4.7 Uniform Motion (work).notebook November 15, UNIFORM MOTION

Size: px
Start display at page:

Download "4.7 Uniform Motion (work).notebook November 15, UNIFORM MOTION"

Transcription

1 4.7 UNIFORM MOTION When an object moves at a constant speed, or rate, it is said to be in uniform motion. The formula d = rt is used to solve uniform motion problems. Example 1 An airplane flies 1000 miles due east in 2 hours and 1000 miles due south in 3 hours. What is the average speed of the airplane? Example 2 Lisa and Michael traveled 2 miles in 1/2 hour. What was their rate?

2 Example 3 Don and Donna Wyatt leave their home at the same time, traveling in opposite directions. Don travels at 80 kilometers per hour and Donna travels at 72 kilometers per hour. In how many hours will they be 760 kilometers apart? Example 4 Suppose John and Gina leave at the same time traveling in the same direction. Gina drives at a rate of 85 km/h and John at 70 km/h. How long until they are 90 km apart?

3 Example 5 At 8:00 a.m. Felicia leaves home on a business trip driving 35 miles per hour. A half hour later, Jose' discovers that Felicia forgot her briefcase. He drives 50 miles per hour to catch up with her. If Jose' is delayed 15 minutes with a flat tire, when will he catch up with Felicia? Example 6 Jamie left home on his bicycle for a long-distance ride. Mary left 3 hours later on her motorcycle carrying his lunch. Mary traveled at 42 mph and she caught Jamie in 1.5 hours. How fast was Jamie traveling?

4 Practice Problem 1 At 1:30 p.m., an airplane leaves Tuscon for Baltimore, a distance of 2240 miles. The plane flies at 280 miles per hour. A second airplane leaves Tuscon at 2:15 p.m., and is scheduled to land in Baltimore 15 minutes before the first airplane. At what rate must the second airplane travel to arrive on schedule? Practice Problem 2 Two trains leave York at the same time, one traveling north, the other south. The first train travels at 40 miles per hour and the second at 30 miles per hour. In how many hours will the trains be 245 miles apart?

5 Practice Problem 3 Rosita drove from Boston to Cleveland, a distance of 616 miles, to visit her grandparents. Her rest, gasoline, and food stops took 2 hours. What was her average speed if the trip took 16 hours altogether? Practice Problem 4 Two cyclists are traveling in the same direction on the same bike path. One travels at 20 miles per hour and the other at 14 miles per hour. After how many hours will they be 15 miles apart?

6 Practice Problem 5 At the same time Kris leaves Washington, D.C. for Detroit, Amy leaves Detroit for Washington, D.C. The distance between the cities is 510 miles. Amy's average speed is 5 miles per hour faster than Kris's. How fast is Kris driving if they pass each other in 6 hours? Practice Problem 6 The Harvest Moon leaves the pier at 9:00 a.m. at 8 knots (nautical miles per hour). A half hour later, The River Nymph leaves the same pier in the same direction traveling at 10 knots. At what time will The River Nymph overtake The Harvest Moon?

7 Practice Problem 7 Art leaves at 10:00 a.m., traveling at 50 miles per hour. At 11:30 a.m., Jennifer starts in the same direction at 45 miles per hour. When will they be 100 miles apart? Practice Problem 8 Guillermo is driving 40 miles per hour. After he has driven 30 miles, his brother Jorge starts driving in the same direction. At what rate must Jorge drive to catch up with Guillermo in 5 hours?

8 Practice Problem 9 Two airplanes leave Dallas at the same time and fly in opposite directions. One airplane travels 80 miles per hour faster than the other. After three hours, they are 2940 miles apart. What is the rate of each airplane? Practice Problem 10 An express train travels 80 kilometers per hour from Wheaton to Ward. A local train, traveling at 48 kilometers per hour, takes 2 hours longer for the same trip. How far apart are Wheaton and Ward?

GOING MY WAY EXAMPLES

GOING MY WAY EXAMPLES GOING MY WAY EXAMPLES When an object moves at a constant speed, or rate, it is said to be in uniform motion. The formula d = rt is used to solve uniform motion problems. In the formula, d represents distance,

More information

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers.

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Motion Graphs 6 The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Descriptions: 1. The car is stopped. 2. The car is traveling

More information

Name: Date Due: Motion. Physical Science Chapter 2

Name: Date Due: Motion. Physical Science Chapter 2 Name: Date Due: Motion Physical Science Chapter 2 What is Motion? 1. Define the following terms: a. motion= a. frame of reference= b. distance= c. vector= d. displacement= 2. Why is it important to have

More information

Suppose two trains are moving in the same directions at X m/s and Y m/s then their relative speed

Suppose two trains are moving in the same directions at X m/s and Y m/s then their relative speed Distance (D) = Speed (S) Time (T) X kmph = X 5 18 m/s X m/s = X 18 5 kmph If the ratio of the speeds A & B is a : b, then the ratio of the times taken by them to cover the same distance is = 1 a 1 b =

More information

Where are you right now? How fast are you moving? To answer these questions precisely, you

Where are you right now? How fast are you moving? To answer these questions precisely, you 4.1 Position, Speed, and Velocity Where are you right now? How fast are you moving? To answer these questions precisely, you need to use the concepts of position, speed, and velocity. These ideas apply

More information

Broughton High School of Wake County

Broughton High School of Wake County 1 2 Physical Science Notebook Table of Contents Chapter 2 Motion: Speed & Acceleration Pg. # Date Description Turned In 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Received Back 3

More information

Chapter 11 Motion. Displacement-. Always includes Shorter than distance

Chapter 11 Motion. Displacement-. Always includes Shorter than distance Chapter 11 Motion Section 1 - an object s change in position relative to a reference point. Observe objects in to other objects. international unit for. Frame of Reference Frame of reference- a system

More information

Physics for Scientist and Engineers third edition Kinematics 1-D

Physics for Scientist and Engineers third edition Kinematics 1-D Kinematics 1-D The position of a runner as a function of time is plotted along the x axis of a coordinate system. During a 3.00 s time interval, the runner s position changes from x1=50.0 m to x2= 30.5

More information

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A mosquito flying at 3 m/s that encounters a breeze blowing at 3 m/s in the same direction

More information

More Word Problems. Front 19 x 19x. Rear 14 x (x + 525) Solve: 19x + 14(x + 525) = 31, front and 1265 rear

More Word Problems. Front 19 x 19x. Rear 14 x (x + 525) Solve: 19x + 14(x + 525) = 31, front and 1265 rear Name: Date: More Word Problems 1) Tickets to a concert were $19 for the seats near the front and $14 for the rear seats. There were 525 more rear seats sold than front seats, and sales for all tickets

More information

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour.

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. Speed How are instantaneous speed and average speed different? Average

More information

Supplemental Problems

Supplemental Problems REPRESENTING MOTION 1. An airplane traels at a constant speed, relatie to the ground, of 900.0 km/h. a. How far has the airplane traeled after 2.0 h in the air? x t (900.0 km/h)(2.0 h) 1800 km b. How long

More information

PHYSICS 105. Assignment #3 Due by 10 pm September 29, DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am

PHYSICS 105. Assignment #3 Due by 10 pm September 29, DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am PHYSICS 105 Assignment #3 Due by 10 pm September 9, 009 NAME: DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am [ ] D9 W 11 am [ ] F 1 W 1 pm [ ] F W pm [ ] F3 W 3 pm [ ] F4 W 4 pm [ ] F5

More information

Section 1. Objectives:

Section 1. Objectives: Chapter 2 Motion Objectives: Section 1 Use a frame of reference to describe motion Differentiate between Speed and Velocity Calculate the speed of an object Use graphs to describe speed Observing Motion

More information

Chapter 11 Motion. Section 1

Chapter 11 Motion. Section 1 Chapter 11 Motion Objectives: Section 1 Use a frame of reference to describe motion Differentiate between Speed and Velocity Calculate the speed of an object Use graphs to describe speed 1 Observing Motion

More information

SPEED, TIME & DISTANCE EXERCISE

SPEED, TIME & DISTANCE EXERCISE SPEED, TIME & DISTANCE EXERCISE 1. An aeroplane flies along the four sides of a square at the speeds of 00, 400, 0 and 500 km/h. Find the average speed of the plane around the field. (a) 384km/h (b) 370

More information

HONORS PHYSICS One Dimensional Kinematics

HONORS PHYSICS One Dimensional Kinematics HONORS PHYSICS One Dimensional Kinematics LESSON OBJECTIVES Be able to... 1. use appropriate metric units and significant figures for given measurements 2. identify aspects of motion such as position,

More information

Rates and Distances. February 7, Jereth rides a bike with the speed of 8 miles per hour. How far will he get in 3 hours?

Rates and Distances. February 7, Jereth rides a bike with the speed of 8 miles per hour. How far will he get in 3 hours? Rates and Distances February 7, 2016 1. Jereth rides a bike with the speed of 8 miles per hour. How far will he get in 3 hours? 2. Nicole is training for a marathon. It takes her 2 hrs to run 6 miles.

More information

Wordproblems. 1. Problem solving

Wordproblems. 1. Problem solving Wordproblems 1. Problem solving Many problems can be translated into algebraic equations. When problems are solved using algebra, we follow these steps: Step 1: Read the problem. Step 2: Decide on the

More information

ID: 1. Algebra 2. 2) Working together, Mike and Mofor can mop a warehouse in 4.24 hours. Had he. done it alone it would have taken Cody 15

ID: 1. Algebra 2. 2) Working together, Mike and Mofor can mop a warehouse in 4.24 hours. Had he. done it alone it would have taken Cody 15 Algebra 2 m z2k0h1a5n ekkurtzax WSfoGfhtdwyairxel RLRLcCH.B T nallwlu jrwidgyhatrs] Zr]eLsIeNrxvqeDd`. Term 3 CTA Study Guide Solve each question. Round your answer to the nearest hundredth. 1) Paul can

More information

Motion. 1 Describing Motion CHAPTER 2

Motion. 1 Describing Motion CHAPTER 2 CHAPTER 2 Motion What You ll Learn the difference between displacement and distance how to calculate an object s speed how to graph motion 1 Describing Motion 2(D), 4(A), 4(B) Before You Read Have you

More information

2015 AQA A Level Physics. Motion Introduction

2015 AQA A Level Physics. Motion Introduction 2015 AQA A Level Physics Motion Introduction 9/22/2018 Distance and Displacement Distance is the actual path length that is taken Displacement is the change in position x = xf x 0 Where x is the displacement,

More information

December 6, SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation.

December 6, SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation. December 6, 2016 Aims: SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation. Agenda 1. Do Now 2. Class Practice 3. Independent Practice 4. Practicing our AIMS: Homework:

More information

D/T = S. Motion Math pages 6 & 7 in your little book. Chp 5 Little Book, Motion Math & Work Sheet Answers:

D/T = S. Motion Math pages 6 & 7 in your little book. Chp 5 Little Book, Motion Math & Work Sheet Answers: Chp 5 Little Book, Motion Math & Work Sheet Answers: Be sure to show YOUR work and the formulas for credit! Motion Math pages 6 & 7 in your little book Solve the following problems. Show all your work

More information

3. Walking 3/4th of his usual rate, a man is 15min late. Find his usual time in minutes A. 30 B. 35 C. 45 D. 25

3. Walking 3/4th of his usual rate, a man is 15min late. Find his usual time in minutes A. 30 B. 35 C. 45 D. 25 1. A car covers its journey at the speed of 80km/hr in 10hours. If the same distance is to be covered in 4 hours, by how much the speed of car will have to increase? A. 40km/hr B. 60km/hr C. 90km/hr D.

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk A Few Goo Distance-Rate-Time Problems #6 of Gottschalk s Gestalts A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk Infinite Vistas Press PVD RI

More information

Date Lesson Assignment Did it grade Friday Feb.24

Date Lesson Assignment Did it grade Friday Feb.24 PAP Pre-Calculus Lesson Plans Unit Sem 2 3 rd term Johnston (C4) and Noonan (C6) February 24 th to March 9 th 202 - Vectors Date Lesson Assignment Did it grade Friday Feb.24 Law of Sines/Cosines, Area

More information

AP Physics 1 - Test 04 - Projectile Motion

AP Physics 1 - Test 04 - Projectile Motion P Physics 1 - Test 04 - Projectile Motion Score: 1. stone thrown from the top of a tall building follows a path that is circular made of two straight line segments hyperbolic parabolic a straight line

More information

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Exam 1 Please write your CID Colton 2-3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Time and Distance Questions for Bank Clerk Pre Exams.

Time and Distance Questions for Bank Clerk Pre Exams. Time and Distance Questions for Bank Clerk Pre Exams. Time and distance Quiz 6 Directions: Study the following Questions carefully and choose the right answer: 1. A man starts from a place P and reaches

More information

Additional Exercises 7.7 Form I Applications Using Rational Equations and Proportions

Additional Exercises 7.7 Form I Applications Using Rational Equations and Proportions Additional Eercises 7.7 Form I Applications Using Rational Equations and Proportions 1. A cyclist bikes at a constant speed for 20 miles. He then returns 1. home at the same speed but takes a different

More information

Physics for Scientist and Engineers third edition Kinematics 2-D

Physics for Scientist and Engineers third edition Kinematics 2-D Kinematics 2-D A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction to the next town. She then drives in a direction sixty degrees south of east for 47.0 km to another

More information

Physics for Scientist and Engineers third edition Kinematics 2-D

Physics for Scientist and Engineers third edition Kinematics 2-D Kinematics 2-D A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction to the next town. She then drives in a direction sixty degrees south of east for 47.0 km to another

More information

2. On a position-time graph such as Figure 2-18, what represents the velocity?

2. On a position-time graph such as Figure 2-18, what represents the velocity? HONORS PHYSICS PROBLEM SET ONE DIMENSIONAL MOTION DISPLACEMENT AND VELOCITY 1. On the graph in Figure 2-18, what is the total distance traveled during the recorded time interval? What is the displacement?

More information

Although many factors contribute to car accidents, speeding is the

Although many factors contribute to car accidents, speeding is the 74 Measuring Speed l a b o r at o ry Although many factors contribute to car accidents, speeding is the most common kind of risky driving. Unsafe speed is involved in about 20% of fatal car accidents in

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

NCERT solution for Motion and Time

NCERT solution for Motion and Time 1 NCERT solution for Motion and Time Question 1 Classify the following as along a straight line, circular or oscillatory : (i) Motion of your hands while running. (ii) Motion of a horse pulling a cart

More information

8.6B SS - differentiate between speed, velocity, and acceleration

8.6B SS - differentiate between speed, velocity, and acceleration 8.6B SS - differentiate between speed, velocity, and acceleration What is the difference between speed, acceleration and velocity? How is speed calculated? How do we know if something is moving quickly

More information

MATH 30/GRACEY

MATH 30/GRACEY MATH 30/GRACEY 2.6-2.7 Name Find the unknown in each percent question. 1) What is 10% of 300? 2) 57 is 70% of what number? 3) What percent of 129 is 10.3? 4) 16 is 7% of what number? 5) 20% of what number

More information

Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2

Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2 Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2 1 You set out in a canoe from the east shore of a south-flowing river. To maximize your velocity relative to the shore you should

More information

Puzzle Power: Practice Problems

Puzzle Power: Practice Problems Puzzle Power: Practice Problems 1.a With a 7-minute hourglass and an 11-minute hourglass, find the simplest way to time the boiling of an egg for 15 minutes. 1.b Three backpackers cooked rice for dinner.

More information

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

More information

CHANGES IN FORCE AND MOTION

CHANGES IN FORCE AND MOTION reflect CRACK! That s the sound of a bat hitting a baseball. The ball fl ies through the air and lands over the fence for a home run. The motion of a batted ball seems simple enough. Yet, many forces act

More information

Word Problems: Number Theory and past/future Alg. 1H

Word Problems: Number Theory and past/future Alg. 1H PS-A1 Word Problems: Number Theory and past/future Alg. 1H DO ON BINDER PAPER Define variables ("Let Statements"). Write a verbal model. Write an equation. Then solve your equation. Finally answer the

More information

In yesterday s lesson we learned how to solve rational equations and check for extraneous solutions.

In yesterday s lesson we learned how to solve rational equations and check for extraneous solutions. NAME: DATE: Algebra 2: Lesson 9-4 Rational Equation Word Problems Learning Goals: 1) How do we setup and solve word problems involving rational equations? In yesterday s lesson we learned how to solve

More information

Basic Formulae. Speed Time & Distance. Speed Time & Distance: Train Problems

Basic Formulae. Speed Time & Distance. Speed Time & Distance: Train Problems Basic Formulae Speed Time & Distance Train Problems: Basic Concepts and Formulae- Distance Speed = Time Time = Distance / Speed Distance = Speed Time 1 m/s = 18/5 Km/hr 1 km/hr = 5/18 m/s Relative Speed

More information

2. A homemade car is capable of accelerating from rest to 100 km hr 1 in just 3.5 s. Assuming constant acceleration, find:

2. A homemade car is capable of accelerating from rest to 100 km hr 1 in just 3.5 s. Assuming constant acceleration, find: Preliminary Work 1. A motorcycle accelerates uniformly from rest to a speed of 100 km hr 1 in 5 s. Find: (a) its acceleration (b) the distance travelled in that time. [ Answer: (i) a = 5.56 ms 2 (ii) x

More information

Distance-time graphs

Distance-time graphs Distance-time graphs Name & Set 1 Someone runs a race at a steady speed. The runner s motion is plotted as a distance-time graph below. distance /m 100 80 60 40 20 0 0 2 4 6 8 10 12 time /s (i) Over what

More information

Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

Remeber this? You still need to know this!!!

Remeber this? You still need to know this!!! Remeber this? You still need to know this!!! Motion: Speed: Measure of how fast something is moving Speed = Distance Time Speed is a rate: something divided by time SI units for Speed: (m/s) Instantaneous

More information

Acceleration Activity

Acceleration Activity Acceleration Acceleration is the rate of change in the speed of an object. To determine the rate of acceleration, you use the formula below. The units for acceleration are meters per second per second

More information

Chapter 3: Trigonometry

Chapter 3: Trigonometry : Unit 3&4 - Trigonometry Chapter 3: Trigonometry 3.10 Sine or Cosine? Sine Law Cosine Law ASA or AAS SAS ASS SSS Example #1: 12 70 9 Example #2: 17 35 14 1) 2) 3) Solve each triangle ABC. Round answers

More information

Honors Assignment - Vectors

Honors Assignment - Vectors Honors Assignment - Vectors Reading Chapter 3 Homework Assignment #1: Read Chap 3 Sections 1-3 M: #2, 3, 5 (a, c, f), 6-9 Homework Assignment #2: M: #14, 15, 16, 18, 19 Homework Assignment #3: Read Chap

More information

What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period?

What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period? 1 What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period? 7 A car traveling in a straight line has a velocity of +5.0

More information

Algebra 2/Trig: Solving Word Problems. Problem Set A. Problem Set B

Algebra 2/Trig: Solving Word Problems. Problem Set A. Problem Set B Algebra 2/Trig: Solving Word Problems Directions for Sets A to E: Solve each problem while showing sufficient work. Sufficient work includes the following: 1) define your variable, 2) write an equation

More information

Circular Motion - Horizontal

Circular Motion - Horizontal Circular Motion - Horizontal Outcome(s): explain and apply the concepts of centripetal acceleration and centripetal force, as applied to uniform horizontal circular motion. A bucket being swung around

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 3 Kinematics in Two Dimensions Interactive Lecture Questions 3.1.1. A truck drives due south for 1.2 km in 1.5 minutes. Then, the truck

More information

Name Date Period. (D) 4 π. 3. One revolution per minute is about: (A) rad/s (B) rad/s (C) 0.95 rad/s (D) 1.57 rad/s (E) 6.

Name Date Period. (D) 4 π. 3. One revolution per minute is about: (A) rad/s (B) rad/s (C) 0.95 rad/s (D) 1.57 rad/s (E) 6. Name Date Period Worksheet 5.2 Applications of Angles Show all work. All answers must be given as either simplified, exact answers. A calculator is permitted unless otherwise stated. Unless stated otherwise,

More information

Flight. Mysteries. Mysteries of Flight A Reading A Z Level U Benchmark Book Word Count: 1,324 BENCHMARK U.

Flight. Mysteries. Mysteries of Flight A Reading A Z Level U Benchmark Book Word Count: 1,324 BENCHMARK U. Mysteries of Flight A Reading A Z Level U Benchmark Book Word Count: 1,324 BENCHMARK U Mysteries of Flight Written by Lisa Trumbauer Visit www.readinga-z.com for thousands of books and materials. www.readinga-z.com

More information

2 Motion BIGIDEA Write the Big Idea for this chapter.

2 Motion BIGIDEA Write the Big Idea for this chapter. 2 Motion BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in the What I Want to

More information

Speed and Acceleration. Measuring motion

Speed and Acceleration. Measuring motion Speed and Acceleration Measuring motion Measuring Distance Meter international unit for measuring distance. 1 mm = 50 m Calculating Speed Speed (S) = distance traveled (d) / the amount of time it took

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

VECTORS Important Questions from CBSE point of view

VECTORS Important Questions from CBSE point of view VECTORS Important Questions from CBSE point of view LEVEL-1 1. Two forces have their resultant equal to either. At what angle are they inclined? 2. Add a velocity of 30 m/s eastwards to a velocity of 40

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

Chapter 11 Applications in Trigonometry

Chapter 11 Applications in Trigonometry F.3 athematics Supplementary Worksheet for C 3 Chapter 11 ame: Class: 3 ( ) Date: Chapter 11 pplications in Trigonometry Level 1 1. eter walks up along an uphill road. The inclination of the road is 15.

More information

By the end of this set of exercises, you should be able to. interpret Distance Time Graphs. solve problems involving speed, distance and time

By the end of this set of exercises, you should be able to. interpret Distance Time Graphs. solve problems involving speed, distance and time SPEED, DISTANCE AND TIME By the end of this set of exercises, you should be able to (a) (b) interpret Distance Time Graphs solve problems involving speed, distance and Mathematics Support Materials: Mathematics

More information

Section 6 : Average Speed (v av )and Average Velocity ( )

Section 6 : Average Speed (v av )and Average Velocity ( ) Section 6 : Average Speed (v av )and Average Velocity ( ) Realistically, when objects move, their movement is almost always non-uniform. Turning, or obstacles force them to change. When we describe the

More information

Physics Final Exam Review Fall 2013

Physics Final Exam Review Fall 2013 Physics Final Exam Review Fall 2013 The lines on the graph represent displacement vectors for the route along which a person moves. Use the figure to answer problems 1 2. 1. What is the total distance

More information

Review on Right Triangles

Review on Right Triangles Review on Right Triangles Identify a Right Triangle Example 1. Is each triangle a right triangle? Explain. a) a triangle has side lengths b) a triangle has side lengths of 9 cm, 12 cm, and 15 cm of 5 cm,7

More information

Piecewise Functions. Updated: 05/15/10

Piecewise Functions. Updated: 05/15/10 Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 05/15/ Objectives: Students will review linear functions and their properties and be introduced to piecewise

More information

Chapter 3: Trigonometry !! =!! +!!!"#!"#$

Chapter 3: Trigonometry !! =!! +!!!#!#$ 3.11 Sine or Cosine Word Problems Chapter 3: Trigonometry Basic Trig Ratios Geometry Rules!"#!"#!"#!"#$%&!"!!"#$%&'( =!"# Sine Law Cosine Law!!"#! =!!"#! =!!"#!!! =!! +!!!"#!"#$ Example #1 Two security

More information

Ch. 2 & 3 Velocity & Acceleration

Ch. 2 & 3 Velocity & Acceleration Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.

More information

Match words and pictures

Match words and pictures Match words and pictures Vocabulary Worksheet - Transport bicycle 1 2 3 bus car 1 helicopter hot-air balloon 4 5 6 jet ski motorbike 7 8 9 motor boat motor scooter plane 10 11 12 scooter ship submarine

More information

Projectiles Shot up at an Angle

Projectiles Shot up at an Angle Projectile Motion Notes: continued Projectiles Shot up at an Angle Think about a cannonball shot up at an angle, or a football punt kicked into the air, or a pop-fly thrown into the air. When a projectile

More information

Solids, Liquids, and Gases

Solids, Liquids, and Gases chapter 14 Solids, Liquids, and Gases section 3 Behavior of Gases What You ll Learn how a gas exerts pressure on its container how changing pressure, temperature, or volume affect a gas Before You Read

More information

JR. GENIUS EDUCATIONAL SERVICES INC.

JR. GENIUS EDUCATIONAL SERVICES INC. 1 Name: 1. Multiple Choice: 25 marks Copy to Scantron Card after finding the answer on the sheet. Fill in the Scantron card in the last 5 min. of the test. Do Short section first. 1. You are riding your

More information

Pre-Calculus Nov. 14 th to Nov. 27 th 2012 Unit 6 Triangle Trigonometry. Date Topic Assignment Did It

Pre-Calculus Nov. 14 th to Nov. 27 th 2012 Unit 6 Triangle Trigonometry. Date Topic Assignment Did It Pre-Calculus Nov. 14 th to Nov. 27 th 2012 Unit 6 Triangle Trigonometry Date Topic Assignment Did It Wednesday 11/14 Thursday 11/15 Friday 11/16 Monday 11/19 Tuesday 11/20 4.3 Right Triangle Trigonometry

More information

Review - Kinematic Equations

Review - Kinematic Equations Review - Kinematic Equations 1. In an emergency braking exercise, a student driver stops a car travelling at 83 km/h [W] in a time of 4.0 s. What is the car s acceleration during this time? (The answer

More information

PARTICIPANT S GUIDE. Thank you for participating and we hope that this edition proves highly successful and becomes a long tradition.

PARTICIPANT S GUIDE. Thank you for participating and we hope that this edition proves highly successful and becomes a long tradition. PARTICIPANT S GUIDE We are pleased to welcome you to the fourth edition of the Gran Fondo Mont-Tremblant. Following the new trend of endurance sporting events, Gran Fondo are growing in popularity in Canada

More information

PHYSICS 20 Vectors and Dynamics

PHYSICS 20 Vectors and Dynamics NEWTONS 1st LAW 1. A 10.00 kg mass is tied to a string with a maximum strength of 100 N. A second string of equal strength is tied to the bottom of the mass. a) If the bottom string is pulled with a jerk

More information

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components Honors Physics Chapter 4 Scalar Vector Resultant Components 1 When we take two vectors and ADD them, the thing we get is called the RESULTANT, or VECTOR SUM. It is also possible to take a single vector

More information

EXERCISE : TIME, SPEED & DISTANCE

EXERCISE : TIME, SPEED & DISTANCE ABOUT DISHA PUBLICATION One of the leading publishers in India, Disha Publication provides books and study materials for schools and various competitive exams being continuously held across the country.

More information

b. What is the x-distance from the foot of the cliff to the point of impact in the lake?

b. What is the x-distance from the foot of the cliff to the point of impact in the lake? PROJECTILE MOTION An object launched into space without motive power of its own is called a projectile. If we neglect air resistance, the only force acting on a projectile is its weight, which causes its

More information

5.8 Applications of Rational Expressions

5.8 Applications of Rational Expressions 5.8 Applications of Rational Expressions The last thing we want to do with Rational Expressions is the last thing we always want to do when we learn a new topic. That is, we want to talk about applications

More information

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion Chapter 2: Linear Motion Chapter 3: Curvilinear Motion Linear Motion Horizontal Motion - motion along x-axis Vertical Motion (Free-Falling Bodies) motion along y-axis Equation for Uniformly Accelerated

More information

(Mechanical) Kinetic Energy

(Mechanical) Kinetic Energy Science 10 Physics (Mechanical) Kinetic Energy What is Kinetic Energy? How do we describe motion? (watch the video clip and describe the motion you see) What gives an object MORE kinetic energy? (If a

More information

The amount of matter in an object.

The amount of matter in an object. Definitions: Mass: Weight: Gravity: Resistance: Opposing The amount of matter in an object. The measure of the pull of gravity between an object and the Earth. A force that acts pulls objects together.

More information

(1) In the following diagram, which vectors are the components, and which vector is the resultant?

(1) In the following diagram, which vectors are the components, and which vector is the resultant? Homework 2.1 Vectors & Vector Addition (1) In the following diagram, which vectors are the components, and which vector is the resultant? C A B (2) Give the magnitude and direction (angle) of all three

More information

Minute Lectures. Four analogies to explain reactive power. Why an analogy?

Minute Lectures. Four analogies to explain reactive power. Why an analogy? Why an analogy? Reactive power is an essential aspect of the electricity system, but one that is difficult to comprehend by non-experts By presenting four different analogies, we hope the reader will For

More information

Worksheet 1.1 Kinematics in 1D

Worksheet 1.1 Kinematics in 1D Worksheet 1.1 Kinematics in 1D Solve all problems on your own paper showing all work! 1. A tourist averaged 82 km/h for a 6.5 h trip in her Volkswagen. How far did she go? 2. Change these speeds so that

More information

Practice Problem. How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2?

Practice Problem. How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2? Practice Problem How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2? Practice Problem If a car slams on its breaks and comes to a complete stop, after driving for 20

More information

Force, Motion and Energy Review

Force, Motion and Energy Review NAME Force, Motion and Energy Review 1 In the picture to the right, two teams of students are playing tug-of-war. Each team is pulling in the opposite direction, but both teams are moving in the same direction.

More information

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls

More information

Exam 1 Kinematics September 17, 2010

Exam 1 Kinematics September 17, 2010 Physics 16 Name KEY Exam 1 Kinematics September 17, 21 This is a closed book examination. You may use a 3x5 index card that you have made with any information on it that you would like. You must have your

More information

Chapter 3: Two-Dimensional Motion and Vectors

Chapter 3: Two-Dimensional Motion and Vectors Assumption College English Program Mr. Stephen Dobosh s EP- M 4 P h y s i c s C l a s s w o r k / H o m e w o r k P a c k e t Chapter 3: Two-Dimensional Motion and Vectors Section 1: Introduction to Vectors

More information

Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

AP Physics 1 Summer Assignment 2017

AP Physics 1 Summer Assignment 2017 AP Physics 1 Summer Assignment 2017 Begin this packet after you confirm your placement with guidance. This assignment is being handed out to all students who have requested AP Physics 1 in 2017-18. Receiving

More information

Algebra A/B MAT 035. Review for Final Exam

Algebra A/B MAT 035. Review for Final Exam Computation: Evaluate the following expressions: 1. 5-7 + (-8) - (-3) 2 2. -5 (-3) (2) (-5) 3. 4. 5. 11 2 23 + 24 6. 7. (14-3) (3-7) +2 (3-9) 8. 7-2[ ] 9. 20-12 2 3-10. -8[ -4 6 (4-7)] 11. 12 4[7 3(6 2)]

More information

j~/ ... FIGURE 3-31 Problem 9.

j~/ ... FIGURE 3-31 Problem 9. 9. () An airplane is traveling 735 kmlh in a direction 41S west of north (Fig. 3-31). (a) Find the components of the velocity vector in the northerly and westerly directions. (b) How far north and how

More information