Life History of Aquatic Organisms (AFI-31306) Lecture: Adaptive radiation in molluscs Martin Lankheet, EZO

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Life History of Aquatic Organisms (AFI-31306) Lecture: Adaptive radiation in molluscs Martin Lankheet, EZO"

Transcription

1 Life History of Aquatic Organisms (AFI-31306) Lecture: Adaptive radiation in molluscs Martin Lankheet, EZO

2 Position in the course THEME Lectures Tutorials Practicals Introduction to Life Life-history trade-offs in History theory zooplankton Niche differentiation and feeding Migration, habitat choice and swimming Introduction to Life History theory Life histories of marine mammals and relevance for population zooplankton ecology Food & food webs Niche adaptation & ecomorphology Adaptive radiation in Lake molluscs Adaptive radiation in fishes Eco-morphological methodology Fish swimming Swimming in 'non-fish' Fish migration Life history trade-offs Density (in) dependent regulation of population numbers Food & food webs assignment Mollusks: adaptation in bivalves and squids Reflection on cyprinid fish adaptations Analysis of larval swimming Migration Feeding ecology of seals Diversity of North Sea fishes Functioning and life history of gastropods, bivalves and cephalopods Cyprinid fish: adaptive radiation Larval swimming Reproductive strategies Reproductive and life history strategies in aquatic organisms Reproduction in fishes Physiology of reproduction Size of maturity & reproduction Physiology of reproduction

3 Phylum Mollusca l Phylum Mollusca includes snails and slugs, oysters and clams, and octopuses, cuttlefish and squids.

4 Phylum Mollusca l Molluscs evolved in the sea and most molluscs are still marine. l Some gastropods and bivalves inhabit freshwater. l A few gastropods (slugs & snails) are terrestrial.

5 Humans & Molluscs l Humans use molluscs in a variety of ways: l As food mussels, clams, oysters, abalone, calamari (squid), octopus, escargot (snails), etc. l Pearls formed in oysters and clams. l Shiny inner layer of some shells used to make buttons.

6 Humans & Molluscs l A few are pests or introduced nuisances: l Shipworms burrow through wood, including docks & ships. l Terrestrial snails and slugs damage garden plants. l Molluscs serve as an intermediate host for many parasites. l Zebra mussels accidentally introduced into the Great Lakes and reeking havoc with the ecosystem.

7 Outline l General body plan l Adaptive radiation l Program: l Tomorrow: l Dissect and study Helix aspersa (garden snail) l Biologists: Study Bivalves or Cephalopods l Wednesday: l Video l Presentations/ demonstrations on Bivalves and Cephalopods

8 Molluscs Phylogenetic Position and Development

9 Phylum Mollusca l Molluscs have a mesoderm lined body cavity a coelom. l They are protostomes l Spiral, determinate cleavage l Schizocoelous coelom development

10 Mollusc Body Plan l All molluscs have a similar body plan with three main parts: l A muscular foot l A visceral mass containing digestive, circulatory, respiratory and reproductive organs. l A mantle houses the gills and in some secretes a protective shell over the visceral mass.

11 Mollusc Body Plan l Most molluscs have separate sexes with gonads located in the visceral mass.

12 Head-Foot Region l Most molluscs have well developed head ends with sensory structures including photosensory receptors that may be simple light detectors or complex eyes (cephalopods).

13 Head-Foot Region l The radula is a rasping, protrusible feeding structure found in most molluscs (not bivalves). l Ribbon-like membrane with rows of tiny teeth.

14 Head-Foot Region l The foot of a mollusc may be adapted for locomotion, attachment, or both. l Pelagic forms may have a foot modified into wing-like parapodia.

15 Shells l When present, the calcareous shell is secreted by the mantle and is lined by it. It has 3 layers: l Periostracum outer organic layer helps to protect inner layers from boring organisms. l Prismatic layer densely packed prisms of calcium carbonate. l Nacreous layer iridescent lining secreted continuously by the mantle surrounds foreign objects to form pearls in some.

16 Mantle Cavity l The space between the mantle and the visceral mass is called the mantle cavity. l The respiratory organs (gills or lungs) are generally housed here.

17 Internal Structure & Function l Many molluscs have an open circulatory system with a pumping heart, blood vessels and blood sinuses. l Most cephalopods have a closed circulatory system with a heart, blood vessels and capillaries.

18 Mollusc Life Cycle l Most molluscs are dioecious, some are hermaphroditic. l The life cycle of many molluscs includes a free swimming, ciliated larval stage called a trochophore. l Similar to annelid larvae.

19 Mollusc Life Cycle l The trochophore larval stage is followed by a free-swimming veliger larva in most species.

20 Major Mollusc Classes l Four major classes of molluscs: l Class Polyplacophora the chitons l Class Gastropoda snails & slugs l Class Bivalvia clams, mussels, oysters l Class Cephalopoda octopus & squid

21 Class Polyplacophora l Class Polyplacophora includes the chitons. l Eight articulated plates or valves. l Can roll up. l Live mostly in the rocky intertidal. l Use radula to scrape algae off rocks. l Gills are suspended from roof of mantle cavity.

22 Class Gastropoda l Gastropoda is the largest of the molluscan classes. l 70,000 named species. l Include snails, slugs, sea hares, sea slugs, sea butterflies. l Marine, freshwater, terrestrial. l Benthic or pelagic

23 Class Gastropoda l Gastropods show bilateral symmetry, but due to a twisting process called torsion that occurs during the veliger larval stage, the visceral mass is asymmetrical.

24 Class Gastropoda, coiling l Coiling is not the same as torsion. l Early gastropods had a planospiral shell where each whorl lies outside the others. l Bulky l Conispiral shells have each whorl to the side of the preceding one. l Unbalanced l Shell shifts over for better weight distribution.

25 Gastropod Feeding Habits l Most gastropods are herbivores and feed by scraping algae off hard surfaces using the radula. l Some are scavengers of dead organisms, again tearing off pieces with radular teeth.

26 Gastropod Feeding Habits l Some are carnivores, radula + chemicals to bore through the shells of other molluscs. l Snails in the genus Conus feed on fish, worms, and molluscs. l Highly modified radula used for prey capture. l They secrete a toxin that paralyzes their prey. l Some are painful, even lethal, to humans.

27 Reproduction l Monoecious and dioecious species. l Young may emerge as veliger larvae or pass this stage inside the egg.

28 Internal Form and Function l Pulmonates lack gills. l Have a highly vascular area in mantle that serves as lung. l Lung opens to outside by small opening, the pneumostome. l Aquatic pulmonates surface to expel a gas bubble and inhale by curling, thus forming a siphon.

29 Internal Form and Function l Most have a single nephridium and welldeveloped circulatory and nervous systems. l Sense organs include eyes, statocysts, tactile organs, and chemoreceptors. l Eyes vary from simple cups holding photoreceptors to a complex eye with a lens and cornea

30 Major Groups of Gastropods l Pulmonata includes land and most freshwater snails and slugs. l Ancestral ctenidia have been lost and the vascularized mantle wall is now a lung. l Air fills lung by contraction of mantle floor. l Anus and nephridiopore open near the pneumostome. l Waste is forcibly expelled. l Monoecious

31 Class Bivalvia l Bivalved molluscs have two shells (valves). l Mussels, clams, oysters, scallops, shipworms. l Mostly sessile filter feeders. l No head or radula.

32 Class Bivalvia l Part of the mantle is modified to form incurrent and excurrent siphons. l Used to pump water through the organism for gas exchange and filter feeding. l Sometimes used for jet propulsion.

33 Class Bivalvia - Locomotion l Bivalves move around by extending the muscular foot between the shells. l Scallops swim by clapping their shells together to create jet propulsion.

34 Class Bivalvia l l l l l Like other molluscs, bivalves have a coelom and an open circulatory system. The mantle cavity of a bivalve contains gills that are used for feeding as well as gas exchange. Pair of kidneys is ventral and posterior to heart. Nervous system has three pairs of widely separated ganglia connected together. Sense organs are poorly developed.

35 Class Bivalvia - Feeding l l l l l Suspended organic matter enters incurrent siphon. Gland cells on gills and labial palps secrete mucus to entangle particles. Food in mucous masses slides to food grooves at lower edge of gills. Cilia and grooves on the labial palps direct the mucous mass into mouth. Some bivalves feed on deposits in sand.

36 Class Bivalvia - Reproduction l Bivalves usually have separate sexes. l Zygotes develop into trochophore, veliger, and spat (tiny bivalve) stages.

37 Class Bivalvia - Reproduction l In freshwater clams, fertilized eggs develop into glochidium larvae which is a specialized veliger. l Glochidia live as parasites on fish and then drop off to complete their development.

38 Glochidium Larvae

39 Class Cephalopoda l Cephalopods include octopuses, squid, nautiluses and cuttlefish. l Marine carnivores with beak-like jaws surrounded by tentacles of their modified foot. l Modified foot is a funnel for expelling water from the mantle cavity.

40 Class Cephalopoda - Shells l Shells of Nautilus and early nautiloid and ammonoid cephalopods were made buoyant by a series of gas chambers.

41 Class Cephalopoda - Shells l Cuttlefishes have a small curved shell, completely enclosed by the mantle.

42 Class Cephalopoda - Shells l In squid, the shell has been reduced to a small strip called the pen, which is enclosed in the mantle.

43 Class Cephalopoda l Cephalopods have a closed circulatory system. l Nervous and sensory systems are more elaborate in cephalopods than in other molluscs. l The brain is the largest of any invertebrate.

44 Class Cephalopoda l Most cephalopods have complex eyes with cornea, lens, chambers, and retina.

45 Class Cephalopoda Communication l Visual signals allow cephalopods to communicate. l Movement of body and arms l Color changes effected by chromatophores (cells in the skin containing pigment granules). l Chromatophores can change shape alternately dispersing and concentrating pigment.

46

47

48 Class Cephalopoda - Reproduction l Sexes are separate in cephalopods. l Juveniles hatch directly from eggs no freeswimming larvae. l One arm of male is modified as an intromittent organ, the hectocotylus. l Removes a spermatophore from mantle cavity and inserts it into female.

Bivalved molluscs filter feeders

Bivalved molluscs filter feeders Class Bivalvia Bivalved molluscs have two shells (valves). Mussels, clams, oysters, scallops, shipworms. Mostly sessile filter feeders. No head or radula. Class Bivalvia Part of the mantle is modified

More information

Phylum Mollusca. Includes snails and slugs, oysters and clams, and octopuses and squids.

Phylum Mollusca. Includes snails and slugs, oysters and clams, and octopuses and squids. Mollusks Phylum Mollusca Includes snails and slugs, oysters and clams, and octopuses and squids. Bivalves Nautilus Characteristics Soft-bodied invertebrate Covered with protective mantle that may or may

More information

Mollusks Are Soft and Unsegmented

Mollusks Are Soft and Unsegmented Mollusks Objectives Understand the taxonomic relationships and major features of mollusks Learn the external and internal anatomy of the clam and squid Understand the major advantages and limitations of

More information

`Mollusks. may or may not form a hard, calcium carbonate shell. Trochophore Larva

`Mollusks. may or may not form a hard, calcium carbonate shell. Trochophore Larva `Mollusks Phylum Mollusca Soft-bodied invertebrate covered with protective mantle that may or may not form a hard, calcium carbonate shell Includes chitons, snails, slugs, clams, oysters, squid, octopus,

More information

27-4 Mollusks. Slide 1 of 43. End Show. Copyright Pearson Prentice Hall

27-4 Mollusks. Slide 1 of 43. End Show. Copyright Pearson Prentice Hall 1 of 43 What Is a Mollusk? What Is a Mollusk? Mollusks are soft-bodied animals that usually have an internal or external shell. Mollusks include snails, slugs, clams, squids, octopi... They are group together

More information

Mollusks Soft-bodied Invertebrates

Mollusks Soft-bodied Invertebrates Mollusks Soft-bodied Invertebrates Phylum Mollusca Very diverse - more species of molluscs than any other group in the ocean. Phylum includes: Bivalves (2 shells); ex. Clam Gastropods (1 shell, coiled);

More information

Biology. Slide 1 of 43. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 43. End Show. Copyright Pearson Prentice Hall Biology 1 of 43 2 of 43 What Is a Mollusk? What are the defining features of mollusks? 3 of 43 What Is a Mollusk? What Is a Mollusk? Mollusks are soft-bodied animals that usually have an internal or external

More information

Chapter 35. Table of Contents. Section 1 Mollusca. Section 2 Annelida. Mollusks and Annelids

Chapter 35. Table of Contents. Section 1 Mollusca. Section 2 Annelida. Mollusks and Annelids Mollusks and Annelids Table of Contents Section 1 Mollusca Section 2 Annelida Section 1 Mollusca Objectives Describe the key characteristics of mollusks. Describe the body plan of mollusks. Name the characteristics

More information

Phylum Mollusca. Soft-bodied animals. Internal or external shell. Include snails, slugs, clams, squids and octopi

Phylum Mollusca. Soft-bodied animals. Internal or external shell. Include snails, slugs, clams, squids and octopi Phylum Mollusca Soft-bodied animals Internal or external shell Include snails, slugs, clams, squids and octopi Trochophore: free-swimming larval stage of an aquatic mollusk True coeloms Have complex organ

More information

Chapter 10: Mollusca

Chapter 10: Mollusca Chapter 10: Mollusca Latin: soft 90,000 living spp. 70,000 fossil spp. marine fresh water terrestrial chitons snails nudibranchs clams oysters nautiluses tusk shells slugs sea butterflies mussels squids/cuttlefish

More information

Phylum Molluska.

Phylum Molluska. Phylum Molluska www.onacd.ca 3 Main Classes of Mollusks GASTROPODA : includes limpets, snails, slugs and whelks BIVALVIA: includes clams, oysters, muscles, scallops and shipworms CEPHALOPODA: includes

More information

Figure 32.8 Animal phylogeny based on sequencing of SSU-rRNA

Figure 32.8 Animal phylogeny based on sequencing of SSU-rRNA Figure 32.8 Animal phylogeny based on sequencing of SSU-rRNA Polychaetes Representative Annelids Oligochaetes Marine worms Hirudineans Terrestrial & aquatic Leeches - Aquatic & terrestrial Annelid Circulatory,

More information

Unit 18.2: Mollusks and Annelids

Unit 18.2: Mollusks and Annelids Unit 18.2: Mollusks and Annelids Lesson Objectives Describe invertebrates in the phylum Mollusca. Summarize the characteristics of annelids. Vocabulary Annelida deposit feeder gills heart mantle Mollusca

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone Molluscs Characteristics of Phylum: More than 200,000 species Name means "soft body" Basic body plan head, muscular foot and visceral mass in most species Mantle-

More information

Chapter 16. Molluscs. Characteristics. Mollusc Diversity

Chapter 16. Molluscs. Characteristics. Mollusc Diversity Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 16 Molluscs Characteristics They contain nearly 50,000 living species and 35,000 fossil species. They

More information

Chapter 28 Mollusks & Annelids. BIOLOGY II Miss. Loulousis

Chapter 28 Mollusks & Annelids. BIOLOGY II Miss. Loulousis Chapter 28 Mollusks & Annelids BIOLOGY II Miss. Loulousis Mollusks have a true coelom Snails, slugs, oysters, clams, scallops, octopuses, and squids are all mollusks Annelid earthworm next section Mollusks

More information

Mollusks and Annelids. Chapter 23+

Mollusks and Annelids. Chapter 23+ Mollusks and Annelids Chapter 23+ 1 Annelids and Mollusks Coelomates Trochophore larvae Bilateral symmetry More complex organ systems 2 Moving On Up 3 Coelom Coelomates Evolutionary milestone True body

More information

Mollusks. Section 25.3

Mollusks. Section 25.3 Section 25.3 Objectives Evaluate the importance of the coelom to mollusks. Interpret the function of the mantle and its adaptive advantage to mollusks. Analyze the importance of mucus and the muscular

More information

2 Mollusks and Annelid Worms

2 Mollusks and Annelid Worms CHAPTER 15 2 Mollusks and Annelid Worms SECTION Invertebrates BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the four features of mollusks? What are

More information

Phylum Platyhelminthes Phylum Nematoda Phylum Mollusca. By: Jerzylin, Beata & Jennifer

Phylum Platyhelminthes Phylum Nematoda Phylum Mollusca. By: Jerzylin, Beata & Jennifer Phylum Platyhelminthes Phylum Nematoda Phylum Mollusca By: Jerzylin, Beata & Jennifer Phylum Platyhelminthes Common Characteristics: Triploblastic Bilateral Symmetry Protostome No true stomach structure

More information

Phylum Mollusca. By: Christa Jewett, Instructor

Phylum Mollusca. By: Christa Jewett, Instructor Phylum Mollusca By: Christa Jewett, Instructor For since the creation of the world God s invisible qualities His eternal power and divine nature have been clearly seen, being understood from what has been

More information

Mollusc Adaptation and Diversity

Mollusc Adaptation and Diversity Mollusc Adaptation and Diversity Grade Level: grades 9-12 Lesson Summary: Students will examine a variety of live and preserved molluscs. They will compare and contrast body forms and try to relate the

More information

Bivalves: Mollusks that Matter

Bivalves: Mollusks that Matter Objective Bivalves: Mollusks that Matter Version 6/05 Students will understand the anatomy and physiology of mussels, and understand why they may pose health risks to humans. National Science Education

More information

Chapter 6 SPONGES. Invertebrates. Sponges. Pore-Bearers. Movement of Water

Chapter 6 SPONGES. Invertebrates. Sponges. Pore-Bearers. Movement of Water Invertebrates Chapter 6 Animals Without Backbones Animals that lack a backbone are called invertebrates. It is estimated that 97% of all species of animals are invertebrates. With the exception of insects,

More information

They climb trees in tropical rain forests and float over coral

They climb trees in tropical rain forests and float over coral 27 4 Mollusks They climb trees in tropical rain forests and float over coral reefs. They crawl into garbage cans, eat their way through farm crops, and speed through the deep ocean. Some are so small that

More information

Shelled Animals. from the bottom of the oceans to 7000M above sea level

Shelled Animals. from the bottom of the oceans to 7000M above sea level Shelled Animals some of the dominant organisms since the Cambrian explosion are those that secrete a protective shell these organisms generally have a good fossil record and some have changed little for

More information

Chapter 5 Marine Protozoans and Invertebrates

Chapter 5 Marine Protozoans and Invertebrates Chapter 5 Marine Protozoans and Invertebrates I. The Protozoans A. Kindgom Protista a catch-all category B. Characteristics 1. Mode of nutrition 2. Single-celled or multicellular? 3. Cell structure 4.

More information

and Echinoderms Mollusks, Arthropods, Chapter 3 3JZ JCJeEJ O Insects O Mollusks O Echinoderms Diversity and Adaptations Chapter Preview

and Echinoderms Mollusks, Arthropods, Chapter 3 3JZ JCJeEJ O Insects O Mollusks O Echinoderms Diversity and Adaptations Chapter Preview Chapter Mollusks, Arthropods, and Echinoderms 3 3JZ JCJeEJ Diversity and Adaptations What are the key characteristics of mollusks, arthropods, and echinoderms? Chapter Preview O Mollusks Discover How Can

More information

Echinoderms Name Means: Echino- Spiny Derm- Skin About 7,000 species No Head! No Brain! No ventral, dorsal, posterior, or anterior sides! Do have oral (mouth) and aboral sides. Symmetry: Larvae are

More information

Symmetry. Asymmetrical- no shape. Radial- same in half when cut any angle. Bilateral- having a distinct right and left side

Symmetry. Asymmetrical- no shape. Radial- same in half when cut any angle. Bilateral- having a distinct right and left side Symmetry Asymmetrical- no shape Radial- same in half when cut any angle Bilateral- having a distinct right and left side Invertebrates 95% of Animals No Backbone The simplest animals and they do not have

More information

ANIMAL KINGDOM: PHYLUM MOLLUSCA

ANIMAL KINGDOM: PHYLUM MOLLUSCA ANIMAL KINGDOM: PHYLUM MOLLUSCA Latin: molluscus - soft Materials: A live snail and snail specimen A set of pictures, labels, and definitions illustrating the external parts of the mollusk A booklet of

More information

General Molluscan Characteristics

General Molluscan Characteristics Phylum Mollusca General Molluscan Characteristics = mollis = soft Bilateral symmetry, secondarily assymetrcial => Soft bodied animals Coelomate and triploblastic Rich fossil record Next to arthropods,

More information

Ch17_Animals. Animals Multicellular eukaryotes. What is an animal? Animal development. Main differences with plants Main differences with fungi

Ch17_Animals. Animals Multicellular eukaryotes. What is an animal? Animal development. Main differences with plants Main differences with fungi Animals Multicellular eukaryotes Domain Domain Kingdoms Main differences with plants Main differences with fungi What is an animal? Domain Nutritional mode: Heterotrophic (Ingestive) Level of organization:

More information

Topic The external and internal anatomy of a clam is typical of bivalves.

Topic The external and internal anatomy of a clam is typical of bivalves. Clam Dissection Topic The external and internal anatomy of a clam is typical of bivalves. Introduction Mollusks are some of the most common marine invertebrates. All mollusks have several characteristic

More information

What is an animal? Heterotrophs Multicellular Eukaryotic Cells No Cell Walls Bodies contain tissues : Epithelial Muscular Connective Nervous

What is an animal? Heterotrophs Multicellular Eukaryotic Cells No Cell Walls Bodies contain tissues : Epithelial Muscular Connective Nervous Animals What is an animal? Heterotrophs Multicellular Eukaryotic Cells No Cell Walls Bodies contain tissues : Epithelial Muscular Connective Nervous Epithelial Cover body surfaces: skin, lining of lungs

More information

1. Animals are (diploid) with tissues arranged into organs and organ systems. 3. Animals require for aerobic respiration.

1. Animals are (diploid) with tissues arranged into organs and organ systems. 3. Animals require for aerobic respiration. Chapter 25 Animals: The Invertebrates I. Overview of the Animal Kingdom A. General Characteristics of Animals 1. Animals are (diploid) with tissues arranged into organs and organ systems. 2. Animals are.

More information

The Animal Kingdom. Animal Kingdom. Characteristics of All Animals. Major Characteristics Used To Classify Animals

The Animal Kingdom. Animal Kingdom. Characteristics of All Animals. Major Characteristics Used To Classify Animals The Animal Kingdom Animal Kingdom Phylums: 1. Sponges 2. Cnidaria Jelly Fish, Hydra 3. Flatworms Flukes, Tapeworms 4. Roundworms- Hookworms 5. Segmented Worms- Earthworms 6. Rotifera- Rotifers 7. Mullusca

More information

Echinoderms. Phylum Echinodermata

Echinoderms. Phylum Echinodermata Echinoderms Phylum Echinodermata spiny skinned or hedgehog skin sea stars (starfish), sea urchins, sea cucumbers 6000 species radial symmetry in 2 o development bilateral symmetry in larva http://www.biologyreference.com/dn-ep/echinoderm.html

More information

What do animals do to survive?

What do animals do to survive? What do animals do to survive? Section 26-1 All Animals have are carry out Eukaryotic cells with Heterotrophs Essential functions such as No cell walls Feeding Respiration Circulation Excretion Response

More information

Kingdom Animalia. Eukaryotic Multicellular Heterotrophs Lack Cell Walls

Kingdom Animalia. Eukaryotic Multicellular Heterotrophs Lack Cell Walls Kingdom Animalia Eukaryotic Multicellular Heterotrophs Lack Cell Walls Must do: Feed, Respiration, Circulation, Excretion, Response, Movement, and Reproduction Symmetry Asymmetrical- no shape Radial- same

More information

Chapter 29 Echinoderms and Invertebrate Chordates. Section Echinoderms. I. What Is An Echinoderm? 11/1/2010. Biology II Mrs.

Chapter 29 Echinoderms and Invertebrate Chordates. Section Echinoderms. I. What Is An Echinoderm? 11/1/2010. Biology II Mrs. Chapter 29 Echinoderms and Invertebrate Chordates Section 29.1 - Echinoderms Biology II Mrs. Michaelsen I. What Is An Echinoderm? A. Move by means of hydraulic, suction cuptipped appendages. B. Skin covered

More information

Animal Diversity. Kingdom Animalia

Animal Diversity. Kingdom Animalia 7ch11 Animal Diversity Kingdom Animalia Animal Characteristics 1. animals are eukaryotes and are multicellular 2. cells are specialized for different functions (vision,digestion,reproduction) 3. protein,

More information

Edible, and. Coral Reefs! Photo: CEDixon

Edible, and. Coral Reefs! Photo: CEDixon Spreadable, Edible, and Incredible Coral Reefs! Carrie Dixon Discovery Hall Programs Dauphin Island Sea Lab, AL Photo: CEDixon National Science Content Standards Life Science Content Standard, Grades K-4:

More information

Phylum Platyhelminthes. You will need: five colours of pencil crayon or pen (preferably blue, green, red, orange and purple)

Phylum Platyhelminthes. You will need: five colours of pencil crayon or pen (preferably blue, green, red, orange and purple) Phylum Platyhelminthes You will need: five colours of pencil crayon or pen (preferably blue, green, red, orange and purple) Phylum Platyhelminthes bilaterally symmetrical have all 3 embryonic germ layers:

More information

Chapter 12 Part 2. The Worms Platyhelminthes, Nematoda & Annelida

Chapter 12 Part 2. The Worms Platyhelminthes, Nematoda & Annelida Chapter 12 Part 2 The Worms Platyhelminthes, Nematoda & Annelida Phylum: Platyhelminthes Examples: Flatworms, Planaria sp., tapeworms and blood flukes Acoelomate, Invertebrate, Simplest critter w/ bilateral

More information

Body Plan of the Chordates. Notochord, dorsal hollow nerve cord, pharyngeal gill slits, blocks of muscle, post-anal tail

Body Plan of the Chordates. Notochord, dorsal hollow nerve cord, pharyngeal gill slits, blocks of muscle, post-anal tail Chordata The Major Groups Invertebrate Chordates Fishes Class: Agnatha Class Condrichthyes Class Osteichthyes Class: Amphibia Class: Reptilia Class: Aves Class: Mammalia Body Plan of the Chordates Notochord,

More information

Lobsters, Crab and Shrimp

Lobsters, Crab and Shrimp Lobsters, Crab and Shrimp Crustaceans Phylum: Arthropoda ( jointed feet ) Invertebrate Exoskeleton (made of chitin) protects body and provides a place for muscles to attach to. Segmented body Jointed appendages

More information

Overview of Invertebrates

Overview of Invertebrates Overview of Invertebrates General Features of Animals Heterotrophic Multicellular (eukaryotic) Cells lack rigid cell walls Cells are usually quite flexible. Cells (except sponges) are organized into structural

More information

BIOLOGY BOB GOES TO THE BEACH

BIOLOGY BOB GOES TO THE BEACH BIOLOGY BOB GOES TO THE BEACH Presented at the 16 th Annual Literacy Symposium University of Central Florida April 11, 2014 Orlando, FL Robert M. Everett, Ph.D. University of Central Florida Orlando, Florida

More information

Fishes are vertebrates that have characteristics allowing them to live and reproduce in water.

Fishes are vertebrates that have characteristics allowing them to live and reproduce in water. Section 1: are vertebrates that have characteristics allowing them to live and reproduce in water. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the features of

More information

Characteristics of Animals pp Topic 7: Animal Diversity Ch Symmetry pp Characteristics of Animals

Characteristics of Animals pp Topic 7: Animal Diversity Ch Symmetry pp Characteristics of Animals Topic 7: Animal Diversity Ch. 32-34 Characteristics of Animals pp.704-705 Animals: Are eukaryotic Are multicellular Are ingestive heterotrophs Have no cell walls Most are motile Most have tissues organized

More information

Kingdom Animalia: Sponges. Types of Body Symmetry Radial body parts are symmetrical around a central point (like a pie)

Kingdom Animalia: Sponges. Types of Body Symmetry Radial body parts are symmetrical around a central point (like a pie) Kingdom Animalia: Phylum Characteristics Types of Body Symmetry Radial body parts are symmetrical around a central point (like a pie) Bilateral right and left sides are alike and roughly equally proportional

More information

Chapter 6: Small Marine Animals Zooplankton

Chapter 6: Small Marine Animals Zooplankton Chapter 6: Small Marine Animals Zooplankton DO NOW: What is an animal?(p141) 1. What is an animal? (Uni/multicellular? Auto/heterotrophic?) 2. How many species of animals are there on Earth? 3. How many

More information

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 33 An Introduction to Invertebrates Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Deuterostomia Metazoa Eumetazoa

More information

5 Marine Biology Notes. Marine Invertebrates (Animals Without a Backbone)

5 Marine Biology Notes. Marine Invertebrates (Animals Without a Backbone) 5 Marine Biology Notes Marine Invertebrates (Animals Without a Backbone) Invertebrates Animals without a backbone are known as invertebrates. Those with a backbone are called vertebrates. About 97% of

More information

Making the Most of Your Monitoring Using Macroinvertebrates

Making the Most of Your Monitoring Using Macroinvertebrates Making the Most of Your Monitoring Using Macroinvertebrates Benthic Macroinvertebrates What are they? Why are they important? Provide food for fish and other organisms Feed on algae, organic matter, and

More information

Animal Kingdom: Comparative Anatomy

Animal Kingdom: Comparative Anatomy Invertebrate feeding and digestion Animal Kingdom: Comparative Anatomy Invertebrates can either have or digestion: meaning that food is digested each individual of the organism. Animals a digestive tract.

More information

Biology. Slide 1 of 53. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 53. End Show. Copyright Pearson Prentice Hall Biology 1 of 53 Chapter 33 Comparing Chordates 2 of 53 This chapter is a good revision of the material we saw during Unit III. 3 of 53 4 of 53 Controlling Body Temperature The control of body temperature

More information

Fish Dissection. Background

Fish Dissection. Background Fish Dissection The Fish Dissection program at Hatfield Marine Science Center is a 50-minute hands-on program for 4th through 12th grade students. Students will work in small groups as they examine a variety

More information

Dead Perch Parts. ACADEMIC STANDARDS: 4 th Grade B. Know that living things are made up of parts that have specific functions.

Dead Perch Parts. ACADEMIC STANDARDS: 4 th Grade B. Know that living things are made up of parts that have specific functions. Dead Perch Parts Fish Anatomy Adapted from: An original Creek Connections activity created from the Fish Anatomy model. Grade Level: Intermediate or advanced Duration: 30 minutes Setting: classroom Summary:

More information

Taxonomy of Fishes. Chapter 18. I. SuperClass Agnatha. A. Class Myxini. Kingdom Animalia. The Fishes

Taxonomy of Fishes. Chapter 18. I. SuperClass Agnatha. A. Class Myxini. Kingdom Animalia. The Fishes Taxonomy of Fishes Chapter 18 The Fishes Kingdom Animalia Phylum Chordata SuperClass Agnatha - jawless fish Class Chondrichthyes - cartilagenous fish Class Osteichthyes - bony fish I. SuperClass Agnatha

More information

GAS EXCHANGE & CIRCULATION CHAPTER 42 ( )

GAS EXCHANGE & CIRCULATION CHAPTER 42 ( ) Winter 08 1 of 10 GAS EXCHANGE & CIRCULATION CHAPTER 42 (867 891) MOVEMENT OF GASES Both O 2 and CO 2 move by The movement down a If a gas produced in one location, it diffuses away But diffusion is usually

More information

Chordates 1. Biology 2

Chordates 1. Biology 2 Chordates 1 Biology 2 Kingdom Animals Eukaryotic Multicellular - Many cell types Heterotrophic Feed by ingestion No cell walls Diploid life cycle Phylogenetic Tree Deuterostome Bilateral Symmetry 3 tissues

More information

Louisiana Shells. Focus/Overview: Learning Objectives:

Louisiana Shells. Focus/Overview: Learning Objectives: Louisiana Shells Focus/Overview: In this 3 part activity, students will learn about shells and mollusks, specific Louisiana mollusks, and classify different mollusk shells. Learning Objectives: The Students

More information

Chapter 30 Nonvertebrate Chordates, Fishes, and Amphibians Name

Chapter 30 Nonvertebrate Chordates, Fishes, and Amphibians Name Chapter 30 Nonvertebrate Chordates, Fishes, and Amphibians Name Lab Dissecting a Perch Background Information Fish are the largest group of vertebrates found in fresh and salt water. In fact, over 25,000

More information

Circulation and Gas Exchange Chapter 42

Circulation and Gas Exchange Chapter 42 Circulation and Gas Exchange Chapter 42 Circulatory systems link exchange surfaces with cells throughout the body Diffusion is only efficient over small distances In small and/or thin animals, cells can

More information

26-3 Cnidarians Slide 1 of 47

26-3 Cnidarians Slide 1 of 47 1 of 47 What Is a Cnidarian? What is a cnidarian? 2 of 47 What Is a Cnidarian? What Is a Cnidarian? Cnidarians are soft-bodied, carnivorous animals that have stinging tentacles arranged in circles around

More information

ZOOPLANKTON. Zooplankton: 2. Crustaceans Copepods. Diverse -- protozoans and others

ZOOPLANKTON. Zooplankton: 2. Crustaceans Copepods. Diverse -- protozoans and others ZOOPLANKTON Diverse -- protozoans and others Nutrition modes: Herbivores (graze on phytoplankton) Carnivores (predators) Radiolaria Foraminifera Zooplankton: 1. Protozoans: Foraminifera and Radiolarians

More information

Internal Anatomy of Fish

Internal Anatomy of Fish Internal Anatomy of Fish The Systems of a Fish Skeletal System Muscular System Respiratory System Digestive System Circulatory System Nervous System Reproductive System Special Organs Skeletal System

More information

What are the four main characteristics of arthropods? What are two types of metamorphosis in insects?

What are the four main characteristics of arthropods? What are two types of metamorphosis in insects? CHAPTER 15 3 Arthropods SECTION Invertebrates BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the four main characteristics of arthropods? What are two

More information

Arthropods, Echinoderms, and Chordates

Arthropods, Echinoderms, and Chordates Arthropods, Echinoderms, and Chordates Bi 10 10/22/2013 Revised Schedule Friday, Nov. 22: Chapter 17, Part 2 Chapter 15, 16 Reading Quiz Due Wednesday, Nov. 27: Special Lecture: Review + World s Weirdest

More information

28 2 Groups of Arthropods

28 2 Groups of Arthropods 28 2 Groups of Arthropods 1 of 42 28 2 Groups of Arthropods Arthropods are classified based on the number and structure of their body segments and appendages particularly their mouthparts. The three major

More information

Lecture Benthic Ecology

Lecture Benthic Ecology Lecture Benthic Ecology Benthos Unlike the drifting plankton and swimming nekton, benthic organisms commonly referred to as benthos live on or near the ocean bottom A benthic habitat may be shallow or

More information

Invertebrates. Sponges: Porifera pore bearer 10/3/13

Invertebrates. Sponges: Porifera pore bearer 10/3/13 Animals without backbones We ll cover characteristics of major phyla and some to class level (KPCOFGS) We ll also cover some natural history Refer to your notes that I posted on-line! Invertebrates Levels

More information

EXTRACREDIT PROJECT ANIMALS OF SOUTHERN CALIFORNIA S OCEAN

EXTRACREDIT PROJECT ANIMALS OF SOUTHERN CALIFORNIA S OCEAN BIO 10 FUNDAMENTALS OF BIOLOGY Instructor: K. Villatoro Student s Name: EXTRACREDIT PROJECT ANIMALS OF SOUTHERN CALIFORNIA S OCEAN WELCOME TO THE CABRILLO MARINE AQUARIUM! This site was chosen because

More information

I n t r o d u c t i o n. A n i m a l s

I n t r o d u c t i o n. A n i m a l s I n t r o d u c t i o n t o A n i m a l s What is an Animal? Taxonomy: Kingdom Animalia Type of Cells: Eukaryotic Cellular Organization: Multicellular Reproduction: Sexual / Asexual Feeding: Heterotrophic

More information

Animals of the Benthic Environment

Animals of the Benthic Environment Animals of the Benthic Environment Name: Section: 1. Of the 250,000 known species that inhabit the marine ecosystem, more than 98% (about 245,000) live in or on the ocean floor. 2. Living at or near the

More information

Worm Essential Questions

Worm Essential Questions 1. What are the four major phyla of marine worms? (in order from least to most complex) Worm Essential Questions Marine Biology Platyhelminthes - flatworms Nemertea ribbon worms or proboscis worms Nematoda

More information

Animal Evolution. II. Overview of Animal Phylogeny A. Parazoan 1. Lack tissue 2. Animals with tissue are classified eumetazoa 3.

Animal Evolution. II. Overview of Animal Phylogeny A. Parazoan 1. Lack tissue 2. Animals with tissue are classified eumetazoa 3. Animal Evolution I. Animal Characteristics A. Most animals share the following characteristics: 1. Multi-cellular 2. Eukaryotic 3. Heterotrophy a. Ingestion b. Carbohydrates stored as glycogen 4. No cell

More information

Marine Biology 2/9/05

Marine Biology 2/9/05 Information on Common Animals in the Rocky Intertidal Zone HERMIT CRAB (Phylum Arthropoda) Feeding: Hermit crabs will eat just about anything; most are scavengers on dead organisms and detritus. Some species,

More information

Life on Fiji s Mangrove Trees. Alison Haynes

Life on Fiji s Mangrove Trees. Alison Haynes Life on Fiji s Mangrove Trees Alison Haynes Life on Fiji s Mangrove Trees Alison Haynes L i f e o n F i j i s M a n g r o v e T r e e s 1 Acknowledgement My thanks to Johnson Seeto for the photograph

More information

The Human Body. Everyone Needs Healthy Systems. Blood Vessels

The Human Body. Everyone Needs Healthy Systems. Blood Vessels The Human Body Everyone Needs Healthy Systems There are several systems that make up the human body. Although their functions differ, they all work together to keep your body running smoothly. Some of

More information

Chapter 12 Marine Fishes

Chapter 12 Marine Fishes Chapter 12 Marine Fishes Marine Protochordates Phylum: Chordata (nerve cord) Subphylum: Protochordata first chordates/primitive Primitive species of marine vertebrates Do not have advanced features (backbone)

More information

URMI MITRA ASSISTANT PROFESSOR, P.G. DEPARTMENT OF ZOOLOGY, BIDHANNAGAR COLLEGE

URMI MITRA ASSISTANT PROFESSOR, P.G. DEPARTMENT OF ZOOLOGY, BIDHANNAGAR COLLEGE FOOT AND ITS MODIFICATIONS IN MOLLUSCA URMI MITRA ASSISTANT PROFESSOR, P.G. DEPARTMENT OF ZOOLOGY, BIDHANNAGAR COLLEGE FOOT AND ITS MODIFICATIONS Foot is a characteristic feature of the phylum Mollusca

More information

Over the next few weeks, we will be learning all about the Coral Reef Ecosystems that surround much of the Australian coastline.

Over the next few weeks, we will be learning all about the Coral Reef Ecosystems that surround much of the Australian coastline. Over the next few weeks, we will be learning all about the Coral Reef Ecosystems that surround much of the Australian coastline. You will need to complete the tasks set out below and hand them in at the

More information

GASEOUS EXCHANGE 17 JULY 2013

GASEOUS EXCHANGE 17 JULY 2013 GASEOUS EXCHANGE 17 JULY 2013 Lesson Description In this lesson we: Discuss what is gaseous exchange? Consider requirements of an efficient gaseous exchange surface. Look at diversity in gas exchange systems.

More information

UNIFYING CONCEPTS OF ANIMAL CIRCULATION

UNIFYING CONCEPTS OF ANIMAL CIRCULATION UNIFYING CONCEPTS OF ANIMAL CIRCULATION Every organism must exchange materials with its environment, relying upon diffusion, the spontaneous movement of molecules from an area of higher concentration to

More information

Readings in Chapter 2, 3, and 7.

Readings in Chapter 2, 3, and 7. Early Vertebrates Readings in Chapter 2, 3, and 7. Using the Tree of Life Web Project www.tolweb.org org A project to put the entire tree of life, a phylogeny of all life, on the web. Biologists world-wide

More information

The Eastern Oyster: A Not-So-Typical Mollusc Lab Investigation: Class Bivalvia High School Version

The Eastern Oyster: A Not-So-Typical Mollusc Lab Investigation: Class Bivalvia High School Version SETTING THE STAGE The earliest animals on Earth had either irregular, asymmetrical bodies or radial symmetry, with a body shaped like a merry-goround. Animals with these body plans usually sit still on

More information

Lesson 10: Oyster Reefs and Their Inhabitants

Lesson 10: Oyster Reefs and Their Inhabitants Lesson 10: Oyster Reefs and Their Inhabitants Focus Question: What animals use oyster reefs for habitats? Objective: observe properties of animals found within a bag of oysters; Infer about the quality

More information

Lightning Whelk. Atlan)c Moon Snail

Lightning Whelk. Atlan)c Moon Snail Giant Atlan)c Cockle Can live in shallow water up to 30 meters (100 feet) deep. Have a muscular foot to burrow into sand. Both halves are the same size and shape ( equivalves ). Can be eaten in chowder.

More information

Animals. Invertebrate Diversity & Evolution

Animals. Invertebrate Diversity & Evolution Animals Invertebrate Diversity & Evolution Animal Characteristics Multicellular Heterotrophic (can be classified by their feeding strategies) Classified by feeding strategies Filter feeders (suspension

More information

Kelp Forest Conservation Food web activity

Kelp Forest Conservation Food web activity Kelp Forest Conservation Food web activity Activity Steps Cut out the kelp forest food web organisms cards. Have students form small groups. Pass out one food web organism and to each group. Using a blank

More information

Lecture Notes Chapter 14

Lecture Notes Chapter 14 Lecture Notes Chapter 14 I. Chordata- phylum A. 3 subphyla 1. Urochordata 2. Cephalochordata 3. Vertebrata II. Characteristics of all Chordates (found during some part of the life cycle) A. All have a

More information

Characteris*c s of Living Things 1. Chemical Uniqueness: Molecular Organization

Characteris*c s of Living Things 1. Chemical Uniqueness: Molecular Organization Characteris*c s of Living Things 1. Chemical Uniqueness: Molecular Organization 2. Hierarchical Organization: macromolecules - > Cells - >Organs - >Organ systems 3. Reproduction 4. Genetic Programs 5.

More information

Animals of the Pelagic Environment. Making a living--adaptations Staying Above the Seafloor. Adaptations

Animals of the Pelagic Environment. Making a living--adaptations Staying Above the Seafloor. Adaptations Animals of the Pelagic Environment Making a living--adaptations Staying Above the Seafloor Eating Gas Containers Floaters Swimmers (nekton) Mobility Speed Temperature Group Behavior Reproduction Schooling

More information