UNIT-I SOIL EXPLORATION

Size: px
Start display at page:

Download "UNIT-I SOIL EXPLORATION"

Transcription

1 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) Subject with Code : Geotechnical Engineering - II (16CE127) Year & Sem: III-B.Tech & II-Sem Course & Branch: B.Tech CE Regulation: R16 UNIT-I SOIL EXPLORATION 1. What is site investigation? What are the objectives of site investigation? [10 M] 2. What is soil exploration? What is the purpose of soil exploration? Explain how the sub-soil exploration is conducted? [10 M] 3. (a) What are different types of soil samples considered for soil testing? [5 M] (b) Discuss the salient points of auger boring with a neat sketch. [5 M] 4. With a neat sketch explain the process of advancing wash boring. What are the limitations of wash boring? [10 M] 5. Write short notes on the following: [10 M] a. Rotary drilling b. Percussion drilling c. Core drilling 6. (a) Describe the construct of spilt spoon sampler. [5 M] (b) Explain how the sample is extracted using split spoon sampler. [5 M] 7. The neat sketches explain how the soil samplers are extracted using scraper bucket and shellby tube sampler. [10 M] 8. (a) Explain in how the N-value is determined by conducting Standard Penetration Test? [5 M] (b) What are the corrections applied on N-value [5 M] 9. (a) Explain briefly how Cone Penetration Test is conducted in the field. [5 M] (b) List the necessary information to be furnished in a good soil report. [5 M] 10. The observed SPT value of a dense soil deposit which is 20 m below the ground water table is 48. The overburden soil is having unit of 17.5 kn/m 2. What is the corrected N-Value? [10 M] Geotechnical Engineering - II Page 1

2 UNIT-II EARTH SLOPE STABILITY 1. Discuss the method for checking the stability of an infinite slope in both cohesive and noncohesive soils. [10 M] 2. (a) What are different types of slope failures? Explain. [5 M] (b) A long natural slope of cohesionless soil is inclined at 12 o to the horizontal. Taking Φ = 30 o, determine the factor of safety of the slope. If the slope is completely submerged, what will be change in the factor of safety? [5 M] 3. How a slope is analysed using Swedish circle method? Derive an expression for the factor of safety. [10 M] 4. Describe Bishop s simplified method. Derive an expression for the factor of safety[10 M] 5. Discuss the friction circle method for the stability analysis of slopes? Can this method be used for purely cohesive soils? [10 M] 6. What is stability number? What is its utility in the analysis of stability of slopes? Discuss the uses of stability charts. [10 M] 7. A new canal is excavated to a depth of 5 m below ground level, through a soil having the following characteristics: c = 14 kn/m 3 ; Φ = 15 o ; e = 0.8 and G = The slope of banks is 1 in 1. Calculate the factor of safety with respect to cohesion when the canal runs full. If it is suddenly and completely emptied, what will be the factor of safety? [10 M] 8. An embankment is inclined at an angle of 35 o and its height is 15 m. The angle of shearing resistance is 15 o and the cohesion intercept is 200 kn/m 2. The unit weight of soil is 18 kn/m 3. If Taylor s stability umber is 0.06, find the factor of safety with respect to cohesion. [10 M] 9. An earth dam of height 20 m is constructed of soil of which the properties are: γ = 20 kn/m 3 ; Φ = 20 o and c = 45 kn/m 2. The side slopes are inclined at 30 o to the horizontal. Find the factor of safety immediately after drawdown. [10 M] 10. A cutting is to be made in a soil with slope of 30 o to the horizontal and a depth of 15 m. the propertied of soil are: γ = 20 kn/m 3 ; Φ = 15 o and c = 25 kn/m 2. Determine the factor of safety of the slope against slip, assuming friction and cohesion to be mobilised to the same proportion of their ultimate values. [10 M] Geotechnical Engineering - II Page 2

3 UNIT III EARTH PRESSURE ON RETAINING WALLS 1. (a) What are different types of earth pressure? Give examples. [5 M] (b) A retaining wall, 6 m high, retains dry sand with an angle of friction of 30 o and unit weight of 1.62 g/cm 3. Determine the earth pressure at rest. [5 M] 2. (a) Define earth pressure at rest. Show the earth pressure distribution on a retaining wall, assuming the soil is dry. [5 M] (b) List and explain the stability considerations of a gravity retaining wall. [5 M] 3. What are the assumptions of Rankine s theory? Derive the expression for active pressure and passive pressure. [10 M] 4. What are the assumptions in Coulomb s theory? Compare Rankine s theory and Coulomb s theory. [10 M] 5. What are the limiting values of the lateral earth pressure at a depth of 3 m in a uniform sand fill with a unit weight of 20 kn/m 3 and a friction angle of 35 o? The ground surface is level. [10 M] 6. A gravity retaining wall retains 12 m of a backfill, γ = 17.7 kn/m 3, Φ = 25 o with a uniform horizontal surface. Assume the wall interfaces to be vertical, determine the magnitude and point of application of the total active pressure. If the water table is at a height of 6 m, how far do the magnitude and the point of application of active pressure changed? [10 M] 7. A wall 5.4 m high, retains sand. If the loose state the sand has a void ratio of 0.63 and Φ = 27 o, while the sense state, the corresponding values of void ratio and Φ are 0.36 and 45 o respectively. Compare the ratio of active and passive earth pressure in the two cases, assuming G = [10 M] 8. A smooth backed vertical wall is 6.3 m high and retains a soil with a bulk unit weight of 18 kn/m 3 and Φ = 18 o. the top of the soil is level with the top of the wall and is horizontal. If the soil suface carries a uniformly distributed load of 4.5 kn/m 2, determine the total active thrust on the wall per linear metre of the wall and its point of application. [10 M] 9. A vertical retaining wall 10 m high supports a cohesionless fill with γ = 1.8 g/cm 3. The upper surface of the fill raises from the crest of the wall at tan angle of 20 o with the horizontal. Assuming Φ = 30 o and δ = 20 o, determine the total active earth pressure using the analytical approach of Coulomb. [10 M] 10. A retaining wall 3.6 m high, supports a dry chonesionless backfill with a plane ground surface sloping up wards at a surcharge angle of 10 o from the top of the wall. The back of the wall in inclined to the vertical at a positive better angle of 9 o. The unit weight of the backfill is 1.89 Geotechnical Engineering - II Page 3

4 t/m 3 and Φ = 30 o. Assuming wall friction angle of 12 o, determine the total active thrust by Rebhamn s method. [10 M] UNIT IV BEARING CAPACITY & SETTLEMENT 1. Define the following: [10 M] a. Ultimate bearing capacity b. Net ultimate bearing capacity c. Net safe bearing capacity d. Net safe settlement pressure e. Net allowable bearing pressure 2. Clearly state the assumptions made by Terzaghi and derive the bearing capacity equation for strip footing. [10 M] 3. (a) With neat sketches explain different types of shear failures. [5 M] (b) Determine the ultimate bearing capacity of a strip footing, 1.20 m wide, and having the depth of foundation of 1.0 m. use Terzaghi s theory and assume general shear failure. Take Φ = 35 o, γ = 18 kn/m 3, and C = 15 kn/m 2. [5 M] 4. What are different types of shallow foundations? Explain with the help of neat sketches. [10 M] 5. What are the points to be considered while fixing the depth of footing? Discuss Rankine s formula for the minimum depth. [10 M] 6. Describe how the plate load test is conducted with a neat sketch? What are its limitations and uses? [10 M] 7. Calculate the ultimate bearing capacity per unit area of a. a strip footing 1 m wide b. a square footing 3 m x 3 m, and c. a circular footing of 3 m diameter Where unit weight of the soil 1.8 t/m 3, cohesion = 2 t/m 2, Φ = 20 o, N C = 17.5, N q = 7.5 and Nγ = 5. [10 M] 8. A foundation in a sand will be 5 m wide and 1.5 m deep. Adopting a factor of safety of 2.5 what will be safe bearing capacity if the unit weight of the sand is 1.9 g/cm 3 and angle of internal friction is 35 o. How does it compare with safe loading capacity for surface loading? Consider N C = 57, N q = 44 and Nγ = 42. [10 M] 9. A footing 2 m square is laid at ta depth of 1.3 m below the ground surface. Determine the net ultimate bearing capacity suing IS code method. Unit weight of soil is 20 kn/m 3, angle of Geotechnical Engineering - II Page 4

5 internal friction is 30 o and the soil is cohesionless. Also estimate the ultimate bearing capacity of the footing when water table raises to the ground surface. [10 M] 10. Plate load tests were conducted in a c-φ soil, on plates of two different sizes and the following results were obtained: Load Size of plate Settlement 40 kn 0.3 m x 0.3 m 25 mm 100 kn 0.6 m x 0.6 m 25 mm Find the size of square footing to carry a load of 800 kn at the same specified settlement of 25 mm. [10 M] UNIT V PILE FOUNDATIONS 1. (a) What are the conditions where pile foundation is more suitable than a shallow foundation [5 M] (b) A square concrete pile of 30 cm side, 10 m long is driven into coarse sand (γ = 18.5 kn/m 3, N = 20). Determine the allowable load when a factor of safety is 3. [5 M] 2. Describe how the piles are classified based on transfer of load, method of construction and use. [10 M] 3. (a) How do you estimate group capacity of piles in sand? [5 M] (b) A pile is driven with a single acting steam hammer of weight 15 kn with a free fall of 900 mm. the final set, the average of the last three blows, is 27.5 mm. Fid the safe load using the Engineering News Formula. [5 M] 4. With a neat sketch how pile load test is conducted and draw a typical load-settlement curve for loading during this test. [10 M] 5. (a) What is the effect of negative friction on pile? [5 M] (b) In a 16 pile group, the pile diameter is 45 cm and centre to centre spacing of the square group is 1.5 m. If c = 50 kn/m 2, determine whether the failure would occur with the pile acting individually, or as a group? Neglect bearing at the tipe of the pile. All piles are 10 m long. Take m = 0.7 for shear mobilisation around each pile. [5 M] 6. (a) Discuss how ultimate load is given by Engineering News Record Formula. [5 M] (b) A 30 cm diameter concrete pile is driven into a homogeneous consolidated clay deposit (C u = 40 kn/m 2, α = 0.7). If the embedded length is 10 m, estimate the safe load if factor of safety is 2.5. [5 M] Geotechnical Engineering - II Page 5

6 7. A square group of 9 piles was driven into soft clay extending to a large depth. The diameter and length of the piles were 30 cm and 9 m respectively. If the unconfined compression strength of the clay is 9 t/m 2, and the pile spacing is 90 cm centre to centre, what is the capacity of the group? Assume a factor of safety of 2.5 and adhesion factor of [10 M] 8. A precast concrete pile is driven with a 50 kn hammer, having a free fall of 1.0 m. If the penetration in the last blow is 0.5 cm, determine the load carrying capacity of the pile using Engineering News Record formula. Consider a factor of safety of 6.0. [10 M] 9. (a) With a neat sketch explain how ultimate failure load of a pile is estimated using static method. [5 M] (b) How do you estimate group capacity of piles in clay? [5 M] 10. A group of friction piles of 30 cm diameter is subjected to a net load of 2000 kn, as shown in figure. Estimate the consolidation settlement. [10 M] Figure Prepared by: M. Prem Kumar & C. Siva Kumar Prasad Geotechnical Engineering - II Page 6

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad CIVIL ENGINEERING TUTORIAL QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad CIVIL ENGINEERING TUTORIAL QUESTION BANK INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 00 04 CIVIL ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Regulation Course Structure Course Coordinator Course Faculty

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 CIVIL ENGINEERING Tutorial Question Bank Name : FOUNDATION ENGINEERING Code : A60126 Class : III B. Tech II Semester Branch

More information

REPORT GEO-TECHNICAL INVESTIGATION FOR THE PROPOSED BLOCK-7 SUB-STATION SY NO-225, NEAR RAYACHERLU VILLAGE

REPORT GEO-TECHNICAL INVESTIGATION FOR THE PROPOSED BLOCK-7 SUB-STATION SY NO-225, NEAR RAYACHERLU VILLAGE REPORT ON GEO-TECHNICAL INVESTIGATION FOR THE PROPOSED BLOCK-7 SUB-STATION SY NO-225, NEAR RAYACHERLU VILLAGE CLIENT: KARNATAKA SOLAR POWER DEVELOPMENT CORPORATION BANGALORE 0 GEO-TECHNICAL INVESTIGATION

More information

REPORT GEO-TECHNICAL INVESTIGATION FOR THE PROPOSED BLOCK-1 SUB-STATION SY NO-44, NEAR KYATAGANACHERLU VILLAGE

REPORT GEO-TECHNICAL INVESTIGATION FOR THE PROPOSED BLOCK-1 SUB-STATION SY NO-44, NEAR KYATAGANACHERLU VILLAGE REPORT ON GEO-TECHNICAL INVESTIGATION FOR THE PROPOSED BLOCK-1 SUB-STATION SY NO-44, NEAR KYATAGANACHERLU VILLAGE CLIENT: KARNATAKA SOLAR POWER DEVELOPMENT CORPORATION BANGALORE 0 GEO-TECHNICAL INVESTIGATION

More information

m v = 1.04 x 10-4 m 2 /kn, C v = 1.29 x 10-2 cm 2 /min

m v = 1.04 x 10-4 m 2 /kn, C v = 1.29 x 10-2 cm 2 /min 2.10 Problems Example 2.1: Design of Shallow Foundation in Saturated Clay Design a square footing to support a column load of 667 kn. The base of the footing will be located 1 m below the ground level

More information

Formation level = m. Foundation level = m. Height of the wall above the Ground Level = 7.42 m

Formation level = m. Foundation level = m. Height of the wall above the Ground Level = 7.42 m DESIGN OF RETAINING WALL INTRODUCTION: This wall is designed for active earth pressure and live load surcharge pressure The loads for the purpose of design are calculated per meter length of wall. BASIC

More information

Typical factors of safety for bearing capacity calculation in different situations

Typical factors of safety for bearing capacity calculation in different situations Typical factors of safety for bearing capacity calculation in different situations Density of soil: In geotechnical engineering, one deals with several densities such as dry density, bulk density, saturated

More information

SOIL ANCHORS ETSAB/UPC J.Llorens - ETSAB/UPC PASSIVE ANCHORS - ANTECEDENTS

SOIL ANCHORS ETSAB/UPC J.Llorens - ETSAB/UPC PASSIVE ANCHORS - ANTECEDENTS SOIL ANCHORS ignasi.llorens@upc.edu ETSAB/UPC - 2013 PASSIVE ANCHORS - ANTECEDENTS Antecedents of passive anchors can be found in Nature. Roots feed plants and provide uplift resistance against the wind

More information

CIVE 554/650. Geotechnical Engineering. Rock. Soil. Water. Site Investigation Techniques. CIVE Knight 1. 1/8/2006 CIVE Knight 1

CIVE 554/650. Geotechnical Engineering. Rock. Soil. Water. Site Investigation Techniques. CIVE Knight 1. 1/8/2006 CIVE Knight 1 CIVE 554/650 Site Investigation Techniques 1/8/2006 CIVE 554 - Knight 1 Geotechnical Engineering Soil Rock Water 1/8/2006 CIVE 554 - Knight 2 CIVE 554 - Knight 1 Key Soil Engineering Properties Compressibility

More information

Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand

Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand SECM/15/080 Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand S. Mukherjee 1* and Dr. S. Mittal 2 1 Amity University, Noida, India 2 Indian Institute of Technology, Roorkee,

More information

For a cantilever pile wall shown in Figure 1, assess the performance of the system and answer the following questions.

For a cantilever pile wall shown in Figure 1, assess the performance of the system and answer the following questions. Question 1 For a cantilever pile wall shown in Figure 1, assess the performance of the system and answer the following questions. Figure 1 - Cantilever Pile Wall i. Estimate the net resulting horizontal

More information

Bearing Capacity and Settlement Response of PMS Tanks on Cohesionless Soil Lithology in Lekki, Lagos of Nigeria

Bearing Capacity and Settlement Response of PMS Tanks on Cohesionless Soil Lithology in Lekki, Lagos of Nigeria Available online at www.scholarsresearchlibrary.com European Journal of Applied Engineering and Scientific Research,, ():- (http://scholarsresearchlibrary.com/archive.html) ISSN: 8 Bearing Capacity and

More information

Influence of Settlement on Bearing Capacity Analysis of Shallow Foundations on Sandy Clays in the Niger Delta, Nigeria

Influence of Settlement on Bearing Capacity Analysis of Shallow Foundations on Sandy Clays in the Niger Delta, Nigeria Available online at www.scholarsresearchlibrary.com European Journal of Applied Engineering and Scientific Research, 201, 2 (4):20-27 (http://scholarsresearchlibrary.com/archive.html) ISSN: 22 0041 Influence

More information

1 CHAPTER 1. Standard Penetration Test: Corrections and Correlations. 1.1 General. 1.2 Standard Penetration Test (SPT)

1 CHAPTER 1. Standard Penetration Test: Corrections and Correlations. 1.1 General. 1.2 Standard Penetration Test (SPT) Page1 1 CHAPTER 1 Standard Penetration Test: Corrections and Correlations 1.1 General This chapter mainly focuses on the Standard Penetration Test, its correction and correlations with different soil properties.

More information

Tension Cracks. Topics Covered. Tension crack boundaries Tension crack depth Query slice data Thrust line Sensitivity analysis.

Tension Cracks. Topics Covered. Tension crack boundaries Tension crack depth Query slice data Thrust line Sensitivity analysis. Tension Cracks 16-1 Tension Cracks In slope stability analyses with cohesive soils, tension forces may be observed in the upper part of the slope. In general, soils cannot support tension so the results

More information

THE EFFECT OF EMBEDMENT DEPTH ON BEARING CAPACITY OF STRIP FOOTING IN COHESIVE FRICTIONAL MEDIUM

THE EFFECT OF EMBEDMENT DEPTH ON BEARING CAPACITY OF STRIP FOOTING IN COHESIVE FRICTIONAL MEDIUM Proceedings of the 4 th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018), 9~11 February 2018, KUET, Khulna, Bangladesh (ISBN-978-984-34-3502-6) THE EFFECT OF EMBEDMENT

More information

Homework of chapter (3)

Homework of chapter (3) The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Hasan Almassri T.A: Eng. Mahmoud AlQazzaz First semester, 2013. Homework

More information

computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23.

computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23. computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23. (2) For the resisting side, passive pressure theory indicates

More information

A REPORT ON SUB SOIL INVESTIGATION WORK NEW HAJ TOWER COMPLEX HOOGHLY RIVER BRIDGE COMMISSIONERS

A REPORT ON SUB SOIL INVESTIGATION WORK NEW HAJ TOWER COMPLEX HOOGHLY RIVER BRIDGE COMMISSIONERS A REPORT ON SUB SOIL INVESTIGATION WORK PROJECT : NEW HAJ TOWER COMPLEX LOCATION : REVISED CHANGED SITE ON PLOT NO. IIA/26, OF RAJARHAT NEW TOWN, KOLKATA Project Implementation Authority : HOOGHLY RIVER

More information

Reinforced Soil Retaining Walls-Design and Construction

Reinforced Soil Retaining Walls-Design and Construction Lecture 32 Reinforced Soil Retaining Walls-Design and Construction Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Example calculation An 8 m high

More information

Theory of a vertically loaded Suction Pile in CLAY

Theory of a vertically loaded Suction Pile in CLAY 11 Theory of a vertically loaded Suction Pile in CLAY Mainly based on the et Norske Veritas NV-RP-E303 1. Convention Water COG h L Soil COG t Figure 1 Suction Pile Figure 2 Suction pile with main parameters

More information

FINAL REPORT ON: GEOTECHNICAL INVESTIGATION FOR ENVIRONMENTAL REGULATORY TRAINING INSTITUTE AT NIMLI VILLAGE, TIJARA ALWAR, RAJASTHAN.

FINAL REPORT ON: GEOTECHNICAL INVESTIGATION FOR ENVIRONMENTAL REGULATORY TRAINING INSTITUTE AT NIMLI VILLAGE, TIJARA ALWAR, RAJASTHAN. FINAL REPORT ON: GEOTECHNICAL INVESTIGATION FOR ENVIRONMENTAL REGULATORY TRAINING INSTITUTE AT NIMLI VILLAGE, TIJARA ALWAR, RAJASTHAN Submitted to: M/s. Nilayam Housing Pvt. Ltd. 4, Windmill Place Aya

More information

Construction Dewatering

Construction Dewatering Construction Dewatering Introduction The control of groundwater is one of the most common and complicated problems encountered on a construction site. Construction dewatering can become a costly issue

More information

Department of Civil & Geological Engineering GEOE Engineering Geology

Department of Civil & Geological Engineering GEOE Engineering Geology Department of Civil & Geological Engineering GEOE 218.3 Engineering Geology Assignment #3, Head, Pore Pressure & Effective Stress Due 08 Oct, 2010 NOTE: Numbered subscripts indicate depth, in metres, below

More information

1) INTRODUCTION 2) THE UNFAIR ADVANTAGE

1) INTRODUCTION 2) THE UNFAIR ADVANTAGE 1 1) INTRODUCTION 2) THE UNFAIR ADVANTAGE and Stingray earth anchors are driven tipping plate soil anchors for reaction of tensile loads. anchors have ultimate capacities up to 20 tons, and Stingray anchors

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Item 404 Driving Piling

Item 404 Driving Piling Item Driving Piling 1. DESCRIPTION Drive piling. 2. EQUIPMENT 2.1. Driving Equipment. Use power hammers for driving piling with specified bearing resistance. Use power hammers that comply with Table 1.

More information

CENGRS GEOTECHNICA PVT. LTD. Job No Sheet No. 1

CENGRS GEOTECHNICA PVT. LTD. Job No Sheet No. 1 CENGRS GEOTECHNICA PVT. LTD. Job No. 214030 Sheet No. 1 INTERIM REPORT ON GEOTECHNICAL INVESTIGATION FOR PROPOSED 66 KV GRID PLOT AT G-7, DWARKA, NEW DELHI. 1.0 INTRODUCTION 1.1 Project Description M/s.

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17421 21415 3 Hours / 100 Marks Seat No. Instructions : (1) All Questions are compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary.

More information

Cubzac-les-Ponts Experimental Embankments on Soft Clay

Cubzac-les-Ponts Experimental Embankments on Soft Clay Cubzac-les-Ponts Experimental Embankments on Soft Clay GEO-SLOPE International Ltd. www.geo-slope.com 1, 7 - th Ave SW, Calgary, AB, Canada TP T Main: +1 3 9 Fax: +1 3 39 Introduction In the 197 s, a series

More information

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 43 Module 3: Lecture - 5 on Compressibility and Consolidation Contents Stresses in soil from surface loads; Terzaghi s 1-D consolidation theory; Application in different boundary conditions; Ramp loading;

More information

SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM

SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM 18 th Southeast Asian Geotechnical & Inaugural AGSSEA Conference 29-31 May 213, Singapore Leung, Goh & Shen (eds) SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM GOUW TJIE-LIONG

More information

Displacement-based calculation method on soil-pile interaction of PHC pipe-piles

Displacement-based calculation method on soil-pile interaction of PHC pipe-piles Seattle, WA Displacement-based calculation method on soil-pile interaction of PHC pipe-piles Dr. Huang Fuyun Fuzhou University 31 st May, 217 Outline Background ing introduction ing results Simple calculation

More information

Behavior of Square Footing Resting on Reinforced Sand Subjected to Static Load

Behavior of Square Footing Resting on Reinforced Sand Subjected to Static Load IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 02 July 2016 ISSN (online): 2349-6010 Behavior of Square Footing Resting on Reinforced Sand Subjected to Static

More information

APPENDIX G SCA BASIN CALCULATIONS

APPENDIX G SCA BASIN CALCULATIONS ONONDAGA LAKE SEDIMENT MANAGEMENT FINAL DESIGN APPENDIX G SCA BASIN CALCULATIONS p:\honeywell -syr\444853 - lake detail design\09 reports\9.22 sediment management final design\110930 submittal\110906 onon

More information

CONE PENETRATION TESTS

CONE PENETRATION TESTS February 25, 2015 John Doe, P.E. Acme Engineering and Testing 1234 Test Avenue, Suite 204 Lake Wales, FL 33853 Re: Sample CPT Soundings Dear Mr. Doe, Direct Push Services, LLC (DPS) was retained by Acme

More information

Analysis of dilatometer test in calibration chamber

Analysis of dilatometer test in calibration chamber Analysis of dilatometer test in calibration chamber Lech Bałachowski Gdańsk University of Technology, Poland Keywords: calibration chamber, DMT, quartz sand, FEM ABSTRACT: Because DMT in calibration test

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

FLUID MECHANICS Time: 1 hour (ECE-301) Max. Marks :30

FLUID MECHANICS Time: 1 hour (ECE-301) Max. Marks :30 B.Tech. [SEM III(ME&CE)] QUIZ TEST-1 (Session : 2013-14) Time: 1 hour (ECE-301) Max. Marks :30 Note: Attempt all questions. PART A Q1. The velocity of the fluid filling a hollow cylinder of radius 0.1

More information

Geotechnical Engineering Laboratory CIVIL ENGINEERING VIRTUAL LABORATORY Experiment no 8 Standard Penetration Test

Geotechnical Engineering Laboratory CIVIL ENGINEERING VIRTUAL LABORATORY Experiment no 8 Standard Penetration Test OBJECTIVE To determine the Bearing Capacity of the soils. SCOPE This method describes the standard penetration test using the split-spon sampler to obtain the resistance of soil to penetration (N-value),

More information

3. Types of foundation

3. Types of foundation Foundation Engineering CE 48. Types of foundation & foundation materials Contents Introduction Shallow Foundations Deep Foundations Introduction Why different types of? General types of Introduction Why

More information

SCHEDULE OF RATES FOR GEO-TECHNICAL INVESTIGATION WORKS FOR FAGMIL GRANULATED SINGLE SUPER PHOSPHATE PLANT AT CHITTORGARH, RAJASTHAN

SCHEDULE OF RATES FOR GEO-TECHNICAL INVESTIGATION WORKS FOR FAGMIL GRANULATED SINGLE SUPER PHOSPHATE PLANT AT CHITTORGARH, RAJASTHAN PC107-PNCV-SOR-202 0 DOC. REV. 1 OF 6 (ANNEXURE-VII) FOR FAGMIL GRANULATED SINGLE SUPER PHOSPHATE PLANT AT CHITTORGARH, RAJASTHAN 0 11.04.16 ISSUED FOR TENDER GC GC BRIJESH REV REV DATE PURPOSE PREPD REVWD

More information

BIOREACTOR LANDFILLS: GEOTECHNICAL ASPECTS OF STABILITY EVALUATION

BIOREACTOR LANDFILLS: GEOTECHNICAL ASPECTS OF STABILITY EVALUATION BIOREACTOR LANDFILLS: GEOTECHNICAL ASPECTS OF STABILITY EVALUATION Presented by James Law SCS Engineers Master Class ISWA Congress 2009 Lisbon 10 October 2009 PRESENTATION OVERVIEW Landfill Slope Stability

More information

GROUND IMPROVEMENT USING RAPID IMPACT COMPACTION

GROUND IMPROVEMENT USING RAPID IMPACT COMPACTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-, Paper No. 9 GROUND IMPROVEMENT USING RAPID IMPACT COMPACTION Henrik KRISTIANSEN 1, Michael DAVIES SUMMARY Geotechnical

More information

Ground control for slurry TBM tunnelling GEO Report 249

Ground control for slurry TBM tunnelling GEO Report 249 Cutter head Slurry feed line Excavation chamber Submerged wall Plenum air cushion Pressure bulkhead Opening at base of submerged wall Slurry suction line Nick Shirlaw Ground control for slurry TBM tunnelling

More information

EXPERIMENTS IN GEOTECHNICAL ENGINEERING. Smt. S. R. PATEL ENGINEERING COLLEGE Dabhi, unjha Department of CIVIL engineering

EXPERIMENTS IN GEOTECHNICAL ENGINEERING. Smt. S. R. PATEL ENGINEERING COLLEGE Dabhi, unjha Department of CIVIL engineering EXPERIMENTS IN GEOTECHNICAL ENGINEERING Experiments in Geotechnical Engineering - II: Smt. S. R. PATEL ENGINEERING COLLEGE Dabhi, unjha- 384170 Department of CIVIL engineering Subject : GEOTECHNICAL ENGINEERING-ii

More information

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS 5.1 Introduction Using surcharging as the sole soil consolidation mean can take a long time to reach the desired soil settlement. Soil consolidation using prefabricated

More information

TYPES OF FOUNDATION. Superstructure. Substructure. Foundation

TYPES OF FOUNDATION. Superstructure. Substructure. Foundation TYPES OF FOUNDATION Introduction: The lowest artificially built part of a structure which transmits the load of the structure to the soil lying underneath is called foundation. The supporting part of a

More information

Introduction of world construction methods and trends. Franz-Werner Gerressen, Head of Method Development, Tokyo,

Introduction of world construction methods and trends. Franz-Werner Gerressen, Head of Method Development, Tokyo, Introduction of world construction methods and trends Franz-Werner Gerressen, Head of Method Development, Tokyo, 2017-11-29 1 Introduction of world construction methods and trends Outline Single Pass Piling

More information

FIGURES APPENDIX A SYMBOL SAMPLING DESCRIPTION Location of sample obtained in general accordance with ASTM D 1586 Standard Penetration Test with recovery Location of sample obtained using thin-wall

More information

CHAPTER 3 PROJECT DESCRIPTION AND SITE CONDITION

CHAPTER 3 PROJECT DESCRIPTION AND SITE CONDITION 19 CHAPTER 3 PROJECT DESCRIPTION AND SITE CONDITION 3.1 OVERVIEW This chapter describes Route 44 relocation project. General project information is provided along with details related to the subsurface

More information

Civil Application Solutions

Civil Application Solutions Civil Application Solutions Features - Chiseled Cutting Edges - Increased Surface Area - Lateral Direction Guide Ribs Benefits - Faster Installation and Penetrates Harder Soils - Quicker Loading, Stronger

More information

The tensile capacity of suction caissons in sand under rapid loading

The tensile capacity of suction caissons in sand under rapid loading Frontiers in Offshore Geotechnics: ISFOG 25 Gourvenec & Cassidy (eds) 25 Taylor & Francis Group, London, ISBN 415 3963 X The tensile capacity of suction caissons in sand under rapid loading Guy T. Houlsby,

More information

Assistant Lecturer Anees Kadhum AL Saadi

Assistant Lecturer Anees Kadhum AL Saadi Pressure Variation with Depth Pressure in a static fluid does not change in the horizontal direction as the horizontal forces balance each other out. However, pressure in a static fluid does change with

More information

A Slipway Structure for River Ship Repair

A Slipway Structure for River Ship Repair 1 Paper N 0 : III.05 A Slipway Structure for River Ship Repair Zorislav Sorić, Radovan Vugrinec Predrag Kvasnička, Tomislav Kišiček Josip Galić, Leo Matešić Abstract: A slipway structure for ship repair

More information

An Introduction to Deep Foundations

An Introduction to Deep Foundations An Introduction to Deep Foundations J. Paul Guyer, P.E., R.A. Paul Guyer is a registered mechanical engineer, civil engineer, fire protection engineer and architect with over 35 years experience in the

More information

PUSH PIER SYSTEMS STABILITY. SECURITY. INTEGRITY. Push Pier Systems PN #MBPPT

PUSH PIER SYSTEMS STABILITY. SECURITY. INTEGRITY. Push Pier Systems PN #MBPPT PUSH PIER SYSTEMS STABILITY. SECURITY. INTEGRITY. PN #MBPPT Push Pier Systems About Foundation Supportworks is a network of the most experienced and knowledgeable foundation repair and new construction

More information

Submerged Slope with Excess Pore- Water Pressure

Submerged Slope with Excess Pore- Water Pressure Submerged Slope with Excess Pore- Water Pressure GEO-SLOPE International Ltd. www.geo-slope.com 1400, 633-6th Ave SW, Calgary, AB, Canada T2P 2Y Main: +1 403 269 02 Fax: +1 403 266 481 Introduction Analyzing

More information

HCMTCB MATERIALS SAMPLING & TESTING PERFORMANCE CHECKLIST

HCMTCB MATERIALS SAMPLING & TESTING PERFORMANCE CHECKLIST HCMTCB MATERIALS SAMPLING & TESTING PERFORMANCE CHECKLIST Release Date: January 7, 2014 Sampling Coarse Aggregate PERFORMANCE CHECKLIST AASHTO T-2 Sampling of Aggregates Sampling From A Stockpile 1 When

More information

DNVGL-RP-E303 Edition April 2017

DNVGL-RP-E303 Edition April 2017 RECOMMENDED PRACTICE DNVGL-RP-E303 Edition April 2017 Geotechnical design and installation of suction anchors in clay The electronic pdf version of this document, available free of charge from http://www.dnvgl.com,

More information

19.1 Problem: Maximum Discharge

19.1 Problem: Maximum Discharge 19.1 Problem: Maximum Discharge In partially full channel having an equilateral triangular cross section, the rate of discharge is Q = KAR/3 in which K is a constant, A flow area, R is the hydraulic mean

More information

Pros and Cons of the Analysis of Slope Stability by Various Methods of Slices or Columns

Pros and Cons of the Analysis of Slope Stability by Various Methods of Slices or Columns Pros and Cons of the Analysis of Slope Stability by Various Methods of Slices or Columns by Robert Pyke Ph.D., G.E. Partially Completed Draft April 22, 2017 General Background The history of slope stability

More information

STRUCTURAL STABILITY ASSESSMENT

STRUCTURAL STABILITY ASSESSMENT STRUCTURAL STABILITY ASSESSMENT CFR 257.73(d) Fly Ash Reservoir II Cardinal Plant Brilliant, Ohio October, 2016 Prepared for: Cardinal Operating Company Cardinal Plant Brilliant, Ohio Prepared by: Geotechnical

More information

Ground Failure Mechanism of Micoropiled-raft

Ground Failure Mechanism of Micoropiled-raft Ground Failure Mechanism of Micoropiled-raft T. H. Hwang 1), H. J. Kim 2), and * J.H. Shin 3) 1), 2), 3) Department of Civil Engineering, Konkuk University, Seoul 143-701, Korea 3) jhshin@konkuk.ac.kr

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

Khosla's theory. After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following;

Khosla's theory. After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following; Khosla's theory After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following; Following are some of the main points from Khosla's Theory From observation

More information

Equipment Productivity

Equipment Productivity Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology Construction & Building Engineering CB 524 Methods and Equipment for Construction 2 Equipment Productivity

More information

Stability of Pipeline and details of Anchor blocks

Stability of Pipeline and details of Anchor blocks Stability of Pipeline and details of Anchor blocks For Offshore pipeline laying at Gulf of Kutch, Gujarat. Client WELSPUN (I) LTD, Gujarat EPC Contactor PATEL CONSTRUCTION CO. Consultants Prof. R. Sundaravadivelu

More information

Shallow foundations settlement

Shallow foundations settlement References: 1. Rajapakse, Ruwan. Geotechnical Engineering Calculations and Rules of Thumb. 2. Schroeder, W.L., Dickenson, S.E, Warrington, Don, C. Soils in Construction. Fifth Edition. Upper Saddle River,

More information

Soils for civil engineering purposes

Soils for civil engineering purposes BRITISH STANDARD BS 1377-9: 1990 Incorporating Amendments Nos. 1 and 2 Methods of test for Soils for civil engineering purposes Part 9: In-situ tests ICS 93.020 Committees responsible for this British

More information

Components of a Barrage

Components of a Barrage Components of a Barrage Definition The only difference between a weir and a barrage is of gates, that is the flow in barrage is regulated by gates and that in weirs, by its crest height. Barrages are costlier

More information

γ water = 62.4 lb/ft 3 = 9800 N/m 3

γ water = 62.4 lb/ft 3 = 9800 N/m 3 CEE 42 Aut 200, Exam #1 Work alone. Answer all questions. Always make your thought process clear; if it is not, you will not receive partial credit for incomplete or partially incorrect answers. Some data

More information

SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES

SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES Page 1 of 101 Written by: Ming Zhu Date: 08/20/2008 Reviewed by: R. Kulasingam/J. Beech Date: 08/20/2008 SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES 1. INTRODUCTION This Summary of Subsurface

More information

Sample Project with EPB TBM according to DIN 4085

Sample Project with EPB TBM according to DIN 4085 1 General The aim of the document is to provide information about the required input parameters and the necessary steps for the calculation of a face support pressure. This calculation is carried out under

More information

Pressuremeters in Geotechnical Design

Pressuremeters in Geotechnical Design Pressuremeters in Geotechnical Design B.G. CLARKE Department of Civil Engineering University of Newcastle upon Tyne BLACK1E ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Glasgow Weinheim

More information

MIRABAY PILOT PROJECT REPORT

MIRABAY PILOT PROJECT REPORT MIRABAY PILOT PROJECT REPORT 9/25/2014 By: Ingenium, Inc./Carl A. Hazenberg, P.E. Seawalls along the MiraBay canal system started experiencing problems shortly after construction. Following the issues,

More information

Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters J. Mar. Sci. Eng. 214, 2, 93-122; doi:1.339/jmse2193 Article OPEN ACCESS Journal of Marine Science and Engineering ISSN 277-1312 www.mdpi.com/journal/jmse Comparison and Sensitivity Investigations of a

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

Analysis of Shear Lag in Steel Angle Connectors

Analysis of Shear Lag in Steel Angle Connectors University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2013 Analysis of Shear Lag in Steel Angle Connectors Benjamin Sawyer

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Basic and Applied Thermodynamics First Law of Thermodynamics Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India)

More information

V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures and Wind Turbines on Caisson Foundations in Soft Clays

V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures and Wind Turbines on Caisson Foundations in Soft Clays NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures

More information

Design Data 22M. Flotation of Circular Concrete Pipe. w w I = w - x 1000 (3) (SG x 1000)

Design Data 22M. Flotation of Circular Concrete Pipe. w w I = w - x 1000 (3) (SG x 1000) Design Data M Flotation of Circular Concrete Pipe There are several installation conditions where there is the possibility that concrete pipe may float even though the density of concrete is approximately.4

More information

DESIGN OF AXIALLY LOADED STEPPED FOOTING DATA :- SBC of soil =200 KN /m 2 Concrete Mix =M20 Steel Grade = Fe 415 Clear cover of bottom slab =50 mm

DESIGN OF AXIALLY LOADED STEPPED FOOTING DATA :- SBC of soil =200 KN /m 2 Concrete Mix =M20 Steel Grade = Fe 415 Clear cover of bottom slab =50 mm STEPPED FOOTING The construction of sloped footing is sometimes difficult and when the slope of the top face of footing is more, say more than 1 vertically to 3 horizontally, it may be difficult to finish

More information

Contribution to the snow protection solutions for pitched roofs

Contribution to the snow protection solutions for pitched roofs Contribution to the snow protection solutions for pitched roofs Jozef Oláh1 and Michal Šida1,* 1 Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Radlinského 11, 810 05 Bratislava,

More information

Performance of Anchors for Floating Offshore Windfarms

Performance of Anchors for Floating Offshore Windfarms Geotechnical Engineering for US Offshore Wind Infrastructure Boston April 25, 2016 Performance of Anchors for Floating Offshore Windfarms Charles Aubeny Texas A&M University Background: Multi-Line Attachment

More information

Fehmarnbelt Fixed Link. Geotechnical Large Scale Testing

Fehmarnbelt Fixed Link. Geotechnical Large Scale Testing Fehmarnbelt Fixed Link. Geotechnical Large Scale Testing A. Reto Schreier GEO, Denmark, rsc@geo.dk B. Anders Tovsig Schaarup Andersen Per Aarsleff A/S, Denmark, ata@aarsleff.com C. Nataša Katić + Peter

More information

CONSTRUCTION SPECIFICATION FOR PILING

CONSTRUCTION SPECIFICATION FOR PILING ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 903 DECEMBER 1983 CONSTRUCTION SPECIFICATION FOR PILING 903.01 SCOPE 903.02 REFERENCES 903.03 DEFINITIONS 903.04 Not Used 903.05 MATERIALS 903.05.01

More information

FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics

FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics Civil Engineering Program, San Ignacio de Loyola University Objective Calculate the forces exerted by a fluid at rest on plane or

More information

P Oskarshamn site investigation. Borehole: KAV01 Results of tilt testing. Panayiotis Chryssanthakis Norwegian Geotechnical Institute, Oslo

P Oskarshamn site investigation. Borehole: KAV01 Results of tilt testing. Panayiotis Chryssanthakis Norwegian Geotechnical Institute, Oslo P-04-42 Oskarshamn site investigation Borehole: KAV01 Results of tilt testing Panayiotis Chryssanthakis Norwegian Geotechnical Institute, Oslo March 2004 Svensk Kärnbränslehantering AB Swedish Nuclear

More information

using Strength Ratios

using Strength Ratios Shear Strength of Liquefied Soil using Strength Ratios Prof. Scott M. Olson, PhD, PE 86 th Annual Meeting Transportation Research Board January 22, 2007 Liquefaction Problems Photos from eeri.org Undrained

More information

The single bore multiple anchor system

The single bore multiple anchor system A D Barley 1 The single bore multiple anchor system Eur.Ing. A D BARLEY, Director of Engineering, Keller Ground Engineering, Wetherby, UK INTRODUCTION An anchor tendon with a 10m fixed length in soil or

More information

LAMINATED POLES. engineered to solve problems. Coastal Douglas-fir. Field Raked and Tangent Poles

LAMINATED POLES. engineered to solve problems. Coastal Douglas-fir. Field Raked and Tangent Poles Coastal Douglas-fir Field Raked and Tangent Poles LAMINATED POLES engineered to solve problems 1 Design Criteria Submission Form You can either fax this information to 253-627-4188 or submit your drawings

More information

Learn more at

Learn more at Full scale model tests of a steel catenary riser C. Bridge 1, H. Howells 1, N. Toy 2, G. Parke 2, R. Woods 2 1 2H Offshore Engineering Ltd, Woking, Surrey, UK 2 School of Engineering, University of Surrey,

More information

Desaturating sand deposit by air injection for reducing liquefaction potential

Desaturating sand deposit by air injection for reducing liquefaction potential Desaturating sand deposit by air injection for reducing liquefaction potential M. Ishihara, M. Okamura & T. Oshita Public Works Research Institute, Tsukuba City, Japan. ABSTRACT: It has been known that

More information

Influence of Fly Ash Content on Compaction Characteristics of Fly Ash Clay Mixture

Influence of Fly Ash Content on Compaction Characteristics of Fly Ash Clay Mixture Jordan Journal of Civil Engineering, Volume, No. 1, 16 Influence of Fly Ash Content on Compaction Characteristics of Fly Ash Clay Mixture Ashis Kumar Bera 1)* and Sayan Kundu 2) 1) Associate Professor

More information

Pole Foundation Design with Spreadsheet

Pole Foundation Design with Spreadsheet PDHonline Course S235 (1 PDH) Pole Foundation Design with Spreadsheet Instructor: John W. Andrew, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

More information

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Monday 16 January 2017 Afternoon Time allowed: 1 hour 30 minutes You must have: the

More information

Drilling and Blasting Technology Prof. Kaushik Dey Department of Mining Engineering Indian Institute of Technology, Kharagpur

Drilling and Blasting Technology Prof. Kaushik Dey Department of Mining Engineering Indian Institute of Technology, Kharagpur Drilling and Blasting Technology Prof. Kaushik Dey Department of Mining Engineering Indian Institute of Technology, Kharagpur Lecture 28 Surface blasting-1 Let me welcome you to the lecture number 28 of

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com 6. Figure 2 3 m 0.5 m A D B June 2005 C 30 A uniform pole AB, of mass 30 kg and length 3 m, is smoothly hinged to a vertical wall at one end A. The pole is held in equilibrium

More information