ME217 Fall 2017 Calibration Assignment

Size: px
Start display at page:

Download "ME217 Fall 2017 Calibration Assignment"

Transcription

1 ME217 Fall 2017 Calibration Assignment Jane Doe November 6,

2 1 Summary of problem statement Prof. Mammoli seeks to estimate the mechanical energy needed to propel himself and his roadbike from his address at 775 Windsong Lane in Corrales to UNM main campus, return trip. The preference is to ride along designated bike paths, possibly well away from roads. Details on the bike characteristics and rider mass are provided. 2 Roadmap of analysis We will first determine a route from home to UNM and back, and attempt to accurately describe the path in terms of distance and elevation change. We will then identify the various sources of mechanical energy expenditure. We will then attempt to quantify the mechanical energy expenditure along the route, using appropriate equations inserted in a spreadsheet. For simplicity, we will assume calm wind conditions, and constant speed. 3 Analysis Since the path from the home address to UNM is not a straight line, we will need a reasonably detailed path description to allow an accurate calculation. To obtain this, we can use Google maps. The output is shown in Fig. 1. We choose the longer route, along the river trail, because it is much more pleasant, reflecting the good professor s desire to be away from roads. We also note that the Google time calculator allocates a 1h 22m travel time, for the 25.3 km ride. Based on his average speed, the professor should do the ride in less than an hour, but the Google time calculator probably accounts for things such as slowing down for peds on the trail, stoplights, intersections and so on. 2

3 Figure 1: Google maps output of bike route from home address to office on UNM main campus 3

4 To a first approximation, there are three components to energy expenditure on a bike: 1. rolling resistance 2. aerodynamic drag 3. gravity (i.e. going up hills) OK, now we need to prepare for the calculation itself. To start with, we can assume that rolling resistance results from a constant force F r, that in turn results from deformation of the tires as they roll on the ground. There is also additional resistance from wheel bearings, crank bearings and from the chain. We make an informed decision that tire deformation is the dominant contributor to rolling resistance. So, the energy dissipated by rolling resistance for riding along a distance d, independently of speed, is given by: The aerodynamic drag force F d is given by E r = F r d. (1) F d = 1 2 C daρv 2, (2) where C d is the drag coefficient, A is the cross-sectional area of the rider in the direction of travel, ρ is the density of air and v is the speed. Energy dissipated by aerodynamic drag for a distance d is then E d = F d d. (3) For gravity, the energy required to go up a hill is given by E g = mg h, (4) where m is the combined mass of rider and bike, g is the acceleration of gravity, and h is the change in elevation experienced while traveling along distance d [3]. When going uphill, the change in potential energy is added to the dissipation from rolling resistance and drag. When going downhill, we assume that loss in potential energy offsets rolling resistance and drag (i.e. the rider does not have to pedal as hard). However, if loss in potential energy is greater than rolling resistance and drag combined, we assume that the rider applies the brakes to maintain constant speed, with zero net energy expenditure on the part of the rider. With this, we are ready to get some numbers. All we need is the sequence of rectilinear paths that approximates the total trip from home to UNM. Sadly, the Google map is not enough information! Fortunately, it is possible to obtain a detailed route with GPS coordinates and other derived information by feeding the Google Maps route to the GPS Visualizer website. 4

5 Figure 2: Sample output of GPS Visualizer website. 5

6 The output of GPS visualizer is a text file that looks like the sample in Fig. 2. The information fields are self-explanatory: latitude, longitude, altitude, distance, and distance interval. From this, we will use the distance interval and the altitude, which provide us with the quantities d and h respectively in Equations 1, 3 and 4. Before attempting the calculation, we need a few more bits of data. First, we need the rolling resistance of the tire. This can be obtained from the Bicycle rolling resistance website [1]. We choose a mid-range road bike tire, namely the Schwalbe Ultremo ZX, that has a rolling resistance of 15 W at a speed of 29 km/h and a load of 42.5 kg weight. Given that rolling power P r is related to rolling resistance by: P r = F r v, (5) we can calculate the constant rolling resistance, F r = 1.87 N per tire. For the aerodynamic drag, we use the CyclingPowerLab website [2]. For a bike with drop bars, the typical C d is The frontal area for a typical cyclist using drop bars is 0.32 m 2. Finally, the density of air in Albuquerque, for typical conditions, is kg/m 3. That s it! All that remains is to plug the formulas in the spreadsheet, and add it all up. The outcome, for the route from home to UNM, is an energy expenditure of 323,247 J, or kwh, or 77 calories (compare this with a typical 2000 calorie energy intake from food). Also note, however, that the chemical energy consumed by the body to produce this mechanical energy is likely much higher, probably something to the tune of 450 calories (the human body is not the most efficient energy converter). The power as a function of distance for the home to UNM trip is shown in Fig. 3. Figure 3: Power output of rider as a function of distance. This looks pretty reasonable, with a power of just under 100 W during the flat part, and higher power in the uphill section (from the river valley to UNM). One should also note that the 800 W power spikes are not realistic - given that pro riders can sustain a power output of 500 W for a few minutes, and the really good sprinters maybe 1000 W for 30 seconds! A more realistic sustained power output for the uphill section for the aging professor is about 200W (according to the treadmill at the gym), meaning that he would 6

7 have to slow down to a few km/h on the really steep sections. Nevertheless, the energy expenditure is almost the same - there would be a small reduction in aerodynamic drag, but gravity and rolling resistance would be the same. Finally, the way back is a little harder - with a total energy expenditure of 333,503 J, as a result of the asymmetrical layout of the uphill and downhill segments of the ride. 7

8 References [1] Bicycle Rolling Resistance. Accessed: [2] CyclingPowerLab. Accessed: [3] Richard A Dunlap. Sustainable energy. Cengage Learning,

EFFECT OF MASS ON DOWNHILL CYCLING: DOES THE BIKER'S WEIGHT HELP?

EFFECT OF MASS ON DOWNHILL CYCLING: DOES THE BIKER'S WEIGHT HELP? EFFECT OF MASS ON DOWNHILL CYCLING: DOES THE BIKER'S WEIGHT HELP? Hezi Yizhaq, Gil Baran High school for Environmental Education The Institutes for Desert Research Sede Boqer, Israel E-mail: yiyeh@bgu.ac.il

More information

Positioned For Speed

Positioned For Speed Positioned For Speed Positioned For Speed Global Network Retül Alphamantis Technologies PowerTap VELO Sports Center Pro Tour Level Team Support Team Sky Garmin Sharp Orica GreenEDGE Team Europcar Columbia

More information

It s a situation every avid cyclist knows only too

It s a situation every avid cyclist knows only too The Bicyclist s Paradox Randy Knight, California Polytechnic State University, San Luis Obispo, CA It s a situation every avid cyclist knows only too well. If you cycle up a hill and then back down with

More information

Translating Uphill Cycling into a Head-Wind and Vice Versa

Translating Uphill Cycling into a Head-Wind and Vice Versa J Sci Cycling. Vol. 6(1), 32-37 RESEARCH ARTICLE Open Access Translating Uphill Cycling into a Head-Wind and Vice Versa Sjoerd Groeskamp 1 * Abstract Forces acting upon a biker, can be expressed in terms

More information

PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1

PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1 Term: 161 Thursday, October 27, 2016 Page: 1 *Read the following (20) questions and choose the best answer: 1 The motion of a swimmer during 30.0 minutes workout is represented by the graph below. What

More information

The Weekend Warrior. VeloSano Training Guide

The Weekend Warrior. VeloSano Training Guide VeloSano Training Guide The Weekend Warrior By Dr. Michael Schaefer This guide includes suggestions for training for the VeloSano Bike to cure event of your chosen distance. If you are new to bicycling,

More information

Physics terms. coefficient of friction. static friction. kinetic friction. rolling friction. viscous friction. air resistance

Physics terms. coefficient of friction. static friction. kinetic friction. rolling friction. viscous friction. air resistance Friction Physics terms coefficient of friction static friction kinetic friction rolling friction viscous friction air resistance Equations kinetic friction static friction rolling friction Models for friction

More information

Question: Bicycles. Vehicle s Static Stability, Part 1. Observations About Bicycles. Vehicle s Static Stability, Part 2

Question: Bicycles. Vehicle s Static Stability, Part 1. Observations About Bicycles. Vehicle s Static Stability, Part 2 Bicycles 1 Bicycles 2 Question: Bicycles How would raising the height of a small pickup truck affect its turning stability? 1. Make it less likely to tip over. 2. Make it more likely to tip over. 3. Have

More information

Question: Bicycles. Observations About Bicycles. Static Stability, Part 1. Static Stability, Part 2. Static Stability, Part 3

Question: Bicycles. Observations About Bicycles. Static Stability, Part 1. Static Stability, Part 2. Static Stability, Part 3 Bicycles 1 Bicycles 2 Question: Bicycles How would raising the height of a sport utility vehicle affect its turning stability? 1. Make it less likely to tip over. 2. Make it more likely to tip over. 3.

More information

Types of Forces. Pressure Buoyant Force Friction Normal Force

Types of Forces. Pressure Buoyant Force Friction Normal Force Types of Forces Pressure Buoyant Force Friction Normal Force Pressure Ratio of Force Per Unit Area p = F A P = N/m 2 = 1 pascal (very small) P= lbs/in 2 = psi = pounds per square inch Example: Snow Shoes

More information

Effects of foot-pedal interface rigidity on high frequency cycling acceleration. John Romanishin

Effects of foot-pedal interface rigidity on high frequency cycling acceleration. John Romanishin Thursday 14:00-17:00 Go forth final Paper Assignment Effects of foot-pedal interface rigidity on high frequency cycling acceleration John Romanishin 5/9/2011 2.671 Measurement and Instrumentation Professor

More information

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided.

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided. NAME:.... SCHOOL: DATE:... LINEAR MOTION INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1. Two forces that act on a moving cyclist are the driving force and the resistive

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 20, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

From Constraints to Components at Marin Bicycles

From Constraints to Components at Marin Bicycles From Constraints to Components at Marin Bicycles A Case Study for The Mechanical Design Process Introduction This case study details the development of the Marin Mount Vision Pro mountain bicycle rear

More information

Jakub Benicek Candidate Number: May 2010 Physics Word Count: 3864

Jakub Benicek Candidate Number: May 2010 Physics Word Count: 3864 International Baccalaureate: Extended Essay Investigation on the amount of time required to burn the calories contained in a Mars Bars whilst riding a standard bicycle on a horizontal road Jakub Benicek

More information

Motion. 1 Describing Motion CHAPTER 2

Motion. 1 Describing Motion CHAPTER 2 CHAPTER 2 Motion What You ll Learn the difference between displacement and distance how to calculate an object s speed how to graph motion 1 Describing Motion 2(D), 4(A), 4(B) Before You Read Have you

More information

Newton /PowerPod CdA Measurement Instruction Manual. January 2017 Newton FW PowerPod FW 6.21+

Newton /PowerPod CdA Measurement Instruction Manual. January 2017 Newton FW PowerPod FW 6.21+ Newton /PowerPod CdA Measurement Instruction Manual January 2017 Newton FW 5.15+ PowerPod FW 6.21+ 1 THE CDA FEATURE REQUIRES FW 5.15 OR HIGHER (NEWTON), OR FW 6.21 OR HIGHER (POWERPOD), AND PURCHASE OF

More information

The effect of environmental conditions on performance in timed cycling events

The effect of environmental conditions on performance in timed cycling events J Sci Cycling.Vol. 3(3), 17-22 RESEARCH ARTICLE Open Access The effect of environmental conditions on performance in timed cycling events Dan B Dwyer 1 Abstract Air temperature, pressure and humidity are

More information

Treadle Pump Exercise:

Treadle Pump Exercise: D-Lab: Development SP.721 Fall 2009 Hands-On Human Power Class Outline for October 9, 2009: Treadle Pump (Leg Power) Exercise Flashlight (Hand Power) Exercise Wheelchair (Arm Power) Exercise Bicimolino

More information

DYNAMICS PROBLEM SOLVING

DYNAMICS PROBLEM SOLVING DYNAMICS PROBLEM SOLVING 1. An elevator of mass 800 kg accelerates at 3.0 m/s 2 [down]. What force does the cable exert on the elevator? (5400 N) 2. The engine of a train has a mass of 5.0 x 10 4 kg. It

More information

Bicycle Safety Skills

Bicycle Safety Skills Bicycle Safety Skills Presented by: MassBike Cape and Islands Chapter MassBike John Fallender December 20, 2010 Cape & Islands Chapter 1 Welcome to Cape Cod 2 Bikes are vehicles? What does that mean? That

More information

Aircraft Performance Calculations: Descent Analysis. Dr. Antonio A. Trani Professor

Aircraft Performance Calculations: Descent Analysis. Dr. Antonio A. Trani Professor Aircraft Performance Calculations: Descent Analysis CEE 5614 Analysis of Air Transportation Systems Dr. Antonio A. Trani Professor Aircraft Descent Performance The top of descent point typically starts

More information

WHITE PAPER Copyright Cicli Pinarello SRL - C.F. e P.I

WHITE PAPER Copyright Cicli Pinarello SRL - C.F. e P.I WHITE PAPER 2017 - Copyright Cicli Pinarello SRL - C.F. e P.I. 05994100963 INDEX 0. INTRODUCTION... 3 1. PINARELLO NYTRO BIKE CONCEPT... a. PURPOSES OF THE PROJECT... b. HANDLING AND RIDING FEELING...

More information

I Cycle Safely. A Little Book with a Big Message

I Cycle Safely. A Little Book with a Big Message I Cycle Safely A Little Book with a Big Message Cycle Safely Program Why Cycle? It s fun! It s healthy! It s good for the environment! Here is your own I Cycle Safely pocket book. It s a little book with

More information

FOLLOW THE LEADER. Skills Bike control, stopping, starting, safe following distance, signaling, shoulder checking, using gears.

FOLLOW THE LEADER. Skills Bike control, stopping, starting, safe following distance, signaling, shoulder checking, using gears. FOLLOW THE LEADER Skills Bike control, stopping, starting, safe following distance, signaling, shoulder checking, using gears. Location Playground or basketball court. Set-up/Tools None. No cones or chalk

More information

CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS

CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS - 56 - CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS Gloth O., Rudolf A. ILF Consulting Engineers Zürich, Switzerland ABSTRACT This article investigates the

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 26, 2002 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

Solar Bicycle Energy Management System Using HP48G Calculator

Solar Bicycle Energy Management System Using HP48G Calculator Solar Bicycle Energy Management System Using HP48G Calculator AMIR HISHAM B. HASHIM, E-mail: amir@uniten.edu.my AZREE B. IDRIS, E-mail: azree@uniten.edu.my HALIL B. HUSSIN, E-mail: halil@uniten.edu.my

More information

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the A) mass of the object. B) force on the object. C) inertia

More information

Review - Kinematic Equations

Review - Kinematic Equations Review - Kinematic Equations 1. In an emergency braking exercise, a student driver stops a car travelling at 83 km/h [W] in a time of 4.0 s. What is the car s acceleration during this time? (The answer

More information

Detailed study 3.4 Topic Test Investigations: Flight

Detailed study 3.4 Topic Test Investigations: Flight Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure

More information

Training Program. Definitions. Preparation for Training

Training Program. Definitions. Preparation for Training Training Program The attached 8 week program is designed for EXPERIENCED cyclists aiming for the Grafton to Inverell Cycle Classic 228km ride. It can be used as a guide to assist you prepare for the event

More information

Cervélo S5 White Paper Executive Summary... 2

Cervélo S5 White Paper Executive Summary... 2 Cervélo S5 White Paper Executive Summary... 2 Introduction... 3 Aero Road Bike Benchmarks... 3 Cervélo S5 Stiffness & Weight... 3 Cervélo S5 Aero Performance... 6 Cervélo S5 Features... 12 Cervélo S5 Geometry...

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

Ref. no FUNCTIONS AND FEATURES

Ref. no FUNCTIONS AND FEATURES EN DIGITAL WIRELESS FUNCTIONS AND FEATURES 1. Current speed 2. Trip distance 3. Ride time 4. Average speed (2 decimal places) 5. Max. speed (2 decimal places) 6. Trip section counter (manual stopwatch

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Monday 16 January 2017 Afternoon Time allowed: 1 hour 30 minutes You must have: the

More information

Model of the 2003 Tour de France

Model of the 2003 Tour de France Model of the 2003 Tour de France Benjamin Lee Hannas and John Eric Goff a) School of Sciences, Lynchburg College, Lynchburg, Virginia 24501 Received 31 July 2003; accepted 17 October 2003 We modeled the

More information

NEVADA BICYCLING GUIDE

NEVADA BICYCLING GUIDE NEVADA BICYCLING GUIDE BE BICYCLE SAFE EVERY TIME YOU RIDE LET S ALL BE SAFE TOGETHER. In Case of Emergency Contact: Name: Phone: Relationship: REMEMBER TO ALWAYS, BE SAFE AND BE SEEN! Before you head

More information

PRE-TEST Module 2 The Principles of Flight Units /60 points

PRE-TEST Module 2 The Principles of Flight Units /60 points PRE-TEST Module 2 The Principles of Flight Units 1-2-3.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four

More information

3. How many kilograms of air is in the room?

3. How many kilograms of air is in the room? 1. Astronomers use density as a clue to the composition of distant objects. Judging by the orbits of its moons the mass of Saturn is found to be 5.68 10 26 kg. (a) Use its mean radius 58 230 km to determine

More information

A New Approach in the GIS Bikeshed Analysis Considering of Topography, Street Connectivity, and Energy Consumption

A New Approach in the GIS Bikeshed Analysis Considering of Topography, Street Connectivity, and Energy Consumption A New Approach in the GIS Bikeshed Analysis Considering of Topography, Street Connectivity, and Energy Consumption ACSP Conference, Cincinnati, OH November 1, 2012 Hiroyuki Iseki, Ph.D. & Matthew Tingstrom

More information

7.3.2 Distance Time Graphs

7.3.2 Distance Time Graphs 7.3.2 Distance Time Graphs 35 minutes 39 marks Page 1 of 11 Q1. A cyclist goes on a long ride. The graph shows how the distance travelled changes with time during the ride. (i) Between which two points

More information

One of the most important gauges on the panel is

One of the most important gauges on the panel is stick & rudder flight advisor Is Your Airspeed Indicator Honest? An accuracy how-to H.C. SKIP SMITH One of the most important gauges on the panel is the airspeed indicator. This is particularly true if

More information

LAB : Using A Spark Timer

LAB : Using A Spark Timer LAB : Using A Spark Timer Read through the whole lab and answer prelab questions prior to lab day. Name: F1 Introduction A spark timer is used to make accurate time and distance measurements for moving

More information

Group Riding Techniques

Group Riding Techniques Group Riding Techniques Revised: 2017 01 26 A. Group Riding Terminology Thanks to the Ottawa Bicycle Club for allowing us to use content from their website! A.1 Groups and Packs A group is several cyclists

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

SPH 4C Unit 4 Hydraulics and Pneumatic Systems SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that

More information

College of Engineering

College of Engineering College of Engineering Department of Mechanical and Aerospace Engineering MAE-250, Section 001 Introduction to Aerospace Engineering Final Project Bottle Rocket Written By: Jesse Hansen Connor Petersen

More information

Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find

Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find On the t Influence of Air Resistance and Wind during Long Jump Egoyan A. E. ( alex1cen@yahoo.com ), Khipashvili I. A. Georgian University GEOMEDI Abstract. In this article we perform theoretical analysis

More information

VELODYNE REFERENCE MANUAL

VELODYNE REFERENCE MANUAL VELODYNE REFERENCE MANUAL W E LCOME TO V E LO DY N E Wind resistance, hills, pursuits, attacks, time trials; aerobic fitness, cadence eff i c i e n c y, speed: the exhilaration and the physical benefits

More information

Introduction to Transportation Engineering. Discussion of Stopping and Passing Distances

Introduction to Transportation Engineering. Discussion of Stopping and Passing Distances Introduction to Transportation Engineering Discussion of Stopping and Passing Distances Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University

More information

Technical Report: Accuracy Testing of 4iiii Innovations PRECISION Powermeter Technology

Technical Report: Accuracy Testing of 4iiii Innovations PRECISION Powermeter Technology Technical Report: Accuracy Testing of 4iiii Innovations PRECISION Powermeter Technology Scott Cooper, Ph.D, 4iiii Innovations Inc. Wouter Hoogkramer, Ph.D and Rodger Kram, Ph.D, University of Colorado

More information

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m Page 1 of 5 Sub work 10-10-02 Name 12-OCT-03 1. A car travels a distance of 98 meters in 10. seconds. What is the average speed of the car during this 10.-second interval? 1. 4.9 m/s 3. 49 m/s/ 2. 9.8

More information

Always in the right gear wherever you are

Always in the right gear wherever you are Always in the right gear wherever you are Pure riding pleasure with the FAG VELOMATIC automatic bicycle gearshift system Automatically at an advantage The German Federal Statistics Office estimates that

More information

Incredible Electromotive Systems. A kit that converts mountain bikes to electric mountain bikes.

Incredible Electromotive Systems. A kit that converts mountain bikes to electric mountain bikes. Incredible Electromotive Systems. A kit that converts mountain bikes to electric mountain bikes. Hermes by Paradox Kinetics. Precision and perfection, down to the last detail. Paradox Kinetics is a company

More information

Scoutmasters Guide to Camp Jackson s Pump Track

Scoutmasters Guide to Camp Jackson s Pump Track Scoutmasters Guide to Camp Jackson s Pump Track What Is a Pump Track? A pump track is a bicycle track that is continuous loop of rollers and banked turns. When properly riding a pump track, a cyclist can

More information

Strategies for Elimination Races

Strategies for Elimination Races Strategies for Elimination Races Although not a championship event, the elimination race is a crowd favorite. The elimination race is also called the Miss and Out or the Devil Take the Hindmost. It is

More information

SUBPART C - STRUCTURE

SUBPART C - STRUCTURE SUBPART C - STRUCTURE GENERAL CS 23.301 Loads (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by

More information

When on the road When turning When avoiding hazards. This is NOT a straight line: This is NOT a straight line: This is NOT a straight line:

When on the road When turning When avoiding hazards. This is NOT a straight line: This is NOT a straight line: This is NOT a straight line: RIDE IN A STRAIGHT LINE When on the road When turning When avoiding hazards This is NOT a straight line: This is NOT a straight line: This is NOT a straight line: STAY TOGETHER No more than bike length

More information

Pole line The Pole line is a blue line which marks the inner edge of the track. This line is used to measure the length of the track.

Pole line The Pole line is a blue line which marks the inner edge of the track. This line is used to measure the length of the track. INTRODUCTION The track to be used for the Melbourne 2006 Commonwealth Games is a ovalshaped, 250 metres around and built from Siberian Pine. The straights of most tracks have a tilt of around 12 whereas

More information

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram.

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram. MECHANICS: MOTION QUESTIONS High Jump (2017;2) Sarah, a 55.0 kg athlete, is competing in the high jump where she needs to get her body over the crossbar successfully without hitting it. Where she lands,

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher Mini-project 3 Tennis ball launcher Mini-Project 3 requires you to use MATLAB to model the trajectory of a tennis ball being shot from a tennis ball launcher to a player. The tennis ball trajectory model

More information

This is the Quick Start Guide for the Optibike Pioneer Allroad electric bicycle. The Guide provides for basic information required to ride the

This is the Quick Start Guide for the Optibike Pioneer Allroad electric bicycle. The Guide provides for basic information required to ride the This is the Quick Start Guide for the Optibike Pioneer Allroad electric bicycle. The Guide provides for basic information required to ride the Allroad. It is not intended to be an extensive manual. It

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

THE ACTIVE CYCLIST S SPORTIVE TRAINING PLAN

THE ACTIVE CYCLIST S SPORTIVE TRAINING PLAN THE ACTIVE CYCLIST S SPORTIVE TRAINING PLAN WATTBIKE.COM WEEK 01-02 THE ACTIVE CYCLIST S We ve partnered with UK Cycling Events to bring you top quality training plans to help you prepare for the challenges

More information

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures.

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures. Q1.The diagram below shows an electric two-wheeled vehicle and driver. (a) The vehicle accelerates horizontally from rest to 27.8 m s 1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider

More information

T R A F F I C S K IL L S 101

T R A F F I C S K IL L S 101 page 1/5 GENERAL INSTRUCTIONS Mark your answers on the answer sheet provided. DO NOT make any marks on the test. Please read the following definitions and assumptions carefully before answering the test

More information

Panaga Lanterne Rouge Cycling Club (PlR):

Panaga Lanterne Rouge Cycling Club (PlR): Panaga Lanterne Rouge Cycling Club (PlR): Information Pack & Ride Summaries Contents: 1) New rider information 2) Ride summaries 3) Rules/safety 4) Group riding safety 5) Contacts, links & references Last

More information

HS2 Ltd HS2 London to West Midlands Route Corridor Reviews Journey Time Analysis. January 2012

HS2 Ltd HS2 London to West Midlands Route Corridor Reviews Journey Time Analysis. January 2012 HS2 Ltd HS2 London to West Midlands Route Corridor Reviews Journey Time Analysis January 2012 High Speed 2 Limited HS2 London to West Midlands Route Corridor Reviews Journey Time Analysis Contents 1 Introduction

More information

Modelling peloton dynamics in competitive cycling: a quantitative approach

Modelling peloton dynamics in competitive cycling: a quantitative approach Modelling peloton dynamics in competitive cycling: a quantitative approach Erick Martins Ratamero MOAC Doctoral Training Centre, University of Warwick Gibbet Hill Road, CV4 7AL Coventry, United Kingdom

More information

Mapping Cycling Pathways and Route Selection Using GIS and GPS

Mapping Cycling Pathways and Route Selection Using GIS and GPS Proceedings of the SURVEYING & SPATIAL SCIENCES BIENNIAL CONFERENCE 2011 21-25 November 2011, Wellington, New Zealand Mapping Cycling Pathways and Route Selection Using GIS and GPS Matthew Huntley, Xiaoye

More information

Applications of Mathematical Models of Road Cycling

Applications of Mathematical Models of Road Cycling Applications of Mathematical Models of Road Cycling Thorsten Dahmen Stefan Wolf Dietmar Saupe Department of Computer and Information Science University of Konstanz, 78457 Konstanz, Germany Email: (thorsten.dahmen

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

Uphill / Downhill. Super Elevations. Wide-Width 2/15/2016. March 22-24, 2016 Nashville, TN

Uphill / Downhill. Super Elevations. Wide-Width 2/15/2016. March 22-24, 2016 Nashville, TN Uphill / Downhill Wide-Width 1 Uphill Issue Loss of traction Downhill Issue Spills caused by truck rollaway Uphill Paving Obvious things Apply correct amount of tack Wait for tack to break 2 Uphill Paving

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

Report on MEPS Přerov TH MIDDLE EUROPEAN PROJECT SEMINAR LAURA ENJUANES NOGUERO E

Report on MEPS Přerov TH MIDDLE EUROPEAN PROJECT SEMINAR LAURA ENJUANES NOGUERO E 2017 Report on MEPS Přerov 2017 28TH MIDDLE EUROPEAN PROJECT SEMINAR LAURA ENJUANES NOGUERO E01650478 Table of Content 1. Introduction... 1 2. Problem definition... 1 3. Proposed solution in the presentation...

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

Physics Final Exam Review Fall 2013

Physics Final Exam Review Fall 2013 Physics Final Exam Review Fall 2013 The lines on the graph represent displacement vectors for the route along which a person moves. Use the figure to answer problems 1 2. 1. What is the total distance

More information

AIRCRAFT PRIMARY CONTROLS A I R C R A F T G E N E R A L K N O W L E D G E

AIRCRAFT PRIMARY CONTROLS A I R C R A F T G E N E R A L K N O W L E D G E 1.02.02 AIRCRAFT PRIMARY CONTROLS 1. 0 2 A I R C R A F T G E N E R A L K N O W L E D G E CONTROLLING AIRCRAFT AIRCRAFT CONTROL SYSTEM In general, we use control inputs of the following devices in cabin:

More information

EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF VEGETABLES AND FLOWERS LOCATED ON ROOFTOPS

EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF VEGETABLES AND FLOWERS LOCATED ON ROOFTOPS 6 th International Conference Computational Mechanics and Virtual Engineering COMEC 2015 15-16 October 2015, Braşov, Romania EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF

More information

Page 2. Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement

Page 2. Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement Q1.(a) Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement vector scalar (b) A tennis ball is thrown vertically downwards

More information

Fluid Mechanics - Hydrostatics. Sections 11 5 and 6

Fluid Mechanics - Hydrostatics. Sections 11 5 and 6 Fluid Mechanics - Hydrostatics Sections 11 5 and 6 A closed system If you take a liquid and place it in a system that is CLOSED like plumbing for example or a car s brake line, the PRESSURE is the same

More information

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec 1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

Mechanical systems and control: investigation

Mechanical systems and control: investigation 6 Mechanical systems and control: investigation gear ratio the number of turns of one gear compared to the other is known as gear ratio speed ratio the gear ratio of a gear train, also known as its speed

More information

In addition to reading this assignment, also read Appendices A and B.

In addition to reading this assignment, also read Appendices A and B. 1 Kinematics I Introduction In addition to reading this assignment, also read Appendices A and B. We will be using a motion detector to track the positions of objects with time in several lab exercises

More information

Comments on Homework. Quiz. Class 3 - Pressure. Atmospheric Pressure. 2. Gauge vs. Absolute Pressure. 1. Definitions. Temperature conversion

Comments on Homework. Quiz. Class 3 - Pressure. Atmospheric Pressure. 2. Gauge vs. Absolute Pressure. 1. Definitions. Temperature conversion Comments on Homework Quiz Temperature conversion T ( R) = T (K) 1.8 T ( C) = T(K) - 273.15 T ( F) = T( R) - 460 However, difference in temperature is: T ( C) = T (K) T ( F) = T ( R) T ( R) = 1.8 T ( C)

More information

DESIGN BEHIND THE BIKE WHEELS

DESIGN BEHIND THE BIKE WHEELS DESIGN BEHIND THE BIKE WHEELS INTRODUCTION Far from being a simple, round, spinning object, the component parts of a wheel combine to affect weight, aerodynamics and the overall performance of a bike.

More information

Lesson: Airspeed Control

Lesson: Airspeed Control 11/20/2018 Airspeed Control Page 1 Lesson: Airspeed Control Objectives: o Knowledge o An understanding of the aerodynamics related to airspeed control o Skill o The ability to establish and maintain a

More information

Optimization of an off-road bicycle with four-bar linkage rear suspension

Optimization of an off-road bicycle with four-bar linkage rear suspension Proceedings of MUSME 2008, the International Symposium on Multibody Systems and Mechatronics San Juan (Argentina), 8-12 April 2008 Paper n. 02-MUSME08 Optimization of an off-road bicycle with four-bar

More information

Available online at Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models

Available online at  Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models Available online at www.sciencedirect.com Engineering 2 00 (2010) (2009) 3211 3215 000 000 Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering Association

More information

JAR-23 Normal, Utility, Aerobatic, and Commuter Category Aeroplanes \ Issued 11 March 1994 \ Section 1- Requirements \ Subpart C - Structure \ General

JAR-23 Normal, Utility, Aerobatic, and Commuter Category Aeroplanes \ Issued 11 March 1994 \ Section 1- Requirements \ Subpart C - Structure \ General JAR 23.301 Loads \ JAR 23.301 Loads (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed

More information

EPICYCLIC POWERED BICYCLE

EPICYCLIC POWERED BICYCLE EPICYCLIC POWERED BICYCLE Prof. S. V. Deshpande¹, Ajinkya V. Waghade², Mayur D. Wadulkar³, Madhusudan M. Sonwane 4 Sunilkumar Wagh 5 1 Asst. Professor, Dept of Mechanical engg, GSMCOE Balewadi, Pune. (India)

More information

Inclined-plane model of the 2004 Tour de France

Inclined-plane model of the 2004 Tour de France INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 26 (2005) 251 259 EUROPEAN JOURNAL OF PHYSICS doi:10.1088/0143-0807/26/2/004 Inclined-plane model of the 2004 Tour de France Benjamin Lee Hannas 1 and John

More information

RIDER PERFORMANCE PROFILE

RIDER PERFORMANCE PROFILE RIDER PERFORMANCE PROFILE NAME: DISCIPLINE: PRINCIPLE EVENT: COACH: DATE: Cycling Irel Long Term Athlete Development - Performance Profile CYCLING IRELAND RIDER PERFORMANCE PROFILE RIDER: Colour in the

More information

Bikes and Energy. Pre- Lab: The Bike Speedometer. A Bit of History

Bikes and Energy. Pre- Lab: The Bike Speedometer. A Bit of History Bikes and Energy Pre- Lab: The Bike Speedometer A Bit of History In this lab you ll use a bike speedometer to take most of your measurements. The Pre- Lab focuses on the basics of how a bike speedometer

More information

Bike Safety It Starts With You!

Bike Safety It Starts With You! The law defines the bicycle as a vehicle that belongs on the road. Riding on the road means that you are mixing with other traffic, and it is only safe when all vehicles in traffic use the same rules of

More information

I Cycle Safely. A Little Book with a Big Message

I Cycle Safely. A Little Book with a Big Message I Cycle Safely A Little Book with a Big Message Cycle Safely Program Why Cycle? It s fun! It s healthy! It s good for the environment! Here is your own I Cycle Safely pocket book. It s a little book with

More information

Relationship Between Glide Speed and Olympic Cross-Country Ski Performance

Relationship Between Glide Speed and Olympic Cross-Country Ski Performance JOURNAL OF APPLIED BIOMECHANICS, 1994,10, 393-399 O 1994 by Human Kinetics Publishers, Inc. Relationship Between Glide Speed and Olympic Cross-Country Ski Performance Glenn M. Street and Robert W. Gregory

More information