering, The University of Adelaide,

More information

Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase

Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase Ravindra A Shirsath and Rinku Mukherjee Abstract This paper presents the results of a numerical simulation of unsteady, incompressible and viscous

More information

NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A GURNEY FLAP

NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A GURNEY FLAP Geotec., Const. Mat. & Env., ISSN:2186-2990, Japan, DOI: http://dx.doi.org/10.21660/2017.34.2650 NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A

More information

Effect of a single leading-edge protuberance on NACA airfoil performance

Effect of a single leading-edge protuberance on NACA airfoil performance Effect of a single leading-edge protuberance on NACA 63 4-021 airfoil performance Chang Cai 1, Zhigang Zuo 1, Shuhong Liu 1 *, Yulin Wu 1, ISROMAC 2016 International Symposium on Transport Phenomena and

More information