Copyright 2011 Pearson Education, Inc.

Size: px
Start display at page:

Download "Copyright 2011 Pearson Education, Inc."

Transcription

1

2 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

3 Figure 24-2 Chordate features in the human embryo eye heart liver tail limb bud (future leg) gill slit limb bud (future arm)

4 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

5 Figure 24-3 Invertebrate chordates nerve cord notochord gut muscle segments tail mouth anus gill slits (a) Lancelet incurrent siphon (water enters) excurrent siphon (water exits) mouth atrial opening tail anus gill slits attachment points gill slits gut notochord nerve cord (b) Tunicate larva heart gut gonad adult

6 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

7 Figure 24-4 Hagfishes

8 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

9 Figure 24-5 Lampreys

10 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

11 Figure 24-6a Shark

12 Figure 24-6b Ray

13 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

14 Figure 24-7a Anglerfish

15 Figure 24-7b Moray eel

16 Figure 24-7c Sea horse

17

18 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

19 Chapter Opener 24-1

20 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

21 Figure 24-8a Lungfish

22 Figure 24-8b Sealed in a burrow

23 4FDuQ

24 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

25 Figure 24-9a Tadpole

26 Figure 24-9b Frog

27 Figure 24-9c Salamander

28 Figure 24-9d Caecilian

29 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

30 Figure 24-10a Snake

31 Figure 24-10b Alligator

32 Figure 24-10c Tortoise

33 Figure The amniotic egg

34 Figure Archaeopteryx, the earliest-known bird

35 Figure 24-12a Hummingbird

36 Figure 24-12b Frigate bird

37 Figure 24-12c Ostrich

38 Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes) Amphibia (frogs, salamanders) Reptilia (turtles, snakes crocodiles, birds) Mammalia (mammals) Figure 24-1 An evolutionary tree of the chordates Craniates Vertebrates Tetrapods Hair, milk Amniotic egg Limbs Lobed fins Lungs Jaws Skull Vertebral column Dorsal nerve cord, notochord, pharyngeal gill slits, post-anal tail

39 Figure 24-14a Platypus

40 Figure 24-14b Spiny anteater

41 Figure 24-15a Wallaby

42 Figure 24-15b Wombat

43 Figure 24-15c Tasmanian devil

44 Figure 24-16a Whale

45 Figure 24-16b Bat

46 Figure 24-16c Cheetah

47 Figure 24-16d Orangutan

48 Figure E24-1 Amphibians in danger

49 Table 24-1 Comparison of Craniate Groups

50 The water-vascular system of echinoderms sieve plate stomach canals ampulla tube feet (a) Starfish body plan (b) Starfish consuming a mussel

Chapter 34A: The Origin & Evolution of Vertebrates I. 1. Overview of the Chordates 2. Invertebrate Chordates

Chapter 34A: The Origin & Evolution of Vertebrates I. 1. Overview of the Chordates 2. Invertebrate Chordates Chapter 34A: The Origin & Evolution of Vertebrates I 1. Overview of the Chordates 2. Invertebrate Chordates 1. Overview of Chordates Echinodermata Phylogeny of ANCESTRAL DEUTEROSTOME NOTOCHORD Common ancestor

More information

The Deuterostomes and the rise of the Vertebrates: from Echinoderms to Man

The Deuterostomes and the rise of the Vertebrates: from Echinoderms to Man The Deuterostomes and the rise of the Vertebrates: from Echinoderms to Man 1 The Deuterostomes Calcarea and Silicea Cnidaria Lophotrochozoa Ecdysozoa Deuterostomia 2 The Ancestral Deuterostome Bilateral

More information

Chordates 1. Biology 2

Chordates 1. Biology 2 Chordates 1 Biology 2 Kingdom Animals Eukaryotic Multicellular - Many cell types Heterotrophic Feed by ingestion No cell walls Diploid life cycle Phylogenetic Tree Deuterostome Bilateral Symmetry 3 tissues

More information

Animal Evolution: Chordate and Vertebrate Evolution and Diversity (Learning Outline)

Animal Evolution: Chordate and Vertebrate Evolution and Diversity (Learning Outline) Animal Evolution: Chordate and Vertebrate Evolution and Diversity (Learning Outline) 1. Distinguishing features of the phylum Chordata and representative organisms. 2. Highlights of evolutionary steps

More information

1. Overview of Chordates

1. Overview of Chordates Chapter 34A: The Origin & Evolution of Vertebrates I 1. Overview of the Chordates 2. Invertebrate Chordates 1. Overview of Chordates Echinodermata ANCESTRAL DEUTEROSTOME NOTOCHORD Common ancestor of chordates

More information

Classification. Phylum Chordata

Classification. Phylum Chordata AP Biology Chapter 23 Exercise #17: Chordates: Urochordata & Cephalochordata Lab Guide Chordates show remarkable diversity. Most are vertebrates. All animals that belong to this phylum MUST, at some point

More information

AP Biology - Zimmerman Guided Reading Chapter 34

AP Biology - Zimmerman Guided Reading Chapter 34 AP Biology - Zimmerman Guided Reading Chapter 34 1. List the four characteristics of the members of the Phylum Chordata. Name 1. 2. 3. 4. 2. Define the following terms: a. notochord b. Dorsal nerve cord

More information

VERTEBRATE EVOLUTION & DIVERSITY

VERTEBRATE EVOLUTION & DIVERSITY VERTEBRATE EVOLUTION & DIVERSITY 1 ANIMAL DIVERSITY No true tissues Ancestral protist True tissues Radial symmetry True Animals Bilateral symmetry Bilateral Animals Deuterostomes Lophotrochophores Ecdysozoans

More information

The Animal Kingdom. The Chordates

The Animal Kingdom. The Chordates The Animal Kingdom The Chordates Phylum Hemichordata Hemichordata (hemi = half; chordata= cord) acorn worm entirely marine adults show 3 of 4 basic characteristics: 1) pharyngial pouches 2) dorsal tubular

More information

Chordates. Bởi: OpenStaxCollege

Chordates. Bởi: OpenStaxCollege Chordates Bởi: OpenStaxCollege Vertebrates are members of the kingdom Animalia and the phylum Chordata ([link]). Recall that animals that possess bilateral symmetry can be divided into two groups protostomes

More information

Biol Echinoderms & Chordates. But first a few words about Development

Biol Echinoderms & Chordates. But first a few words about Development Biol 1309 Echinoderms & Chordates 1 But first a few words about Development Blastula- zygote first develops into a hollow ball of cells Deuterostome - mouth second Protostome - mouth first Cleavage - describes

More information

BI 101: Chordate Animals & Biodiversity

BI 101: Chordate Animals & Biodiversity BI 101: Chordate Animals & Biodiversity Final Exam tomorrow Announcements Same time, same place Review Mary s Peak biodiversity results Lab 10 today 1 Deuterostome Development 2 Phylum Chordata Contains

More information

BIOLOGY 11 CHORDATES

BIOLOGY 11 CHORDATES BIOLOGY 11 CHORDATES All chordates share 4 general characteristics: 1. Notochord a dorsal supporting rod located below the nerve cord toward the back in vertebrates, the embryonic notochord is replaced

More information

Kingdom Animalia part 2.notebook. April 08, The fun continues... Kingdom Animalia

Kingdom Animalia part 2.notebook. April 08, The fun continues... Kingdom Animalia The fun continues....... Kingdom Animalia 1 2 Joint legged animals (arthropoda) found from the bottom of the ocean to high above the Earth's surface included insects, arachnid, and crustacean hard external

More information

Lecture Notes Chapter 14

Lecture Notes Chapter 14 Lecture Notes Chapter 14 I. Chordata- phylum A. 3 subphyla 1. Urochordata 2. Cephalochordata 3. Vertebrata II. Characteristics of all Chordates (found during some part of the life cycle) A. All have a

More information

February 17, Unit 2. Biodiversity. Chordata, the vertebrates

February 17, Unit 2. Biodiversity. Chordata, the vertebrates Unit 2 Biodiversity Chordata, the vertebrates Phylum Chordata Examples: Sea squirts, fish, birds, dinosaurs, humans. General characteristics: 1. Bilaterally symmetrical 2. Coelomate 3. One way digestive

More information

The Animal Kingdom: The Deuterostomes. Deuterostomes. Phylum Echinodermata 4/23/2012. Chapter 31. (bilateral ciliated larvae)

The Animal Kingdom: The Deuterostomes. Deuterostomes. Phylum Echinodermata 4/23/2012. Chapter 31. (bilateral ciliated larvae) Porifera Porifera Cnidaria Cnidaria Ctenophora Ctenophora Platyhelminthes Platyhelminthes Nemerteans Nemerteans Nematoda Nematoda Rotifera Rotifera Tardigrada Tardigrada Onychophora Onychophora Arthropoda

More information

Animals II: The Chordates

Animals II: The Chordates Animals II: The Chordates Phylum : Chordata Subphylum: Urochordata: Tunicates Cephalochordata: Lancelets Vertebrata: Vertebrates Chordate Characteristics Bilaterally symmetrical, coelomate animals Complete

More information

Biology 11 - Chapter 31 Assignment

Biology 11 - Chapter 31 Assignment Name: Class: Date: Biology 11 - Chapter 31 Assignment True/False Indicate whether the statement is true or false. 1. Echinoderms exhibit their invertebrate heritage by their hard exoskeletons made of calcium

More information

Phylum Chordata Featuring Vertebrate Animals

Phylum Chordata Featuring Vertebrate Animals Phylum Chordata Featuring Vertebrate Animals Prepared by Diana C. Wheat For Linn-Benton Community College Characteristics All have a notochord: a stiff but flexible rod that extends the length of the body

More information

Kingdom Animalia: Sponges. Types of Body Symmetry Radial body parts are symmetrical around a central point (like a pie)

Kingdom Animalia: Sponges. Types of Body Symmetry Radial body parts are symmetrical around a central point (like a pie) Kingdom Animalia: Phylum Characteristics Types of Body Symmetry Radial body parts are symmetrical around a central point (like a pie) Bilateral right and left sides are alike and roughly equally proportional

More information

Phylum Chordata (Focus will be on Subphylum Vertebrata) Kingdom Animalia Phylum Chordata

Phylum Chordata (Focus will be on Subphylum Vertebrata) Kingdom Animalia Phylum Chordata Phylum Chordata (Focus will be on Subphylum Vertebrata) Kingdom Animalia Phylum Chordata - All members have three basic characteristics: 1) a hollow dorsal nerve cord, - spinal cord has small fluid fill

More information

Figure 1: Chordate Characteristics

Figure 1: Chordate Characteristics I. General Chordate Characteristics Chordates are distinguished as a group by the presence of four embryonic features that may persist into adulthood in some species, but disappear as development progresses

More information

Arthropods, Echinoderms, and Chordates

Arthropods, Echinoderms, and Chordates Arthropods, Echinoderms, and Chordates Bi 10 10/22/2013 Revised Schedule Friday, Nov. 22: Chapter 17, Part 2 Chapter 15, 16 Reading Quiz Due Wednesday, Nov. 27: Special Lecture: Review + World s Weirdest

More information

Figure Figure Phylum Chordata. Possess a dorsal, tubular nerve cord Notochord Pharyngeal gill slits Postanal tail

Figure Figure Phylum Chordata. Possess a dorsal, tubular nerve cord Notochord Pharyngeal gill slits Postanal tail Figure 17.2 Figure 18.3 Phylum Chordata Possess a dorsal, tubular nerve cord Notochord Pharyngeal gill slits Postanal tail 1 Other Characteristics of Phylum Chordata Bilateral symmetry Deuterostome, triploblastic,

More information

Dorsal hollow nerve chord that forms spinal cord and brain. VERTEBRATES [OVERVIEW - OVERHEAD, similar to fig. 19.1, p. 390]:

Dorsal hollow nerve chord that forms spinal cord and brain. VERTEBRATES [OVERVIEW - OVERHEAD, similar to fig. 19.1, p. 390]: Phylum Chordata (44,000 species) Dorsal hollow nerve chord that forms spinal cord and brain Notochord at some stage of life cycle Gill slits at some point in life cycle VERTEBRATES [OVERVIEW - OVERHEAD,

More information

PHYLUM CHORDATA: Subphylum vertebrata

PHYLUM CHORDATA: Subphylum vertebrata PHYLUM CHORDATA: Subphylum vertebrata There are three basic characteristics that distinguish Phylum Chordata from all other animal phyla: The presence of a flexible, rod-like, internal supporting structure

More information

Vertebrates. Chapter 34. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Vertebrates. Chapter 34. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 34 Vertebrates PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Question: How does one construct a cladogram from the following indented phylogenetic classification?

Question: How does one construct a cladogram from the following indented phylogenetic classification? BIOL 461 Cladogram Exercise 2: Indented Classification Skills Not due yet but related to today s exercise Complete on your own paper, include your name. I have used vertebrates because: 1) they are perfectly

More information

2/17/2017. Lec. 11: Ch. 32 Deuterostomes

2/17/2017. Lec. 11: Ch. 32 Deuterostomes 1 2 3 4 5 6 7 8 Lec. 11: Ch. 32 Deuterostomes Deuterostomes Radial cleavage Indeterminant blastomeres Blastopore becomes anus Coelom forms by outpouching of the gut (enterocoelous) Phylum Echinodermata

More information

Outline 15: Paleozoic Life

Outline 15: Paleozoic Life Outline 15: Paleozoic Life The Evolution of Vertebrates: Fish and Amphibians Phylum Chordata All chordates have a dorsal nerve cord. Chordates with vertebrae are the vertebrates. The vertebrae surround

More information

Outline 15: Paleozoic Life. The Evolution of Vertebrates: Fish and Amphibians

Outline 15: Paleozoic Life. The Evolution of Vertebrates: Fish and Amphibians Outline 15: Paleozoic Life The Evolution of Vertebrates: Fish and Amphibians Phylum Chordata All chordates have a dorsal nerve cord. Chordates with vertebrae are the vertebrates. The vertebrae surround

More information

Body Plan of the Chordates. Notochord, dorsal hollow nerve cord, pharyngeal gill slits, blocks of muscle, post-anal tail

Body Plan of the Chordates. Notochord, dorsal hollow nerve cord, pharyngeal gill slits, blocks of muscle, post-anal tail Chordata The Major Groups Invertebrate Chordates Fishes Class: Agnatha Class Condrichthyes Class Osteichthyes Class: Amphibia Class: Reptilia Class: Aves Class: Mammalia Body Plan of the Chordates Notochord,

More information

deuterostomes eucoelomates pseudocoelomates acoelomate

deuterostomes eucoelomates pseudocoelomates acoelomate deuterostomes Mollusca Arthropoda Echinodermata Hemichordata Chordata eucoelomates Annelida Rotifera Platyhelminthes Nematoda acoelomate pseudocoelomates Phylum Hemichordata Share characteristics with

More information

Fishes and Amphibians Objectives

Fishes and Amphibians Objectives Fishes and Amphibians Objectives List the four common body parts of chordates. Describe the two main characteristics of vertebrates. Explain the difference between an ectotherm and an endotherm. Describe

More information

Chapter 29 Echinoderms and Invertebrate Chordates. Section Echinoderms. I. What Is An Echinoderm? 11/1/2010. Biology II Mrs.

Chapter 29 Echinoderms and Invertebrate Chordates. Section Echinoderms. I. What Is An Echinoderm? 11/1/2010. Biology II Mrs. Chapter 29 Echinoderms and Invertebrate Chordates Section 29.1 - Echinoderms Biology II Mrs. Michaelsen I. What Is An Echinoderm? A. Move by means of hydraulic, suction cuptipped appendages. B. Skin covered

More information

Chordate Animals. Objectives: Chordate characteristics

Chordate Animals. Objectives: Chordate characteristics Chordate Animals Objectives: Be able to identify the four traits shared by chordates: notochord, dorsal hollow nerve cord, pharyngeal gill slits/pouches, post-anal tail. Be able to map the following traits

More information

Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday, April 6, 2006; A27

Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday, April 6, 2006; A27 Biology 2010 April 19, 2006 Readings - From Text (Campbell et al. Biology, 7 th ed.) Chapter 34 pp. 671-707. Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday,

More information

Symmetry. Asymmetrical- no shape. Radial- same in half when cut any angle. Bilateral- having a distinct right and left side

Symmetry. Asymmetrical- no shape. Radial- same in half when cut any angle. Bilateral- having a distinct right and left side Symmetry Asymmetrical- no shape Radial- same in half when cut any angle Bilateral- having a distinct right and left side Invertebrates 95% of Animals No Backbone The simplest animals and they do not have

More information

Phylum Chordata. Chief characteristics (some are embryonic):

Phylum Chordata. Chief characteristics (some are embryonic): Phylum Chordata Vertebrates, sea squirts or tunicates, lancelets such as Amphioxus. Name: "Chord" means "string," referring to the nerve cord and/or notochord. Geologic range: Cambrian to Holocene. Mode

More information

Kingdom Animalia Phylum Chordata. The vertebrates and their relatives

Kingdom Animalia Phylum Chordata. The vertebrates and their relatives Kingdom Animalia Phylum Chordata The vertebrates and their relatives Figure 23.02 Phylum Chordata 5 Characteristics of a chordate 1. A dorsal hollow nerve cord (spinal cord in vertebrates) 2. A notochord

More information

Chordates. Chapter 23

Chordates. Chapter 23 Chordates Chapter 23 Phylum Chordata By the end of the Cambrian period, 540 million years ago, an astonishing variety of animals inhabited Earth s oceans. One of these types of animals gave rise to vertebrates,

More information

Animal Diversity. Kingdom Animalia

Animal Diversity. Kingdom Animalia 7ch11 Animal Diversity Kingdom Animalia Animal Characteristics 1. animals are eukaryotes and are multicellular 2. cells are specialized for different functions (vision,digestion,reproduction) 3. protein,

More information

I n t r o d u c t i o n. A n i m a l s

I n t r o d u c t i o n. A n i m a l s I n t r o d u c t i o n t o A n i m a l s What is an Animal? Taxonomy: Kingdom Animalia Type of Cells: Eukaryotic Cellular Organization: Multicellular Reproduction: Sexual / Asexual Feeding: Heterotrophic

More information

Course: Biology 211 Iowa State University

Course: Biology 211 Iowa State University Leader: Elizabeth Supplemental Instruction Course: Biology 211 Iowa State University Instructor: Dr. Deitloff Date: 2/27/14 Exam 2: Chapters 31 through 34 and information from guest lecturer 50 questions

More information

Readings in Chapter 2, 3, and 7.

Readings in Chapter 2, 3, and 7. Early Vertebrates Readings in Chapter 2, 3, and 7. Using the Tree of Life Web Project www.tolweb.org org A project to put the entire tree of life, a phylogeny of all life, on the web. Biologists world-wide

More information

Kingdom Animalia. Eukaryotic Multicellular Heterotrophs Lack Cell Walls

Kingdom Animalia. Eukaryotic Multicellular Heterotrophs Lack Cell Walls Kingdom Animalia Eukaryotic Multicellular Heterotrophs Lack Cell Walls Must do: Feed, Respiration, Circulation, Excretion, Response, Movement, and Reproduction Symmetry Asymmetrical- no shape Radial- same

More information

EXTRACREDIT PROJECT ANIMALS OF SOUTHERN CALIFORNIA S OCEAN

EXTRACREDIT PROJECT ANIMALS OF SOUTHERN CALIFORNIA S OCEAN BIO 10 FUNDAMENTALS OF BIOLOGY Instructor: K. Villatoro Student s Name: EXTRACREDIT PROJECT ANIMALS OF SOUTHERN CALIFORNIA S OCEAN WELCOME TO THE CABRILLO MARINE AQUARIUM! This site was chosen because

More information

Chapter 39. Table of Contents. Section 1 Introduction to Vertebrates. Section 2 Jawless and Cartilaginous Fishes. Section 3 Bony Fishes.

Chapter 39. Table of Contents. Section 1 Introduction to Vertebrates. Section 2 Jawless and Cartilaginous Fishes. Section 3 Bony Fishes. Fishes Table of Contents Section 1 Introduction to Vertebrates Section 2 Jawless and Cartilaginous Fishes Section 3 Bony Fishes Section 1 Introduction to Vertebrates Objectives Identify the distinguishing

More information

Marine Animals. II. The Chordates. OCN 201 Biology Lecture 7

Marine Animals. II. The Chordates. OCN 201 Biology Lecture 7 Marine Animals II. The Chordates OCN 201 Biology Lecture 7 The Animal Family Tree Chordates Arthropods Segmented Worms Mollusks mouth first anus first Echinoderms Cnidarians Round Worms Ctenophores Flatworms

More information

Biology 3315 Comparative Vertebrate Morphology Protochordates and Fishes

Biology 3315 Comparative Vertebrate Morphology Protochordates and Fishes Biology 3315 Comparative Vertebrate Morphology Protochordates and Fishes 1. Echinodermata If fossil forms are included, echinoderms are a very diverse assemblage; several classes are now entirely extinct.

More information

Unit 13 - Vertebrates Student Guided Notes

Unit 13 - Vertebrates Student Guided Notes Chordates Unit 13 - Vertebrates Student Guided Notes General Characteristics of Phylum Chordata Although not the largest, Chordates are the most diverse phylum in the animal kingdom. Chordates have at

More information

CHORDATA SK.M.BASHA Phylum Chordata Vertebrates, sea squirts or tunicates, lancelets such as Amphioxus. Name: "Chord" means "string", referring to the nerve cord and/or notochord. Chief characteristics:

More information

Vertebrate Animals. DOMAIN- Eukarya KINGDOM- Animalia PHYLUM- Chordata SUBPHYLUM- Vertebrata CLASS- 7 different»orders- 10 Placental mammals

Vertebrate Animals. DOMAIN- Eukarya KINGDOM- Animalia PHYLUM- Chordata SUBPHYLUM- Vertebrata CLASS- 7 different»orders- 10 Placental mammals Vertebrate Animals DOMAIN- Eukarya KINGDOM- Animalia PHYLUM- Chordata SUBPHYLUM- Vertebrata CLASS- 7 different»orders- 10 Placental mammals Characteristics of ALL vertebrates Backbone Endoskeleton Distinct

More information

Aquarium entrance stamp here

Aquarium entrance stamp here Aquarium entrance stamp here Bio 11 - ZOOLOGY Instructor: K. Villatoro Student s Name: CLASSIFICATION OF KINGDOM ANIMALIA WELCOME TO THE CABRILLO MARINE AQUARIUM! This site was chosen because it exhibits

More information

Unit 19.2: Fish. Vocabulary fish spawning swim bladder

Unit 19.2: Fish. Vocabulary fish spawning swim bladder Unit 19.2: Fish Lesson Objectives Describe structure and function in fish. Explain how fish reproduce and develop. Give an overview of the five living classes of fish. Summarize the evolution of fish.

More information

Lecture 8 History of fishes

Lecture 8 History of fishes Lecture 8 History of fishes Ray Troll Picture = CARD SHARKS Structural Patterns and Trends in Diversification Fish subsumed (since Cope (1889) proposed - Agnatha - jawless fishes and Gnathostome lines

More information

Biology. Slide 1 of 53. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 53. End Show. Copyright Pearson Prentice Hall Biology 1 of 53 Chapter 33 Comparing Chordates 2 of 53 This chapter is a good revision of the material we saw during Unit III. 3 of 53 4 of 53 Controlling Body Temperature The control of body temperature

More information

Phylum Chordata:

Phylum Chordata: The Chordates: Putting a Backbone Into Spineless Animals Note: These links do not work. Use the links within the outline to access the mages in the popup windows. This text is the same as the scrolling

More information

Class Myxini Order Myxiniformes Family Myxinidae (hagfishes)

Class Myxini Order Myxiniformes Family Myxinidae (hagfishes) Class Myxini Order Myxiniformes Family Myxinidae (hagfishes) Lacks jaws Mouth not disk-like barbels present Unpaired fins as continuous fin-fold Branchial skeleton not well developed Eyes degenerate 70-200

More information

Characteris*c s of Living Things 1. Chemical Uniqueness: Molecular Organization

Characteris*c s of Living Things 1. Chemical Uniqueness: Molecular Organization Characteris*c s of Living Things 1. Chemical Uniqueness: Molecular Organization 2. Hierarchical Organization: macromolecules - > Cells - >Organs - >Organ systems 3. Reproduction 4. Genetic Programs 5.

More information

"Protochordates" BIO3334 Invertebrate Zoology. Page 1. Hemichordates and Invertebrate chordates. Protochordate taxa 2 8:30 AM

Protochordates BIO3334 Invertebrate Zoology. Page 1. Hemichordates and Invertebrate chordates. Protochordate taxa 2 8:30 AM Hemichordates and Invertebrate chordates 1 Protochordate taxa Phylum. Hemichordata Class. Enteropneusta Class. Pterobranchia Phylum. Chordata Subphylum. Urochordata Subphylum. Cephalochordata Subphylum.

More information

ANIMAL KINGDOM CHAPTER 4 14 BIOLOGY, EXEMPLAR PROBLEMS MULTIPLE CHOICE QUESTIONS

ANIMAL KINGDOM CHAPTER 4 14 BIOLOGY, EXEMPLAR PROBLEMS MULTIPLE CHOICE QUESTIONS 14 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 4 ANIMAL KINGDOM MULTIPLE CHOICE QUESTIONS 1. In some animal groups, the body is found divided into compartments with at least some organs/ organ repeated. This characteristic

More information

Chapter 25: Fishes 1

Chapter 25: Fishes 1 Chapter 25: Fishes 1 2 Jawless Fishes (Agnatha) Cartilaginous Fishes (Chondrichthyes) Bony Fishes (Osteichthyes) Lamprey Whale shark Scorpion fish 3 Gills Single-loop Blood Circulation Vertebral column

More information

Monterey Bay Aquarium Fieldtrip Worksheet

Monterey Bay Aquarium Fieldtrip Worksheet Attach ticket stub here. Name: Class: B11 or B3A Lab day & time: Monterey Bay Aquarium Fieldtrip Worksheet General Information Address: 886 Cannery Row Monterey, California 93940 Hours: 10am 6pm (May vary

More information

Class XI Chapter 4 Animal Kingdom Biology

Class XI Chapter 4 Animal Kingdom Biology Chapter 4 Animal Kingdom Question 1: What are the difficulties that you would face in classification of animals, if common fundamental features are not taken into account? For the classification of living

More information

Reference: Chapter Phylum Chordata! Part Two, Fish

Reference: Chapter Phylum Chordata! Part Two, Fish Reference: Chapter 34.1-34.4 Phylum Chordata! Part Two, Fish 2 Clade Craniata v Evolution of a head (cranium) opened up a completely new way of feeding (for chordates): active predation v Craniates share

More information

Chapter 12 Marine Fishes

Chapter 12 Marine Fishes Chapter 12 Marine Fishes Marine Protochordates Phylum: Chordata (nerve cord) Subphylum: Protochordata first chordates/primitive Primitive species of marine vertebrates Do not have advanced features (backbone)

More information

UNIVERSITY OF SOUTH ALABAMA. GY 112: Earth History. Lectures 28 and 29: Vertebrates. Instructor: Dr. Douglas W. Haywick

UNIVERSITY OF SOUTH ALABAMA. GY 112: Earth History. Lectures 28 and 29: Vertebrates. Instructor: Dr. Douglas W. Haywick UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lectures 28 and 29: Vertebrates Instructor: Dr. Douglas W. Haywick Last Time Plants 1) The first plants (Archean-Proterozoic) 2) Diversification (Paleozoic-Mesozoic)

More information

Class XI Chapter 4 Animal Kingdom Biology

Class XI Chapter 4 Animal Kingdom Biology Class XI Chapter 4 Animal Kingdom Biology Question 1: What are the difficulties that you would face in classification of animals, if common fundamental features are not taken into account? For the classification

More information

OpenStax College Rice University 6100 Main Street MS-380 Houston, Texas 77005

OpenStax College Rice University 6100 Main Street MS-380 Houston, Texas 77005 Concepts of Biology OpenStax College Rice University 6100 Main Street MS-380 Houston, Texas 77005 To learn more about OpenStax College, visit http://openstaxcollege.org. Individual print copies and bulk

More information

Class Polychaeta: Marine Worms

Class Polychaeta: Marine Worms Class Polychaeta: Marine Worms Animal Phyla Phylum Mollusca (Snails, Clams, Octopods and Allies): Radula: rasping tongue Shell: 3 layers, mostly calcium carbonate Inner-most = nacre = mother of pearl Mantle:

More information

Subphylum Urochordata Subphylum Cephalochordata Subphylum Vertebrata

Subphylum Urochordata Subphylum Cephalochordata Subphylum Vertebrata Subphylum Urochordata Subphylum Cephalochordata Subphylum Vertebrata The most diverse of all vertebrates My research on fish * PhD Program (Oregon State University) Olfaction

More information

Figure 33.25a Free-living nematode

Figure 33.25a Free-living nematode Figure 33.25a Free-living nematode Bilateraly symmetrical Pseudocoelomates Body covered with secreated, flexible cuticle. No cilia Only longitudinal muscles. No protonephridia Muscular pharynx Gonochoristic

More information

Hemichordates and Invert chordates

Hemichordates and Invert chordates Hemichordates and Invertebrate chordates 1 Animal innovations (Symplesiomorphies) Pharyngeal gill slits Dorsal hollow nerve cord Porifera Placozoa Cnidaria Ctenophora Platyhelminthes Gastrotricha Gnathostomulida

More information

Chordata sm. Other chordates, vertebrata in general, share the additional structures: 1. Segmented body. 2. Endoskeleton.

Chordata sm. Other chordates, vertebrata in general, share the additional structures: 1. Segmented body. 2. Endoskeleton. Chordata sm Objectives: 1. Identify exterior structures associated with each of the chordates presented. 2. Identify interior morphology associated with respiration, reproduction, digestion and absorption,

More information

The Animals: Kingdom Animalia

The Animals: Kingdom Animalia The Animals: Kingdom Animalia Kingdom Animalia (Animals) What is an Animal? Zoology- The study of Animals General Characteristics of 1. Animals are multicellular and eukaryotic. Animals 2. Animals consume

More information

Basic mollusc body plan

Basic mollusc body plan Phylum Mollusca Phylum Mollusca 3 embryonic germ layers true coelom complete gut second largest phylum of animals, around 100,000 species mainly aquatic, but some terrestrial species Basic mollusc body

More information

Ch17_Animals. Animals Multicellular eukaryotes. What is an animal? Animal development. Main differences with plants Main differences with fungi

Ch17_Animals. Animals Multicellular eukaryotes. What is an animal? Animal development. Main differences with plants Main differences with fungi Animals Multicellular eukaryotes Domain Domain Kingdoms Main differences with plants Main differences with fungi What is an animal? Domain Nutritional mode: Heterotrophic (Ingestive) Level of organization:

More information

EVOLUTION OF ANIMALS CHAPTERS 18 & 19: ANIMAL EVOLUTION AND DIVERSITY ANIMALS. Honors Biology Fig Fig. 18.2

EVOLUTION OF ANIMALS CHAPTERS 18 & 19: ANIMAL EVOLUTION AND DIVERSITY ANIMALS. Honors Biology Fig Fig. 18.2 CHAPTERS 18 & 19: ANIMAL EVOLUTION AND DIVERSITY Honors Biology 2012 1 ANIMALS Egg Fig. 18.1 Sperm 2 Eukaryotic, multicellular heterotrophs whose cells lack cell walls Most animal cells are diploid Haploid

More information

Introduction. Learning About Vertebrates. Introduction

Introduction. Learning About Vertebrates. Introduction Introduction Introduction Welcome to a fantastic book devoted to a special group of animals called vertebrates. The animal kingdom is made up of more kinds of organisms (living things) than all of the

More information

Chapter 10. Part 1: Cartilaginous Fishes

Chapter 10. Part 1: Cartilaginous Fishes Chapter 10 Part 1: Cartilaginous Fishes Objectives Understand how hagfishes and lampreys differ from all other fishes. Describe how sharks, skates, and rays are related. Differentiate between cartilaginous

More information

5/3/15. Vertebrate Evolution Traces a Long and Diverse History. Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold

5/3/15. Vertebrate Evolution Traces a Long and Diverse History. Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold Chordata is the most advanced animal phylum. All chordates have, at some time during development, a notochord. Both invertebrate

More information

Reading guide for exam 1 Chapter 1 Chapter 2 Chapter 3

Reading guide for exam 1 Chapter 1 Chapter 2 Chapter 3 Reading guide for exam 1 In general, when you are studying for an exam in this class you should learn your lecture notes (that is the notes you take in lecture) and use those along with the handout of

More information

Sponges are considered the oldest of the animal phyla. The name Porifera means "pore bearer" in Latin.

Sponges are considered the oldest of the animal phyla. The name Porifera means pore bearer in Latin. Animals All animals are members of the Kingdom Animalia, also called Metazoa. This Kingdom does not contain prokaryotes (Kingdom Monera, includes bacteria, blue green algae) or protists (Kingdom Protista,

More information

Perch Dissection Lab

Perch Dissection Lab Name: Block: Due Date: Perch Dissection Lab Background The fish in the class Osteichthyes have bony skeletons. There are three groups of the bony fish: ray-finned, lobe-finned, and the lungfish. The perch

More information

Phyla Echinodermata and Chordata

Phyla Echinodermata and Chordata 10/27/14 Deuterostomes! v Echinoderms and Phyla Echinodermata and Chordata Deuterostome Review v Deuterostomes share developmental characteristics Radial cleavage Formation of the anus from the blastopore

More information

Phyla Echinodermata and Chordata

Phyla Echinodermata and Chordata Phyla Echinodermata and Chordata Deuterostomes! v Echinoderms and chordates constitute the clade Deuterostomia v Echinoderms (phylum Echinodermata) include sea stars and sea urchins v Chordates (phylum

More information

Bio 20 Marine Biology Exam 3 Outline

Bio 20 Marine Biology Exam 3 Outline Bio 20 Marine Biology Exam 3 Outline Marine Fishes (Chapter 8) I. Classification of Fishes Vertebrates have the 4 basic characteristics of chordates: Plus vertebrate characteristics: II. Fish Facts - Fishes

More information

Class Osteichthyes. Bony Fish

Class Osteichthyes. Bony Fish Class Osteichthyes Bony Fish General Characteristics of Class internal skeleton ossified (turned to bone) Paired fins made of rays and spines, or lobed fins swim bladder or lung present bony scales (ganoid,

More information

What is it? Affinities and systematic position of Dipnoi DBS 402B.1 Presidency University, 2015

What is it? Affinities and systematic position of Dipnoi DBS 402B.1 Presidency University, 2015 What is it? Affinities and systematic position of Dipnoi DBS 402B.1 Presidency University, 2015 What is the question? I ve decided to discuss the controversy, therefore the argument and philosophy of classification/systematics

More information

invertebrate Animals - Standard 5

invertebrate Animals - Standard 5 Instructions for Vocabulary Cards: Please photocopy the following pages onto heavy card stock (back to back, so the word is printed on the back side of the matching definition). Then, laminate each page.

More information

Oceanic Nekton. Fishes. Agnatha Hagfish. Classification of Fish. Lampreys

Oceanic Nekton. Fishes. Agnatha Hagfish. Classification of Fish. Lampreys Oceanic Nekton Fishes Classification of Fish Agnatha Hagfish Notochord; slime!; cartilaginous skeleton; poor eyes; slime (I know, but its worth mentioning twice ) Lampreys Notochord; Dorsal Fin; well developed

More information

Is a seahorse a fish, amphibian, or reptile? FISH

Is a seahorse a fish, amphibian, or reptile? FISH Ch. 30 Loulousis Is a seahorse a fish, amphibian, or reptile? FISH Vertebral Column (Endoskeleton) Gills Single-loop circulation Kidneys Also share all the characteristics of chordates such as notochord,

More information

Invertebrate Chordates

Invertebrate Chordates Invertebrate Chordates Chapter 11.2 - Fishes And Invertebrate Chordates... Invertebrate Chordates Lancelets Filter feed and spend most of their time buried in the sand. Only 2 invertebrate chordates Tunicates

More information

Biology 458 (WLF 458): VERTEBRATE ENDOCRINOLOGY Fall 2007 (Last modified on October 4, 2007)

Biology 458 (WLF 458): VERTEBRATE ENDOCRINOLOGY Fall 2007 (Last modified on October 4, 2007) Biology 458 (WLF 458): VERTEBRATE ENDOCRINOLOGY Fall 2007 (Last modified on October 4, 2007) Instructor: Alexander (Sasha) Kitaysky 413 Irving I 474-5179 e-mail: ffask@uaf.edu office hours: by appointment.

More information

Slide 1 of 64. End Show Copyright Pearson Prentice Hall. End Show Copyright Pearson Prentice Hall. Respiration. Slide 5 of 64

Slide 1 of 64. End Show Copyright Pearson Prentice Hall. End Show Copyright Pearson Prentice Hall. Respiration. Slide 5 of 64 33-3 Form and Function in Chordates Chordates Vertebrate organ systems exhibit a wide range of complexity. This is seen in the different ways that vertebrates feed, breathe, respond, move, and reproduce.

More information

Animals Big and Small: Skin and Guts

Animals Big and Small: Skin and Guts Animals Big and Small: Skin and Guts What if elephants had small ears? A VOLUME AND SURFACE AREA PROJECT Activity 16-1: Skin and Guts Animal Definitions The following a definitions which fit the vast majority

More information

Ch17_Animals. Animals Multicellular eukaryotes. What is an animal? Animal development. Main differences with plants Main differences with fungi

Ch17_Animals. Animals Multicellular eukaryotes. What is an animal? Animal development. Main differences with plants Main differences with fungi Animals Multicellular eukaryotes Domain Domain Kingdoms Main differences with plants Main differences with fungi What is an animal? Domain Nutritional mode: Heterotrophic (Ingestive) Level of organization:

More information

Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Superclass: Tetrapoda Class: Amphibia. Amphibian Classification

Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Superclass: Tetrapoda Class: Amphibia. Amphibian Classification Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Superclass: Tetrapoda Class: Amphibia Amphibian Classification Amphibian Amphibians are live the first part of their lives in the water and the

More information