Transcript of Ping Pong Ball Launcher Research and Design

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Transcript of Ping Pong Ball Launcher Research and Design"

Transcription

1 Transcript of Ping Pong Ball Launcher Research and Design Objective To construct a mechanism to launch a ping pong ball into a garbage bin 2, 4, 6, and 8 metres away from the launcher, with restrictions: *launcher must be placed on the floor *there must be a base for the launcher *size restriction of the launcher (12 x12 ) Ping pong balls are stiff, springy, air filled spheres made of celluloids, a class of plastics. Its material and light weight allows air resistance and its spin to have significant effects on its motion when airborne. Air resistance is the result of the projectile's leading surface colliding with air molecules, and it is affected by the velocity of the object and its cross sectional area. Specifically, a higher velocity and greater cross sectional area results in greater air resistance. Additionally, ping pong balls also bounce quite high when they strike a surface. Since the launcher will launch the ping pong ball so that it launches with a parabolic trajectory, the physics behind projectile motion comes into play. In a projectile, the only force is gravity, thus resulting in a downward acceleration. Gravity does not act in the horizontal direction, so the ping pong ball will theoretically travel at a constant horizontal velocity according to the law of inertia. Physics of Projectile Motion Traits of Ping Pong Balls

2 Collectively, traits of ping pong balls and the nature of projectile motion will have important effects on the launcher that must be considered to ensure that the launcher fulfills the expectations successfully. Because of the ping pong ball's light weight, it is very prone to missing the target as its flight in the air is easily affected by air resistance, drag, and if the ping pong ball spins. Therefore, a lower initial velocity of the launch and a way to keep the ping pong ball stable when it is being launched will reduce the chance of these factors affecting its trajectory. Additionally, a ping pong ball's tendency to bounce must be considered when it is launched, for a greater vertical distance will mean that the force of gravity will cause the ball to accelerate to a higher velocity in the downward direction. The higher the velocity, the more potential energy the ping pong ball acquires, thus the greater the force of the impact of the ball with the target bin. Furthermore, the hard surface of the target bin does not absorb much energy from the impact since the plastic is not very elastic and springy, which in addition to the hard and light weight celluloid of the ping pong ball, means a large fraction of the potential energy of the ball upon impact will convert back into kinetic energy, resulting in the ball bouncing, perhaps out of the target bin! If this occurs, a solution would be to minimize the vertical distance the ball travels in the parabolic trajectory by lengthening the arm of the launcher. However, the vertical distance must be, at the very minimum, slightly higher than the height of the target bin so it can actually go into the bin, thus this will prove to be a challenge when figuring out the ideal angle of the launch and the length of the launching arm.

3 Ping Pong Ball Launcher considerations for ping pong balls as the object being launched types of catapults which is best? the variable: target distance additional features to allow for adjustments of the launcher to aim for different targets proposed design Topics Researched and Discussed Ping Pong Balls Types of Catapults Considering the restrictions of the assignment and the far distances the ping pong ball must be launched, a strong catapult would be suitable to complete the task, especially since there are a wide variety that can be made with readily available materials. Ballista The ballista is one of the first Medieval catapults that utilized torsion, a type of elasticity, stored in twisted ropes and sometimes bending wood to launch the projectile. It has a distinct crossbow like design. Since this is an earlier model of catapults in history, there are better designs that were developed later that are more durable when made on a smaller scale, like for this assignment, that also happen to be a lot easier to build.

4 Trebuchet The trebuchet was constructed after the ballista, using a weighted beam to swing a projectile located in a sling at the opposite end of the beam. Unfortunately, for the purpose of this assignment, a trebuchet may not be the best design to use. The sling may not provide the most accurate launch to get the ping pong ball in the target; additionally, the trebuchet must be adjustable to account for the different distances of the four targets, and the exact mass of the counter weight to provide enough power to launch the projectile 8 metres may be hard to achieve exactly with inexpensive, readily available materials. Overall, there are other catapult designs that are much easier to build and less complicated, such as the mangonel. Mangonel The mangonel was constructed after the trebuchet and it can be a very effective catapult for this assignment. It is torsion powered with many ropes twisted in a figure 8 formation around one end of the beam, with the projectile in a bucket at the other end to be launched. Mousetrap Catapult A catapult that uses the trapping mechanism of a mousetrap is a common and very effective design for a catapult to build at home. The mousetrap uses the distortion of the metal spring to trap mice, but this elastic force is definitely strong enough to power a catapult to launch a ping pong ball 8 metres using the mechanism of the mouse trap, removing the holding bar and catch pad. This video briefly shows exactly how to turn a mousetrap into a simple catapult; obviously, a more substantial design would have to be constructed so that the launching distance can be adjusted to hit each target. Additionally, since rat traps tend to be

5 larger, it would probably be able to provide more power to launch the ping pong ball even farther, so this can be used as well. How to Wrap the Rope for a Torsion Powered Catapult It can be very powerful and accurate since it is built with almost entirely wood (save for the ropes for torsion). As well, it is very easy to adjust the catapult to aim for the different targets by changing the catapult's arm length, and/or the proximity of the beam at the front of the catapult parallel to the ground (circled in the diagram to the left). These factors will be further explored later in this presentation. Overall, the torsion powered mangonel and the mousetrap catapult appear to be the most suitable to build for this assignment, as they allow for easy adjustments to hit targets at different distances, and can be made with readily available and inexpensive materials that will not degrade or lose effectiveness over a short period of time (i.e. rubber bands). by Sarah Wong Features to Adjust for Different Target Distances This video shows what adjustments can be made to a torsion powered catapult (and any catapult with a similar design) to launch at different horizontal and vertical lengths. Since mouse traps are so powerful, it would launch the ping pong ball at too fast of an initial velocity. As well, the spring may wear out after repeated use, and thus lose

6 effectiveness. Therefore, torsion in twisted ropes is the easiest yet sufficiently powerful way to launch the ping pong balls. *Diagram is not to scale. Actual dimensions are thus not included as they are subject to change. Screws are not included as well to maintain clarity of design. The round bucket will decrease the amount of movement of the ping pong ball before being launched, therefore the ping pong ball will not spin as much in its trajectory. (not visible in diagram) The cross bar is adjustable to change the angle that the launching arm stops at, changing the angle of the trajectory to aim for targets at different distances. The ropes are twisted in a figure 8 structure (as described in the diagram and video provided under the "Types of Catapults" section. It will be twisted tightly to give the catapult even more power. The knob at the top allows the launching arm to be pulled down for the launch without disturbing the ping pong ball itself.

Catapult Project. Even though we will be wearing safety glasses, the catapult must not have any sharp edges that could injure yourself or others.

Catapult Project. Even though we will be wearing safety glasses, the catapult must not have any sharp edges that could injure yourself or others. Catapult Project Objective. Design and build a catapult capable of launching a large metal projectile ( a nut about the size of 5 nickels) more than 12 ft and up to 32 feet away in order to accurately

More information

What s inside your experiment kit:

What s inside your experiment kit: EXPERIMENT MANUAL Franckh-Kosmos Verlags-GmbH & Co. KG, Pfizerstr. 5-7, 70184 Stuttgart, Germany +49 (0) 711 2191-0 www.kosmos.de Thames & Kosmos, 301 Friendship St., Providence, RI, 02903, USA 1-800-587-2872

More information

1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket.

1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket. 1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar bucket arm rubber band string scale handle As the handle is turned, the

More information

Castle Ballistics T3 WJMS

Castle Ballistics T3 WJMS Castle Ballistics T3 WJMS I can demonstrate the ability to design and construct a ballistic device to hit a specific target that was created following the given rubric. I will design and construct a ballistic

More information

Projectile Motion. Regardless of its path, a projectile will always follow these rules:

Projectile Motion. Regardless of its path, a projectile will always follow these rules: Projectile Motion What is a projectile? Regardless of its path, a projectile will always follow these rules: 1. A horizontally launched projectile moves both horizontally and vertically and traces out

More information

Rocket Activity Foam Rocket

Rocket Activity Foam Rocket Rocket Activity Foam Rocket Objective Students will learn about rocket stability and trajectory with rubber bandrpowered foam rockets. Description Students will construct rockets made from pipe insulating

More information

TEACHER ANSWER KEY December 10, Projectile Review 1

TEACHER ANSWER KEY December 10, Projectile Review 1 Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]

More information

1. downward 3. westward 2. upward 4. eastward

1. downward 3. westward 2. upward 4. eastward projectile review 1 Name 11-DEC-03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

Today Mr. Happer told us to use the following physics vocabulary words and relate them to our experiment:

Today Mr. Happer told us to use the following physics vocabulary words and relate them to our experiment: Design Your Own Experiment Lab Report Objective While making our water rocket, our group tried to achieve different criteria listed by Mr. Happer. With our rocket, we were trying to achieve a distance

More information

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched

More information

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms

More information

2016 Physics Olympics Detailed Rules

2016 Physics Olympics Detailed Rules 2016 Physics Olympics Detailed Rules The UNT Society of Physics Students has hosted their annual Physics Olympics for many years now. Over the years, many teams have competed in a variety of events that

More information

Structure (Down plane)

Structure (Down plane) By Lauren Russell Structure (Down plane) The body (toes, knees, hips, wrists and shoulders) is aligned parallel to the intended target line. The torso is tilted over the ball from the hips whilst maintaining

More information

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following. Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.

More information

Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball).

Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball). Bottle Rocket Project 2016-17 Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball). Materials: 2 liter plastic soda bottle (carbonated beverage

More information

Acceleration= Force OVER Mass. Design Considerations for Water-Bottle Rockets

Acceleration= Force OVER Mass. Design Considerations for Water-Bottle Rockets Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Read through this packet and answer the questions

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

Unit 2 Review: Projectile Motion

Unit 2 Review: Projectile Motion Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

More information

So what is point footwork? And how is it used for attacking and monitoring our opponents?

So what is point footwork? And how is it used for attacking and monitoring our opponents? Get to the point!!! Point footwork of Latosa Escrima Author: Marty Odsather Anchorage, Alaska 1 st TG WT / 11 th SG LWS EBMAS To suggest that any martial art could be a success without the use of strong

More information

Force, Motion and Energy Review

Force, Motion and Energy Review NAME Force, Motion and Energy Review 1 In the picture to the right, two teams of students are playing tug-of-war. Each team is pulling in the opposite direction, but both teams are moving in the same direction.

More information

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

Finding the optimal trajectory for your driver

Finding the optimal trajectory for your driver Finding the optimal trajectory for your driver One of the more discussed topics involving Clubfitting is about what launch angle is best for any given golfer. With the increased awareness in golf periodicals

More information

V mca (and the conditions that affect it)

V mca (and the conditions that affect it) V mca (and the conditions that affect it) V mca, the minimum airspeed at which an airborne multiengine airplane is controllable with an inoperative engine under a standard set of conditions, is arguably

More information

Practice Test: Vectors and Projectile Motion

Practice Test: Vectors and Projectile Motion ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

More information

Design and Make a foam rocket

Design and Make a foam rocket Design and Make a foam rocket Activity DESIGN AND MAKE A FOAM ROCKET - and investigate its flight path. Equipment For each rocket: Foam pipe insulation (½ diameter) 30 cm length Wide rubber band - (6 mm.

More information

time v (vertical) time

time v (vertical) time NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

More information

Qualitative Analysis of Jumping Standing Long Jump Goals Note: Standing Long Jump

Qualitative Analysis of Jumping Standing Long Jump Goals Note: Standing Long Jump Qualitative Analysis of Jumping Standing Long Jump *Any time a person or object is launched into the air Ex- jumping, diving, gymnastics, throwing, or striking Goals: 1. Distance Ex: standing long jump,

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

Gravity: How fast do objects fall? Teacher Version (Grade level: 4 7)

Gravity: How fast do objects fall? Teacher Version (Grade level: 4 7) Gravity: How fast do objects fall? Teacher Version (Grade level: 4 7) *** Experiment with Audacity to be sure you know how to do what s needed for the lab*** Kinematics is the study of how things move

More information

EXERCISE AND INSTRUCTIONS

EXERCISE AND INSTRUCTIONS TM XPULT EXERCISE AND INSTRUCTIONS Karl Ulrich Christian Terwiesch The Wharton School Department of Operations and Information Management University of Pennsylvania 500 Huntsman Hall Philadelphia, PA 19104

More information

BIOMECHANICAL MOVEMENT

BIOMECHANICAL MOVEMENT SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions - text book pages 169-172 1) For which of the following is the athlete s centre of mass most likely to lie outside of

More information

Lab 9 Ballistic Pendulum

Lab 9 Ballistic Pendulum b Lab 9 Ballistic Pendulum What You Need To Know: The Physics Today s lab is not going to cover any new physics. However, based on what you ve learned in lecture and in lab, we will be combining together

More information

LAUNCH IT. DESIGN CHALLENGE Design and build an air-powered rocket that can hit a target at least 5 feet away.

LAUNCH IT. DESIGN CHALLENGE Design and build an air-powered rocket that can hit a target at least 5 feet away. Grades 3 5, 6 8 10 60 minutes LAUNCH IT DESIGN CHALLENGE Design and build an air-powered rocket that can hit a target at least 5 feet away. MATERIALS Supplies and Equipment: Several pairs of scissors Balloon

More information

Projectile Motion Problems Worksheet

Projectile Motion Problems Worksheet Projectile Motion Problems Worksheet For all questions, ignore the effects of air resistance unless otherwise stated. 1. One of the landing gears falls off a plane that is flying horizontally with a constant

More information

Analysis of Movement

Analysis of Movement Orlando 2009 Biomechanics II: Analysis of Movement An overview and advanced discussion of the effects of movement, with a focus on the technology available to analyze skills and support science-based instruction.

More information

Breaking Down the Approach

Breaking Down the Approach Breaking Down the Approach Written by Andre Christopher Gonzalez Sunday, July 31, 2005 One of the biggest weaknesses of the two-legged approach is the inability of the athlete to transfer horizontal momentum

More information

Two dimensional kinematics. Projectile Motion

Two dimensional kinematics. Projectile Motion Two dimensional kinematics Projectile Motion 1. You throw a ball straight upwards with a velocity of 40m/s. How long before it returns to your hand? A. 2s B. 4s C. 6s D. 8s E. 10s 1.You throw a ball straight

More information

Ma Long's forehand Power Looping Backspin Power looping backspin is the most common attacking method, and it is one of the most powerful forehand

Ma Long's forehand Power Looping Backspin Power looping backspin is the most common attacking method, and it is one of the most powerful forehand Ma Long s Technique Ma Long, the latest men-single winner in Asian games, has beaten lots of top players in the world. Characteristic of his game is obvious - very good at initiating attack, fast and fierce,

More information

Eleventh Annual Catapult Competition at Ole Miss Wednesday April 12, 2017

Eleventh Annual Catapult Competition at Ole Miss Wednesday April 12, 2017 Eleventh Annual Catapult Competition at Ole Miss Wednesday April 12, 2017 The School of Engineering, the Center for Mathematics and Science Education, and the Division of Outreach at the University of

More information

Torque Review. 3. What is true about the Torques on an object in rotational equilibrium?

Torque Review. 3. What is true about the Torques on an object in rotational equilibrium? Torque Review 1. Define the following: a. Torque b. Lever arm c. Line of action d. Fulcrum e. Center of mass 2. What can be observed about an object in rotational equilibrium? 3. What is true about the

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g = +9.8ms

More information

4.2. Forces That Can Act on Structures. B10 Starting Point. Gravity Is a Force

4.2. Forces That Can Act on Structures. B10 Starting Point. Gravity Is a Force 4.2 Forces That Can Act on Structures Here is a summary of what you will learn in this section: A force is any push or pull. Forces act on structures. Forces can be classified as external (wind, gravity)

More information

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT 1. Vector mechanics apply to which of the following? A. displacement B. velocity C. speed D. both displacement and velocity 2. If velocity is constant, then

More information

Name: Section: Force and Motion Practice Test

Name: Section: Force and Motion Practice Test Name: Section: Force and Motion Practice Test Directions: For each of the questions or incomplete statements below, choose the best of the answer choices given and write your answer on the line. 1. Which

More information

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM PHYSICS REVIEW SHEET 2010 MID-TERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed

More information

ACTIVITY THE MOTION OF PROJECTILES

ACTIVITY THE MOTION OF PROJECTILES Name (printed) ACTIVITY THE MOTION OF PROJECTILES First Day Stamp INTRODUCTION In this activity you will begin to understand the nature of projectiles by mapping out the paths of two projectiles over time;

More information

SKILL ANALYSIS SAMPLE F

SKILL ANALYSIS SAMPLE F SKILL ANALYSIS SAMPLE F MOTOR SKILL: SOCCER SHOT (BALL STATIONARY) Aim/Purpose: The aim of this experiment is to record and analyse the movement process and technique required when kicking a soccer ball

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

The Science of Golf. Test Lab Toolkit The Swing: Putting. Grades Education

The Science of Golf. Test Lab Toolkit The Swing: Putting. Grades Education The Science of Golf Test Lab Toolkit The Swing: Grades 9-12 Partners in Education Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Gravity on the Green

More information

Exercise on Projectile Motion (Unit-III)

Exercise on Projectile Motion (Unit-III) Engineering Mechanics Exercise on Projectile Motion (Unit-III) 1 A projectile is fired with velocity 620 m/s at an angle of 40 with horizontal ground. Find the range, time of flight, maximum height attained

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 12

BROCK UNIVERSITY. Name: Student #: Page 1 of 12 Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: July 2016 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 104 Examination date: 9 July 2016 Number of hours:

More information

The Science of Golf. Test Lab Toolkit The Ball: Aerodynamics. Grades 6-8

The Science of Golf. Test Lab Toolkit The Ball: Aerodynamics. Grades 6-8 The Science of Golf Test Lab Toolkit The Ball: Grades 6-8 Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Bernoulli s Principle 03 Investigate: Wind

More information

College of Engineering

College of Engineering College of Engineering Department of Mechanical and Aerospace Engineering MAE-250, Section 001 Introduction to Aerospace Engineering Final Project Bottle Rocket Written By: Jesse Hansen Connor Petersen

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

ASME Trebuchet Competition Rules:

ASME Trebuchet Competition Rules: ASME Trebuchet Competition Rules: 1. The contest is open to all who register. 2. Safety is of utmost concern. Remember there is an element of danger with creating and operating a siege weapon. 3. Your

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Tuesday January 30 Assignment 3: Due Friday, 11:59pm.like every Friday Pre-Class Assignment: 15min before class like every class Office Hours: Wed. 10-11am, 204 EAL Help Room: Wed. & Thurs. 6-9pm, here

More information

The Trebuchet. History and Physics of Mechanical War Engines

The Trebuchet. History and Physics of Mechanical War Engines The Trebuchet History and Physics of Mechanical War Engines 1 Sling The shepherd s sling is one of the oldest projectile weapons. Sling effectively extends the length of the throwing arm by about 50 cm.

More information

Team 50 Design Log Book. MEMS 0024 Design Project 2: Big Machine

Team 50 Design Log Book. MEMS 0024 Design Project 2: Big Machine Team 50 Design Log Book MEMS 0024 Design Project 2: Big Machine Table of Contents 1) Problem Statement............2 2) Idea Generation..........4 3) Input Requirements...........5 4) Output Requirements...........7

More information

Higher Projectile Motion Questions

Higher Projectile Motion Questions Higher Projectile Motion Questions 1. a) Name the two components of motion in projectiles. b) What is the acceleration on Earth for each of these two components. 2. A pencil case is dropped vertically

More information

Detailed study 3.4 Topic Test Investigations: Flight

Detailed study 3.4 Topic Test Investigations: Flight Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure

More information

STUDY GUIDE UNIT 7 - PROJECTILES

STUDY GUIDE UNIT 7 - PROJECTILES Name Mods STUDY GUIDE UNIT 7 - PROJECTILES Date Agenda Homework Tues 11/17 Wed 11/18 Thurs 11/19 Fri 11/20 Mon 11/23 Tues 11/24 Lab - Projectiles Share Lab Data Go over lab Start problem set 1 Go over

More information

CHAPTER 6 PROJECTILE MOTION

CHAPTER 6 PROJECTILE MOTION CHAPTER 6 PROJECTILE MOTION 1 Basic principle of analyzing projecting motion Independency of vertical and horizontal motion 2 A simple case: Horizontally projected motion An angry bird is fired horizontally

More information

Projectile Motion (8/24/11) (approx. completion time for just parts A & B: 1.5 h; for entire lab: 2.3 h)

Projectile Motion (8/24/11) (approx. completion time for just parts A & B: 1.5 h; for entire lab: 2.3 h) Projectile Motion (//) (approx. completion time for just parts A & B:. h; for entire lab:. h) EQUIPMENT NEEDED: Mini Launcher and steel ball plumb bob pushrod meter stick carbon paper white paper C-clamp

More information

Table of Contents. Career Overview... 4

Table of Contents. Career Overview... 4 Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Activity 1 Design a Straw Rocket I...................................... 5 Activity 2 Design a Straw

More information

Performance & Motor Control Characteristics of Functional Skill. Part III: Throwing, Catching & Hitting

Performance & Motor Control Characteristics of Functional Skill. Part III: Throwing, Catching & Hitting Performance & Motor Control Characteristics of Functional Skill Part III: Throwing, Catching & Hitting Throwing Interesting Facts Studies indicate that boys move across the stages at a faster rate than

More information

Basketball free-throw rebound motions

Basketball free-throw rebound motions Available online at www.sciencedirect.com Procedia Engineering 3 () 94 99 5 th Asia-Pacific Congress on Sports Technology (APCST) Basketball free-throw rebound motions Hiroki Okubo a*, Mont Hubbard b a

More information

19 Waves and Vibrations

19 Waves and Vibrations 19 Waves and Vibrations Answers and Solutions for Chapter 19 Reading Check Questions 1. A wiggle in time is a vibration; a wiggle in space and time is a wave. 2. The source of all waves is a vibration.

More information

ACTIVITY THE MOTION OF PROJECTILES

ACTIVITY THE MOTION OF PROJECTILES Name (printed) ACTIVITY THE MOTION OF PROJECTILES First Day Stamp INTRODUCTION In this activity you will begin to understand the nature of projectiles by mapping out the paths of two projectiles over time;

More information

The Bouncing Ball. Masterclass 2

The Bouncing Ball. Masterclass 2 Masterclass 2 The Bouncing Ball Class objective : To get a sense of spacing, timing, weight, and flexibility in motion. Equipment required: Lightbox, pencil, and paper. N ow that we have established the

More information

Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a).

Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a). Ch3 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch3 Supplemental Due: 6:59pm on Monday, February 13, 2017 To understand how points are awarded, read the Grading

More information

Choosing a Blocking Style: The Conventional Block Versus the Swing Block

Choosing a Blocking Style: The Conventional Block Versus the Swing Block Choosing a Blocking Style: The Conventional Block Versus the Swing Block Written by Andre Christopher Gonzalez Tuesday, July 12, 2005 Introduction: Recently more and more collegiate and club teams have

More information

I hope you earn one Thanks.

I hope you earn one Thanks. A 0 kg sled slides down a 30 hill after receiving a tiny shove (only enough to overcome static friction, not enough to give significant initial velocity, assume v o =0). A) If there is friction of µ k

More information

Chapter 9 Fluids CHAPTER CONTENTS

Chapter 9 Fluids CHAPTER CONTENTS Flowing fluids, such as the water flowing in the photograph at Coors Falls in Colorado, can make interesting patterns In this chapter, we will investigate the basic physics behind such flow Photo credit:

More information

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY

More information

STEM. Science Technology Engineering Math. Presented By:

STEM. Science Technology Engineering Math. Presented By: STEM Science Technology Engineering Math Presented By: Table of Contents Rules of the Game 4 The Basketball Court 6 Physical Characteristics 10 Force 14 Jumping 18 Dribbiling 20 Shooting 23 Passing 31

More information

j~/ ... FIGURE 3-31 Problem 9.

j~/ ... FIGURE 3-31 Problem 9. 9. () An airplane is traveling 735 kmlh in a direction 41S west of north (Fig. 3-31). (a) Find the components of the velocity vector in the northerly and westerly directions. (b) How far north and how

More information

Materials: Balloon demo (optional): - balloon, string, drinking straw, flour (optional)

Materials: Balloon demo (optional): - balloon, string, drinking straw, flour (optional) Lesson Plan for Water Rockets Demonstration Concepts: Momentum, aerodynamics, propulsion Applicable Classes: EPSS 9, ASTR 3 Educational (for undergraduates) and Instructional (for TAs) videos available

More information

VISUAL PHYSICS School of Physics University of Sydney Australia. Why can a steel needle float but a larger piece of steel sink?

VISUAL PHYSICS School of Physics University of Sydney Australia. Why can a steel needle float but a larger piece of steel sink? VISUAL PYSIS School of Physics University of Sydney Australia SURFAE TENSION Why can a steel needle float but a larger piece of steel sink?? Ducks have drowned in farmyard ponds into which washing water

More information

Principles of glider flight

Principles of glider flight Principles of glider flight [ Lecture 2: Control and stability ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher GmbH &

More information

Exam 3 Phys Fall 2002 Version A. Name ID Section

Exam 3 Phys Fall 2002 Version A. Name ID Section Closed book exam - Calculators are allowed. Only the official formula sheet downloaded from the course web page can be used. You are allowed to write notes on the back of the formula sheet. Use the scantron

More information

Motor Milestones by 3 Months Gross Motor Skills

Motor Milestones by 3 Months Gross Motor Skills Motor Milestones by 3 Months -Laying on back: -Kick legs together and alternately -Reach for/ bat at toys held over head in midline with each arm together and alternately -Laying on tummy: -Turn head from

More information

Now we get to the really fun part of cat sailing, but first you need to know about apparent wind.

Now we get to the really fun part of cat sailing, but first you need to know about apparent wind. Shelley Sailing Club Inc. Notes for informal catamaran training course, Alec Duncan, 14/3/2015 Part 4: Reaching and running Now we get to the really fun part of cat sailing, but first you need to know

More information

Wiimote Visualization Through Particles

Wiimote Visualization Through Particles 1 Abstract Wiimote Visualization Through Particles Joshua Jacobson Since 2006, the Wii video game console has been found within homes throughout out the world. The Wiimote exists as the primary input method

More information

Bicycles 2. Bicycles 1. Bicycles 4. Bicycles 3. Bicycles 5. Bicycles 6

Bicycles 2. Bicycles 1. Bicycles 4. Bicycles 3. Bicycles 5. Bicycles 6 Bicycles 1 Bicycles 2 Reading Question 4.1a How would raising the height of a sport utility vehicle affect its turning stability? A. Make it less likely to tip over B. Make it more likely to tip over C.

More information

Momentum Review. Momentum Expressed in (SI unit): kg m/s Commonly used symbols: p Conserved: yes Expressed in other quantities: p = mv

Momentum Review. Momentum Expressed in (SI unit): kg m/s Commonly used symbols: p Conserved: yes Expressed in other quantities: p = mv Momentum Review Momentum Expressed in (SI unit): kg m/s Commonly used symbols: p Conserved: yes Expressed in other quantities: p = mv Chapter 7 What is momentum? The momentum of an object is defined as

More information

Module 15 : Grit Chamber. Lecture 20 : Grit Chamber

Module 15 : Grit Chamber. Lecture 20 : Grit Chamber 1 P age Module 15 : Grit Chamber Lecture 20 : Grit Chamber 2 P age 15.6 Square Grit Chamber The horizontal flow rectangular grit chamber faces the problem of sedimentation of organic matter along with

More information

NAWGJ Education Committee

NAWGJ Education Committee September 2017 The following are line art illustrations of 10 different performance varieties of compulsory handspring vaults. These are by no means the only variations of this vault but may be among the

More information

1D Kinematics Answer Section

1D Kinematics Answer Section 1D Kinematics 1. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s. What is the average velocity? a. 1.7 m/s c. 3.4 m/s b. 2.5 m/s d. zero 2. A truck moves 70

More information

Los Altos High School Physics -Two Dimensional Kinematics Workbook Problems

Los Altos High School Physics -Two Dimensional Kinematics Workbook Problems 1. Consider a United States Coast Guard plane flying a rescue mission 300 Km West of the Faraloon Islands. The mission requires the plane's crew to deliver a 50 kg package of emergency supplies to the

More information

Basic Shooting Skills Principles of Marksmanship. By: Shannon Carlton

Basic Shooting Skills Principles of Marksmanship. By: Shannon Carlton Basic Shooting Skills Principles of Marksmanship By: Shannon Carlton Agenda Introduction Principles of Coaching 5 Principles of Marksmanship Developing a Routine Making Sight Adjustments Sequences Principles

More information

PROPER PITCHING MECHANICS

PROPER PITCHING MECHANICS PROPER PITCHING MECHANICS While each pitcher is a different person and can display some individuality in his mechanics, everyone has similar anatomy (the same muscles, bones and ligaments in the same locations)

More information

3-2-1 POP! Primary Audience: 3 rd 10 th Grade

3-2-1 POP! Primary Audience: 3 rd 10 th Grade 3-2-1 POP! Primary Audience: 3 rd 10 th Grade Description: Construct a rocket powered by the pressure generated from an effervescing antacid tablet reacting with water. Keywords: Newton s Laws of Motion

More information

Ch06 Work and Energy.notebook November 10, 2017

Ch06 Work and Energy.notebook November 10, 2017 Work and Energy 1 Work and Energy Force = push or pull Work = force*distance (//) Technically: Work = force*distance*cos θ 2 Sample 1: How much work is done lifting a 5 N weight 3m vertically? 3 Work is

More information

new to the sport? Here s some background info! A message from the World Beyblade Battle Association

new to the sport? Here s some background info! A message from the World Beyblade Battle Association new to the sport? Here s some background info! A message from the World Beyblade Battle Association Welcome to the ultimate competition the adrenalinecharged sport of BEYBLADE battling! This guide contains

More information

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components Honors Physics Chapter 4 Scalar Vector Resultant Components 1 When we take two vectors and ADD them, the thing we get is called the RESULTANT, or VECTOR SUM. It is also possible to take a single vector

More information

Force and Motion Test Review

Force and Motion Test Review Name: Period: Force and Motion Test Review 1. I can tell you that force is.. 2. Force is measured in units called. 3. Unbalanced forces acting on an object will MOST LIKELY cause the object to A. remain

More information