KINEMATICS IN ONE DIMENSION

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "KINEMATICS IN ONE DIMENSION"

Transcription

1 chaper KINEMATICS IN ONE DIMENSION Secion 2.1 Displacemen Secion 2.2 Speed and Velociy 1. A paricle ravels along a curved pah beween wo poins P and Q as shown. The displacemen of he paricle does no depend on (a) he locaion of P. (b) he locaion of Q. (c) he disance raveled from P o Q. (d) he shores disance beween P and Q. (e) he direcion of Q from P. P Q 2. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? (a) A jogger is running around a circular pah. (b) A ball is rolling down an inclined plane. (c) A rain ravels 5 miles eas before i sops. I hen ravels 2 miles wes. (d) A ball rises and falls afer being hrown sraigh up from he earh's surface. (e) A ball on he end of a sring is moving in a verical circle. 3. Which one of he physical quaniies lised below is no correcly paired wih is SI uni and dimension? Quaniy Uni Dimension (a) velociy m/s [L]/[T] (b) pah lengh m [L] (c) speed m/s [L]/[T] (d) displacemen m/s 2 [L]/[T] 2 (e) speed ime m [L] 4. A car ravels in a sraigh line covering a oal disance of 9. miles in 6. minues. Which one of he following saemens concerning his siuaion is necessarily rue? (a) The velociy of he car is consan. (b) The acceleraion of he car mus be non-zero. (c) The firs 45 miles mus have been covered in 3. minues. (d) The speed of he car mus be 9. miles per hour hroughou he enire rip. (e) The average velociy of he car is 9. miles per hour in he direcion of moion. 5. A ime = s, an objec is observed a x = m; and is posiion along he x axis follows his expression: x = 3 + 3, where he unis for disance and ime are meers and seconds, respecively. Wha is he objec s displacemen x beween = 1. s and = 3. s? (a) +2 m (c) +1 m (e) 2 m (b) 2 m (d) +2 m

2 12 Chaper 2 Kinemaics in One Dimension Quesions 6 and 7 perain o he siuaion described below: ime (s) posiion (cm) Peer noiced a bug crawling along a meer sick and decided o record he bug s posiion in five-second inervals. Afer he bug crawled off he meer sick, Peer creaed he able shown Wha is he displacemen of he bug beween =. s and = 2. s? (a) cm (c) cm (e) cm (b) 39.9 cm (d) 16.1 cm Wha is he oal disance ha he bug raveled beween =. s and = 2. s? Assume he bug only changed direcions a he end of a five-second inerval. (a) 39.9 cm (c) 16.1 cm (e) 26.5 cm (b) 65.7 cm (d) 47.1 cm 8. In he process of delivering mail, a posal worker walks 161 m, due eas from his ruck. He hen urns around and walks 194 m, due wes. Wha is he worker s displacemen relaive o his ruck? (a) 33 m, due wes (c) 194 m, due wes (e) 355 m, due wes (b) 33 m, due eas (d) 252 m, due eas 9. A Canadian goose flew 845 km from Souhern California o Oregon wih an average speed of 3.5 m/s. How long, in hours, did i ake he goose o make his journey? (a) 27.7 h (c) 66.1 h (e) 7.7 h (b) 8.33 h (d) 462 h 1. When he oudoor emergency warning siren a Cheryl s school was esed, he sound from he siren ook 7. s o reach her house locaed 2.4 km from he school. Wha is he speed of sound in air? (a) 24 m/s (c) 44 m/s (e) 64 m/s (b) 34 m/s (d) 54 m/s 11. A bus leaves New York Ciy, akes a non-direc roue and arrives in S. Louis, Missouri 23 hours, 16 minues laer. If he disance beween he wo ciies is 125 km, wha is he magniude of he bus average velociy? (a) 37.2 km/h (c) 46. km/h (e) 58.1 km/h (b) 41.4 km/h (d) 53.7 km/h 12. Carole s hair grows wih an average speed of m/s. How long does i ake her hair o grow.3 m? Noe: 1 yr = s. (a) 1.9 yr (c).37 yr (e) 2.7 yr (b) 1.3 yr (d) 5.4 yr 13. Carl Lewis se a world record for he 1.-m run wih a ime of 9.86 s. If, afer reaching he finish line, Mr. Lewis walked direcly back o his saring poin in 9.9 s, wha is he magniude of his average velociy for he 2. m? (a) m/s (c) 1.98 m/s (e) 1.1 m/s (b) 1.1 m/s (d) 5.6 m/s

3 Physics, 7e TEST BANK During he firs 18 minues of a 1.-hour rip, a car has an average speed of 11 m/s. Wha mus he average speed of he car be during he las 42 minues of he rip be if he car is o have an average speed of 21 m/s for he enire rip? (a) 21 m/s (c) 25 m/s (e) 29 m/s (b) 23 m/s (d) 27 m/s 15. A urle akes 3.5 minues o walk 18 m oward he souh along a desered highway. A ruck driver sops and picks up he urle. The driver akes he urle o a own 1.1 km o he norh wih an average speed of 12 m/s. Wha is he magniude of he average velociy of he urle for is enire journey? (a) 3.6 m/s (c) 6. m/s (e) 11 m/s (b) 9.8 m/s (d) 2.6 m/s Quesions 16 hrough 19 perain o he siuaion described below: A racecar, raveling a consan speed, makes one lap around a circular rack of radius r in a ime. Noe: The circumference of a circle is given by C = 2πr. 16. When he car has raveled halfway around he rack, wha is he magniude of is displacemen from he saring poin? (a) r (c) πr (e) zero meers (b) 2r (d) 2πr 17. Wha is he average speed of he car for one complee lap? (a) r πr (c) (b) 2r 2πr (d) (e) zero meers/second 18. Deermine he magniude of he average velociy of he car for one complee lap. (a) r πr (c) (e) zero meers/second (b) 2r 2πr (d) 19. Which one of he following saemens concerning his car is rue? (a) The displacemen of he car does no change wih ime. (b) The insananeous velociy of he car is consan. (c) The average speed of he car is he same over any ime inerval. (d) The average velociy of he car is he same over any ime inerval. (e) The average speed of he car over any ime inerval is equal o he magniude of he average velociy over he same ime inerval. Secion 2.3 Acceleraion 2. In which one of he following siuaions does he car have a wesward acceleraion? (a) The car ravels wesward a consan speed. (b) The car ravels easward and speeds up. (c) The car ravels wesward and slows down. (d) The car ravels easward and slows down. (e) The car sars from res and moves oward he eas.

4 14 Chaper 2 Kinemaics in One Dimension 21. An elevaor is moving upward wih a speed of 11 m/s. Three seconds laer, he elevaor is sill moving upward, bu is speed has been reduced o 5. m/s. Wha is he average acceleraion of he elevaor during he 3. s inerval? (a) 2. m/s 2, upward (c) 5.3 m/s 2, upward (e) 2.7 m/s 2, downward (b) 2. m/s 2, downward (d) 5.3 m/s 2, downward 22. A landing airplane makes conac wih he runway wih a speed of 78. m/s and moves oward he souh. Afer 18.5 seconds, he airplane comes o res. Wha is he average acceleraion of he airplane during he landing? (a) 2.11 m/s 2, norh (c) 4.22 m/s 2, norh (e) 14.3 m/s 2, norh (b) 2.11 m/s 2, souh (d) 4.22 m/s 2, souh 23. A picher delivers a fas ball wih a velociy of 43 m/s o he souh. The baer his he ball and gives i a velociy of 51 m/s o he norh. Wha was he average acceleraion of he ball during he 1. ms when i was in conac wih he ba? (a) m/s 2, souh (c) m/s 2, norh (e) m/s 2, norh (b) m/s 2, norh (d) m/s 2, souh 24. A car is moving a a consan velociy when i is involved in a collision. The car comes o res afer.45 s wih an average acceleraion of 65. m/s 2 in he direcion opposie ha of he car s velociy. Wha was he speed, in km/h, of he car before he collision? (a) 29.2 km/h (c) 8.5 km/h (e) 144 km/h (b) 44.8 km/h (d) 15 km/h 25. A rain approaches a small own wih a consan velociy of m/s. The operaor applies he brake, reducing he rain s velociy o m/s. If he average acceleraion of he rain during braking is 1.35 m/s 2, for wha elapsed ime does he operaor apply he brake? (a) 8.44 s (c) 3.38 s (e) 1.4 s (b) 12.7 s (d) 5.92 s Secion 2.4 Equaions of Kinemaics for Consan Acceleraion Secion 2.5 Applicaions of he Equaions of Kinemaics 26. Which one of he following is no a vecor quaniy? (a) acceleraion (c) displacemen (e) insananeous velociy (b) average speed (d) average velociy 27. In which one of he following cases is he displacemen of he objec direcly proporional o he elapsed ime? (a) a ball rolls wih consan velociy (b) a ball a res is given a consan acceleraion (c) a ball rolling wih velociy v is given a consan acceleraion (d) a bead falling hrough oil experiences a decreasing acceleraion (e) a rocke fired from he earh's surface experiences an increasing acceleraion 28. Which one of he following saemens mus be rue if he expression x = v + a is o be used? (a) x is consan. (c) is consan. (e) Boh v and are consan. (b) v is consan. (d) a is consan.

5 Physics, 7e TEST BANK Saring from res, a paricle confined o move along a sraigh line is acceleraed a a rae of 5. m/s 2. Which one of he following saemens accuraely describes he moion of his paricle? (a) The paricle ravels 5. m during each second. (b) The paricle ravels 5. m only during he firs second. (c) The speed of he paricle increases by 5. m/s during each second. (d) The acceleraion of he paricle increases by 5. m/s 2 during each second. (e) The final speed of he paricle will be proporional o he disance ha he paricle covers. 3. Which one of he following siuaions is no possible? (a) A body has zero velociy and non-zero acceleraion. (b) A body ravels wih a norhward velociy and a norhward acceleraion. (c) A body ravels wih a norhward velociy and a souhward acceleraion. (d) A body ravels wih a consan velociy and a ime-varying acceleraion. (e) A body ravels wih a consan acceleraion and a ime-varying velociy. 31. A ruck acceleraes from res a poin A wih consan acceleraion of magniude a and, subsequenly, passes poins B and C as shown in he figure. a MOVE -IT x A B C The disance beween poins B and C is x, and he ime required for he ruck o ravel from B o C is. Which expression deermines he average speed of he ruck beween he poins B and C? (a) v 2 = 2ax (c) v = x (e) v = a x (b) v = (d) 2 v = 1 a Two objecs A and B accelerae from res wih he same consan acceleraion. Objec A acceleraes for wice as much ime as objec B, however. Which one of he following saemens is rue concerning hese objecs a he end of heir respecive periods of acceleraion? (a) Objec A will ravel wice as far as objec B. (b) Objec A will ravel four imes as far as objec B. (c) Objec A will ravel eigh imes furher han objec B. (d) Objec A will be moving four imes faser han objec B. (e) Objec A will be moving eigh imes faser han objec B. 33. Two cars ravel along a level highway. I is observed ha he disance beween he cars is increasing. Which one of he following saemens concerning his siuaion is necessarily rue? (a) The velociy of each car is increasing. (b) A leas one of he cars has a non-zero acceleraion. (c) The leading car has he greaer acceleraion. (d) The railing car has he smaller acceleraion. (e) Boh cars could be acceleraing a he same rae. 34. A car, saring from res, acceleraes in a sraigh-line pah a a consan rae of 2.5 m/s 2. How far will he car ravel in 12 seconds? (a) 18 m (c) 3 m (e) 4.8 m (b) 12 m (d) 15 m

6 16 Chaper 2 Kinemaics in One Dimension 35. An objec moving along a sraigh line is deceleraing. Which one of he following saemens concerning he objec s acceleraion is necessarily rue? (a) The value of he acceleraion is posiive. (b) The direcion of he acceleraion is in he same direcion as he displacemen. (c) An objec ha is deceleraing has a negaive acceleraion. (d) The direcion of he acceleraion is in he direcion opposie o ha of he velociy. (e) The acceleraion changes as he objec moves along he line. 36. A car sars from res and acceleraes a a consan rae in a sraigh line. In he firs second he car covers a disance of 2. meers. How fas will he car be moving a he end of he second second? (a) 4. m/s (c) 2. m/s (e) 8. m/s (b) 16 m/s (d) 32 m/s 37. A car sars from res and acceleraes a a consan rae in a sraigh line. In he firs second he car covers a disance of 2. meers. How much addiional disance will he car cover during he second second of is moion? (a) 2. m (c) 6. m (e) 13 m (b) 4. m (d) 8. m 38. A car is iniially raveling a 5. km/h. The brakes are applied and he car sops over a disance of 35 m. Wha was magniude of he car's acceleraion while i was braking? (a) 2.8 m/s 2 (c) 36 m/s 2 (e) 9.8 m/s 2 (b) 5.4 m/s 2 (d) 71 m/s The minimum akeoff speed for a cerain airplane is 75 m/s. Wha minimum acceleraion is required if he plane mus leave a runway of lengh 95 m? Assume he plane sars from res a one end of he runway. (a) 1.5 m/s 2 (c) 4.5 m/s 2 (e) 7.5 m/s 2 (b) 3. m/s 2 (d) 6. m/s 2 4. A car raveling along a road begins acceleraing wih a consan acceleraion of 1.5 m/s 2 in he direcion of moion. Afer raveling 392 m a his acceleraion, is speed is 35 m/s. Deermine he speed of he car when i began acceleraing. (a) 1.5 m/s (c) 34 m/s (e) 2.3 m/s (b) 7. m/s (d) 49 m/s 41. A rain passes hrough a own wih a consan speed of 16 m/s. Afer leaving he own, he rain acceleraes a.33 m/s 2 unil i reaches a speed of 35 m/s. How far did he rain ravel while i was acceleraing? (a).29 km (c) 1.5 km (e) 3. km (b).53 km (d) 2.3 km 42. A cheeah is walking a a speed of 1.1 m/s when i observes a gazelle 41. m direcly ahead. If he cheeah acceleraes a 9.55 m/s 2, how long does i ake he cheeah o reach he gazelle if he gazelle doesn move? (a) 4.29 s (c) 3.5 s (e) 2.82 s (b) 3.67 s (d) 1.94 s

7 Physics, 7e TEST BANK A body iniially a res is acceleraed a a consan rae for 5. seconds in he posiive x direcion. If he final speed of he body is 2. m/s, wha was he body's acceleraion? (a).25 m/s 2 (c) 4. m/s 2 (e) 1.6 m/s 2 (b) 2. m/s 2 (d) 9.8 m/s A racecar has a speed of 8 m/s when he driver releases a drag parachue. If he parachue causes a deceleraion of 4 m/s 2, how far will he car ravel before i sops? (a) 2 m (c) 4 m (e) 1 m (b) 2 m (d) 8 m 45. A car is sopped a a red raffic ligh. When he ligh urns o green, he car has a consan acceleraion and crosses he 9.1-m inersecion in 2.47 s. Wha is he magniude of he car s acceleraion? (a) 1.77 m/s 2 (c) 3.6 m/s 2 (e) 9.8 m/s 2 (b) 2.98 m/s 2 (d) 7.36 m/s 2 Quesions 46 hrough 48 perain o he siuaion described below: An objec sars from res and acceleraes uniformly in a sraigh line in he posiive x direcion. Afer 11 seconds, is speed is 7. m/s. 46. Deermine he acceleraion of he objec. (a) +3.5 m/s 2 (c) 3.5 m/s 2 (e) +7.7 m/s 2 (b) +6.4 m/s 2 (d) 6.4 m/s How far does he objec ravel during he firs 11 seconds? (a) 35 m (c) 39 m (e) 77 m (b) 77 m (d) 59 m 48. Wha is he average velociy of he objec during he firs 11 seconds? (a) +3.6 m/s (c) +35 m/s (e) 14 m/s (b) +6.4 m/s (d) +72 m/s Secion 2.6 Freely Falling Bodies 49. Ball A is dropped from res from a window. A he same insan, ball B is hrown downward; and ball C is hrown upward from he same window. Which saemen concerning he balls afer heir release is necessarily rue if air resisance is negleced? (a) A some insan afer i is hrown, he acceleraion of ball C is zero. (b) All hree balls srike he ground a he same ime. (c) All hree balls have he same velociy a any insan. (d) All hree balls have he same acceleraion a any insan. (e) All hree balls reach he ground wih he same velociy. 5. A ball is hrown verically upward from he surface of he earh. Consider he following quaniies: (1) he speed of he ball; (2) he velociy of he ball; (3) he acceleraion of he ball. Which of hese is (are) zero when he ball has reached he maximum heigh? (a) 1 and 2 only (c) 1 only (e) 1, 2, and 3 (b) 1 and 3 only (d) 2 only

8 18 Chaper 2 Kinemaics in One Dimension 51. A rock is hrown verically upward from he surface of he earh. The rock rises o some maximum heigh and falls back oward he surface of he earh. Which one of he following saemens concerning his siuaion is rue if air resisance is negleced? (a) As he ball rises, is acceleraion vecor poins upward. (b) The ball is a freely falling body for he duraion of is fligh. (c) The acceleraion of he ball is zero when he ball is a is highes poin. (d) The speed of he ball is negaive while he ball falls back oward he earh. (e) The velociy and acceleraion of he ball always poin in he same direcion. 52. A brick is dropped from res from a heigh of 4.9 m. How long does i ake he brick o reach he ground? (a).6 s (c) 1.2 s (e) 2. s (b) 1. s (d) 1.4 s 53. A ball is dropped from res from a ower and srikes he ground 125 m below. Approximaely how many seconds does i ake he ball o srike he ground afer being dropped? Neglec air resisance. (a) 2.5 s (c) 5.5 s (e) 16. s (b) 3.5 s (d) 12.5 s 54. Waer drips from res from a leaf ha is 2 meers above he ground. Neglecing air resisance, wha is he speed of each waer drop when i his he ground? (a) 3 m/s (c) 4 m/s (e) 2 m/s (b) 15 m/s (d) 1 m/s 55. Elijah hrows a ennis ball verically upward. The ball reurns o he poin of release afer 3.5 s. Wha is he speed of he ball as i is released? (a) m/s (c) 17 m/s (e) 34 m/s (b) 14 m/s (d) 21 m/s 56. A rock is dropped from res from a heigh h above he ground. I falls and his he ground wih a speed of 11 m/s. From wha heigh should he rock be dropped so ha is speed on hiing he ground is 22 m/s? Neglec air resisance. (a) 1.4h (c) 3.h (e).71h (b) 2.h (d) 4.h 57. A 5.-kg rock is dropped from res down a verical mine shaf. How long does i ake for he rock o reach a deph of 79 m? Neglec air resisance. (a) 2.8 s (c) 4.9 s (e) 4. s (b) 9. s (e) 8. s 58. Neglecing air resisance, wha maximum heigh will be reached by a sone hrown sraigh up wih an iniial speed of 35 m/s? (a) 98 m (c) 41 m (e) 18 m (b) 16 m (d) 63 m Quesions 59 hrough 61 perain o he siuaion described below: A ball is sho sraigh up from he surface of he earh wih an iniial speed of 19.6 m/s. Neglec any effecs due o air resisance.

9 Physics, 7e TEST BANK Wha is he magniude of he ball s displacemen from he saring poin afer 1. second has elapsed? (a) 9.8 m (c) 19.6 m (e) 58.8 m (b) 14.7 m (d) 24.5 m 6. Wha maximum heigh will he ball reach? (a) 9.8 m (c) 19.6 m (e) 58.8 m (b) 14.7 m (d) 24.5 m 61. How much ime elapses beween he hrowing of he ball and is reurn o he original launch poin? (a) 4. s (c) 12. s (e) 16. s (b) 2. s (d) 8. s Quesions 62 hrough 65 perain o he saemen below: A ennis ball is sho verically upward in an evacuaed chamber inside a ower wih an iniial speed of 2. m/s a ime = s. 62. How high does he ball rise? (a) 1.2 m (c) 4.8 m (e) 98. m (b) 2.4 m (d) 72.4 m 63. Approximaely how long does i ake he ennis ball o reach is maximum heigh? (a).5 s (c) 4.8 s (e) 9.8 s (b) 2.4 s (d) 6.8 s 64. Deermine he velociy of he ball a = 3. seconds. (a) 9.4 m/s, downward (c) 29.4 m/s, downward (e) 38.8 m/s, downward (b) 9.4 m/s, upward (d) 38.8 m/s, upward 65. Wha is he magniude of he acceleraion of he ball when i is a is highes poin? (a) zero m/s 2 (c) 19.6 m/s 2 (e) 3.13 m/s 2 (b) 9.8 m/s 2 (d) 4.9 m/s 2 Secion 2.7 Graphical Analysis of Velociy and Acceleraion 66. Saring from res, a paricle ha is confined o move along a sraigh line is acceleraed a a rae of 5. m/s 2. Which saemen concerning he slope of he posiion versus ime graph for his paricle is rue? (a) The slope has a consan value of 5. m/s. (b) The slope has a consan value of 5. m/s 2. (c) The slope is boh consan and negaive. (d) The slope is no consan and increases wih increasing ime. (e) The slope is no consan and decreases wih increasing ime.

10 2 Chaper 2 Kinemaics in One Dimension 67. The graph shows he heigh versus ime of an objec. Esimae he insananeous velociy, in m/s, of he objec a ime = 15 min. (a).9 m/s (b).7 m/s (c).5 m/s (d).3 m/s (e).1 m/s Heigh (meers) Time (minues) Quesions 68 hrough 7 perain o he graph below: 1 An objec is moving along he x axis. The graph shows is posiion from he saring poin as a funcion of ime. Various segmens of he graph are idenified by he leers A, B, C, and D. posiion (m) 5 5 A B C D ime (s) 68. During which inerval(s) is he objec moving in he negaive x direcion? (a) during inerval B only (d) during inervals B and D (b) during inervals B and C (e) during inervals B, C, and D (c) during inervals C and D 69. Wha is he velociy of he objec a = 7. s? (a) +3. m/s (c) 2. m/s (e) zero m/s (b) 1. m/s (d) 3. m/s 7. Wha is he acceleraion of he objec a = 7. s? (a) zero m/s 2 (c) 3. m/s 2 (e) +4. m/s 2 (b) 2. m/s 2 (d) +9.8 m/s 2 Quesions 71 hrough 74 perain o he saemen and graph below: 4 D An objec is moving along a sraigh line. The graph shows he objec s posiion from he saring poin as a funcion of ime. posiion (m) B C A E ime (s)

11 Physics, 7e TEST BANK In which segmen(s) of he graph does he objec s average velociy (measured from = s) decrease wih ime? (a) AB only (c) DE only (e) BC and DE (b) BC only (d) AB and CD 72. Wha was he insananeous velociy of he objec a = 4 s? (a) +6 m/s (c) +1 m/s (e) +4 m/s (b) +8 m/s (d) +2 m/s 73. In which segmens(s) of he graph does he objec have he highes speed? (a) AB (c) CD (e) AB and CD (b) BC (d) DE 74. A which ime(s) does he objec reverse is direcion of moion? (a) 1 s and 2 s (c) 1 s (e) 5 s (b) 2 s and 5 s (d) 2 s Quesions 75 hrough 78 perain o he saemen and graph below: An objec is moving along a sraigh line. The graph shows he objec s velociy as a funcion of ime. velociy (m/s) ime (s) 75. During which inerval(s) of he graph does he objec ravel equal disances in equal imes? (a) s o 2 s (d) s o 2 s and 3 s o 5 s (b) 2 s o 3 s (e) s o 2 s, 3 o 5 s, and 5 o 6 s (c) 3 s o 5 s 76. During which inerval(s) of he graph does he speed of he objec increase by equal amouns in equal imes? (a) s o 2 s (d) s o 2 s and 3 s o 5 s (b) 2 s o 3 s (e) s o 2 s, 3 o 5 s, and 5 o 6 s (c) 3 s o 5 s 77. How far does he objec move in he inerval from = o = 2 s? (a) 7.5 m (c) 15 m (e) 25 m (b) 1 m (d) 2 m 78. Wha is he acceleraion of he objec in he inerval from = 5 s o = 6 s? (a) 4 m/s 2 (c) 2 m/s 2 (e) 1 m/s 2 (b) +4 m/s 2 (d) +2 m/s 2

12 22 Chaper 2 Kinemaics in One Dimension Quesions 79 hrough 81 perain o he siuaion described below: 1 An objec is moving along a sraigh line in he posiive x direcion. The graph shows is posiion from he saring poin as a funcion of ime. Various segmens of he graph are idenified by he leers A, B, C, and D ime (s) 79. Which segmen(s) of he graph represen(s) a consan velociy of +1. m/s? (a) A (c) C (e) A and C (b) B (d) D posiion (m) A B C D 8. Wha was he insananeous velociy of he objec a he end of he eighh second? (a) +7.5 m/s (c).94 m/s (e) zero m/s (b) +.94 m/s (d) +1.1 m/s 81. During which inerval(s) did he objec move in he negaive x direcion? (a) only during inerval B (d) during boh inervals C and D (b) only during inerval C (e) The objec never moved in he negaive x direcion. (c) only during inerval D Addiional Problems 82. The rae a which he acceleraion of an objec changes wih ime is called he jerk. Wha is he dimension of he jerk? 2 2 [L] [L] [L] (a) (c) (e) 2 3 [T] [T] [T] (b) [L] 2 [T] (d) [L] 3 [T] 83. In a race, José runs 1. mile in 4.2 min, mouns a bicycle, and rides back o his saring poin, which is also he finish line, in 3.2 min. Wha is he magniude of José s average velociy for he race? (a) zero mi/h (c) 14.9 mi/h (e) 19.9 mi/h (b) 12.1 mi/h (d) 17. mi/h Quesions 84 and 85 perain o he siuaion described below: A mooris ravels due norh a 3 mi/h for 2 hours. She hen reverses her direcion and ravels due souh a 6 mi/h for 1 hour. 84. Wha is he average speed of he mooris? (a) zero mi/h (c) 4 mi/h (e) 6 mi/h (b) 3 mi/h (d) 5 mi/h

13 Physics, 7e TEST BANK Wha is he average velociy of he mooris? (a) zero mi/h (c) 4 mi/h, souh (e) 45 mi/h, souh (b) 4 mi/h, norh (d) 45 mi/h, norh Quesions 86 hrough 88 perain o he saemen below: Saring from res, a paricle confined o move along a sraigh line is acceleraed a a rae of 4 m/s Which saemen accuraely describes he moion of he paricle? (a) The paricle ravels 4 meers during each second. (b) The paricle ravels 4 meers during he firs second only. (c) The speed of he paricle increases by 4 m/s during each second. (d) The acceleraion of he paricle increases by 4 m/s 2 during each second. (e) The final velociy of he paricle will be proporional o he disance ha he paricle covers. 87. Afer 1 seconds, how far will he paricle have raveled? (a) 2 m (c) 1 m (e) 4 m (b) 4 m (d) 2 m 88. Wha is he speed of he paricle afer i has raveled 8 m? (a) 4 m/s (c) 3 m/s (e) 1 m/s (b) 8 m/s (d) 6 m/s Quesions 89 hrough 92 perain o he siuaion described below: A rock, dropped from res near he surface of an amosphere-free plane, aains a speed of 2. m/s afer falling 8. meers. 89. Wha is he magniude of he acceleraion due o graviy on he surface of his plane? (a).4 m/s 2 (c) 2.5 m/s 2 (e) 16 m/s 2 (b) 1.3 m/s 2 (d) 25 m/s 2 9. How long did i ake he objec o fall he 8. meers menioned? (a).4 s (c) 1.3 s (e) 16 s (b).8 s (d) 2.5 s 91. How long would i ake he objec, falling from res, o fall 16 m on his plane? (a).8 s (c) 2.5 s (e) 22 s (b) 1.1 s (d) 3.5 s 92. Deermine he speed of he objec afer falling from res hrough 16 m on his plane. (a) 28 m/s (c) 56 m/s (e) 32 m/s (b) 32 m/s (d) 64 m/s Quesions 93 hrough 97 perain o he siuaion described below: A ennis ball is sho verically upward from he surface of an amosphere-free plane wih an iniial speed of 2. m/s. One second laer, he ball has an insananeous velociy in he upward direcion of 15. m/s.

14 24 Chaper 2 Kinemaics in One Dimension 93. Wha is he magniude of he acceleraion due o graviy on he surface of his plane? (a) 5. m/s 2 (c) 12 m/s 2 (e) 24 m/s 2 (b) 9.8 m/s 2 (d) 15 m/s How long does i ake he ball o reach is maximum heigh? (a) 2. s (c) 4. s (e) 8. s (b) 2.3 s (d) 4.6 s 95. How high does he ball rise? (a) 7. m (c) 5. m (e) 4. m (b) 1. m (d) 2. m 96. Deermine he velociy of he ball when i reurns o is original posiion. Noe: assume he upward direcion is posiive. (a) +2 m/s (c) +4 m/s (e) zero m/s (b) 2 m/s (c) 4 m/s 97. How long is he ball in he air when i reurns o is original posiion? (a) 4. s (c) 8. s (e) 16 s (b) 4.6 s (d) 9.2 s Quesions 98 and 99 perain o he siuaion described below: A small objec is released from res and falls fee near he surface of he earh. Neglec air resisance. 98. How long will i ake o fall hrough he fee menioned? (a) 2.49 s (c) 4.5 s (e) 1. s (b) 3.12 s (d) 6.25 s 99. Approximaely how fas will he objec be moving afer falling hrough he fee menioned? (a) 9.8 f/s (c) 8 f/s (e) 32 f/s (b) 4 f/s (d) 16 f/s Quesions 1 hrough 13 perain o he siuaion described below: The figure shows he speed as a funcion of ime for an objec in free fall near he surface of he earh. The objec was dropped from res in a long evacuaed cylinder. v 1. Which one of he following saemens bes explains why he graph goes hrough he origin? (a) The objec was in a vacuum. (d) All v vs. curves pass hrough he origin. (b) The objec was dropped from res. (e) The acceleraion of he objec was consan. (c) The velociy of he objec was consan.

15 Physics, 7e TEST BANK Wha is he numerical value of he slope of he line? (a) 1. m/s 2 (d) 9.8 m/s 2 (b) 2. m/s 2 (e) This canno be deermined from he informaion (c) 7.7 m/s 2 given since he speed and ime values are unknown. 12. Wha is he speed of he objec 3. seconds afer i is dropped? (a) 3. m/s (b) 7.7 m/s (c) 9.8 m/s (d) 29 m/s (e) This canno be deermined since here is no specified value of heigh. 13. If he same objec were released in air, he magniude of is acceleraion would begin a he free-fall value, bu i would decrease coninuously o zero as he objec coninued o fall. For which one of he choices given does he solid line bes represen he speed of he objec as a funcion of ime when i is dropped from res in air? Noe: The dashed line shows he free-fall under vacuum graph for comparison. (a) (c) (e) v v v (b) (d) v v

INSTRUCTIONS FOR USE. This file can only be used to produce a handout master:

INSTRUCTIONS FOR USE. This file can only be used to produce a handout master: INSTRUCTIONS OR USE This file can only be used o produce a handou maser: Use Prin from he ile menu o make a prinou of he es. You may no modify he conens of his file. IMPORTNT NOTICE: You may prin his es

More information

3.00 m. 8. At La Ronde, the free-fall ride called the Orbit" causes a 60.0 kg person to accelerate at a rate of 9.81 m/s 2 down.

3.00 m. 8. At La Ronde, the free-fall ride called the Orbit causes a 60.0 kg person to accelerate at a rate of 9.81 m/s 2 down. Physics Prees: Torque 1. Newon s 2 nd Law 2. Kinemaics (Free fall, graphs, and combined wih F R = ma) Pracice Quesions/Problems 1. Wha is Newon s 2 nd Law? Name and explain i. 2. Prove ha acceleraion for

More information

Name Class Date. Step 2: Rearrange the acceleration equation to solve for final speed. a v final v initial v. final v initial v.

Name Class Date. Step 2: Rearrange the acceleration equation to solve for final speed. a v final v initial v. final v initial v. Skills Workshee Mah Skills Acceleraion Afer you sudy each sample problem and soluion, work ou he pracice problems on a separae shee of paper. Wrie your answers in he spaces provided. In 1970, Don Big Daddy

More information

Time & Distance SAKSHI If an object travels the same distance (D) with two different speeds S 1 taking different times t 1

Time & Distance SAKSHI If an object travels the same distance (D) with two different speeds S 1 taking different times t 1 www.sakshieducaion.com Time & isance The raio beween disance () ravelled by an objec and he ime () aken by ha o ravel he disance is called he speed (S) of he objec. S = = S = Generally if he disance ()

More information

What the Puck? an exploration of Two-Dimensional collisions

What the Puck? an exploration of Two-Dimensional collisions Wha he Puck? an exploraion of Two-Dimensional collisions 1) Have you ever played 8-Ball pool and los he game because you scrached while aemping o sink he 8-Ball in a corner pocke? Skech he sho below: Each

More information

CHAPTER TEST REVIEW, LESSONS 4-1 TO 4-5

CHAPTER TEST REVIEW, LESSONS 4-1 TO 4-5 IB PHYSICS Name: DEVIL PHYSICS Perio: Dae: BADDEST CLASS ON CAMPUS CHAPTER TEST REVIEW, LESSONS 4- TO 4-5 S. Waer waves a he surface of a pon pass a floaing log of lengh L. The log is a res relaive o he

More information

Avoiding Component Failure in Industrial Refrigeration Systems

Avoiding Component Failure in Industrial Refrigeration Systems Avoiding Componen Failure in Indusrial Refrigeraion Sysems By Tim Kroeger, segmen markeing manager indusrial refrigeraion, Asia Pacific & India The aricle caegorises and gives examples of ypical componen

More information

I t ' 4 ti. t ti. IQ:::: mass x heat of fusion (or heat of vaporization) I HEAT AND ITS MEASUREMENT. t t. t f I I I. Name

I t ' 4 ti. t ti. IQ:::: mass x heat of fusion (or heat of vaporization) I HEAT AND ITS MEASUREMENT. t t. t f I I I. Name HEAT AND TS MEASUREMENT Name a (or energy) can be measured in unis of calories or joules. When here is a,,,,,,nperaure change (AT), hea (Q) can be calculaed using his formula: During a phase change, we

More information

ScienceDirect. Cycling Power Optimization System Using Link Models of Lower Limbs with Cleat-Shaped Biaxial Load Cells

ScienceDirect. Cycling Power Optimization System Using Link Models of Lower Limbs with Cleat-Shaped Biaxial Load Cells Available online a www.sciencedirec.com ScienceDirec Procedia Engineering 72 ( 20 ) 8 7 The 20 conference of he Inernaional Spors Engineering Associaion Cycling Power Opimizaion Sysem Using ink Models

More information

Flow Switch LABO-VHZ-S

Flow Switch LABO-VHZ-S Flow Swich S Volumeric flow swiching Almos no effec from differing viscosiies Versaile, configurable swiching oupu in push-pull design Robus consrucion Compac design Characerisics he VHZ gearwheel flow

More information

Outline. Objectives. Objectives. Objectives Progressive waves. Wave motion. Wave motion

Outline. Objectives. Objectives. Objectives Progressive waves. Wave motion. Wave motion Chaper. Liew Sau Poh Wave moion Ouline. Progressive Waves. Wave Inensi.3 Principle of Superposiion.4 Sanding Waves.5 Elecromagneic Waves Objecives a) inerpre and use he progressive wave equaion, = a sin

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper March 3, 2009 2009 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion by

More information

29 B ROUTE Bus Times Summer NOTES a = Time at Vicarage Way. * = On Schooldays bus operates up to 5 minutes later.

29 B ROUTE Bus Times Summer NOTES a = Time at Vicarage Way. * = On Schooldays bus operates up to 5 minutes later. Brighon Lewes Ringmer / Touris Aracions Lewes for Hisoric own wih Casle; Isfield for Lavender Line Railway; for Spa Valley Railway, Paniles CiySAVER ickes are only valid beween Brighon and Falmer. nework

More information

Instruction Manual. Rugged PCB type. 1 Terminal Block. 2 Function. 3 Series Operation and Parallel Operation. 4 Assembling and Installation Method

Instruction Manual. Rugged PCB type. 1 Terminal Block. 2 Function. 3 Series Operation and Parallel Operation. 4 Assembling and Installation Method Rugged PCB ype Insrucion Manual 1 Terminal Block Funcion.1...4.5.6.7 Inpu volage range Inrush curren limiing Overcurren proecion Overvolage proecion Oupu volage adjusmen range Isolaion Remoe ON/OFF E9

More information

Automatic air-main charging and pressure control system for compressed air supplies

Automatic air-main charging and pressure control system for compressed air supplies Auomaic air-main charging and pressure conrol sysem for compressed air supplies Type PCS A module from he sysem -vacorol Swiching on-off a compressed air uni in a compressed air supply generally akes place

More information

Zelio Control Measurement Relays RM4L Liquid Level Relays

Zelio Control Measurement Relays RM4L Liquid Level Relays Zelio Conrol Measuremen elays FNCTIONS These devices monior he levels of conducive liquids. They conrol he acuaion of pumps or valves o regulae levels; hey are also suiable for proecing submersible pumps

More information

Cal. 7T85 INSTRUCTIONS (P. 3) BEDIENUNGSANLEITUNG (S. 27) INSTRUCTIONS (P. 51) ISTRUZIONI (P. 75) INSTRUCCIONES (P. 99) INSTRUÇÕES (P.

Cal. 7T85 INSTRUCTIONS (P. 3) BEDIENUNGSANLEITUNG (S. 27) INSTRUCTIONS (P. 51) ISTRUZIONI (P. 75) INSTRUCCIONES (P. 99) INSTRUÇÕES (P. Cal. 7T85 INSTRUCTIONS (P. 3) BEDIENUNGSANLEITUNG (S. 27) INSTRUCTIONS (P. 51) ISTRUZIONI (P. 75) INSTRUCCIONES (P. 99) INSTRUÇÕES (P. 123) (147 ) You are now he proud owner of a SEIKO Analogue Quarz Wach

More information

The t-test. What We Will Cover in This Section. A Research Situation

The t-test. What We Will Cover in This Section. A Research Situation The -es 1//008 P331 -ess 1 Wha We Will Cover in This Secion Inroducion One-sample -es. Power and effec size. Independen samples -es. Dependen samples -es. Key learning poins. 1//008 P331 -ess A Research

More information

What is a Practical (ASTM C 618) SAI--Strength Activity Index for Fly Ashes that can be used to Proportion Concretes Containing Fly Ash?

What is a Practical (ASTM C 618) SAI--Strength Activity Index for Fly Ashes that can be used to Proportion Concretes Containing Fly Ash? 2017 World of Coal Ash (WOCA) Conference in Lexingon, KY - May 9-11, 2017 hp://www.flyash.info/ Wha is a Pracical (ASTM C 618) SAI--Srengh Aciviy Index for Fly Ashes ha can be used o Proporion Concrees

More information

2nd Regional Conference On Enhancing Transport Technology For Regional Competitiveness

2nd Regional Conference On Enhancing Transport Technology For Regional Competitiveness nd Regional Conference On Enhancing Transpor Technology For Regional Compeiiveness SESSION C TBLE OF CONTENTS PREFCE... 4 ORGNISING COITTEE... 5 KEYNOTE DDRESS... 6 Session : UTOOTIE... 7 Session B : ERONUTICS...

More information

Making Sense of Genetics Problems

Making Sense of Genetics Problems Bio 101 Ms. Bledsoe Making Sense of Geneics roblems Monohbrid crosses Le s sar wih somehing simle: crossing wo organisms and waching how one single rai comes ou in he offsring. Le s use eas, as Mendel

More information

US 9,615,553 B2 Apr. 11,2017

US 9,615,553 B2 Apr. 11,2017 111111111111111111111111111111111111111111111111111111111111111111111111111 US009615553B2 (12) Unied Saes Paen Coniglio e al. (10) Paen No.: (45) Dae of Paen: US 9,615,553 B2 Apr. 11,2017 (54) ARTIFICIAL

More information

Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering OMAE2009 May 31 - June 5, 2009, Honolulu, Hawaii

Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering OMAE2009 May 31 - June 5, 2009, Honolulu, Hawaii Proceedings of he ASME 28h Inernaional Conference on Ocean, Offshore and Arcic Engineering OMAE29 May 31 - June 5, 29, Honolulu, Hawaii OMAE29-79385 ANALYSIS OF THE TUNNEL IMMERSION FOR THE BUSAN-GEOJE

More information

Physics for Scientist and Engineers third edition Kinematics 1-D

Physics for Scientist and Engineers third edition Kinematics 1-D Kinematics 1-D The position of a runner as a function of time is plotted along the x axis of a coordinate system. During a 3.00 s time interval, the runner s position changes from x1=50.0 m to x2= 30.5

More information

An Alternative Mathematical Model for Oxygen Transfer Evaluation in Clean Water

An Alternative Mathematical Model for Oxygen Transfer Evaluation in Clean Water An Alernaive Mahemaical Model for Oxygen Transfer Evaluaion in Clean Waer Yanjun (John) He 1, PE, BCEE 1 Kruger Inc., 41 Weson Parkway, Cary, NC 27513 Email: john.he@veolia.com ABSTRACT Energy consumpion

More information

CHARACTERIZATION AND MODELING OF A PROPORTIONAL VALVE FOR CONTROL SYNTHESIS

CHARACTERIZATION AND MODELING OF A PROPORTIONAL VALVE FOR CONTROL SYNTHESIS CHARACTERIZATION AND MODELING OF A PROPORTIONAL VALVE FOR CONTROL SYNTHESIS Osama. OLABY, Xavier. BRN, Sylvie. SESMAT, Tanneguy. REDARCE and Eric. BIDEAX Laboraoire d Auomaique Indusrielle - hp://www-lai.insa-lyon.fr

More information

Guidance Statement on Calculation Methodology

Guidance Statement on Calculation Methodology Guidance Saemen on Calculaion Mehodology Adopion Dae: 28 Sepember 200 Effecive Dae: January 20 Reroacive Applicaion: No Required www.gipssandards.org 200 CFA Insiue Guidance Saemen on Calculaion Mehodology

More information

San Francisco State University ECON 560 Fall Midterm Exam 2. Tuesday, October hour, 15 minutes

San Francisco State University ECON 560 Fall Midterm Exam 2. Tuesday, October hour, 15 minutes San Francisco Sae Universiy Micael Bar ECON 560 Fall 207 Miderm Exam 2 Tuesday, Ocober 3 our, 5 minues Name: Insrucions. Tis is closed book, closed noes exam. 2. No calculaors or elecronic devices of any

More information

Linear Motion Worksheet (p. 1) Honors Physical Science Show K-U-E-S on your own paper where necessary. Otherwise answer completely on your own paper.

Linear Motion Worksheet (p. 1) Honors Physical Science Show K-U-E-S on your own paper where necessary. Otherwise answer completely on your own paper. Linear Motion Worksheet (p. 1) 1. A driver travels the Pennsylvania Turnpike (576 km) in 6.67 hours. What is her average speed in (a) km/h? (b) m/s? (c) mi/h? 86.3 km/h 24.0 m/s 53.5 mi/h 2. Light from

More information

Ministry of Agriculture and Rural Development Animal and Plant Health Regulatory Directorate

Ministry of Agriculture and Rural Development Animal and Plant Health Regulatory Directorate Minisry of Agriculure and Rural Developmen Animal and Plan Healh Regulaory Direcorae Checklis for saus of slaugherhouses for cale, sheep and goas (General informaion) i Addis Ababa Ehiopia 1 1. Background

More information

EXAMINING THE FEASIBILITY OF PAIRED CLOSELY-SPACED PARALLEL APPROACHES

EXAMINING THE FEASIBILITY OF PAIRED CLOSELY-SPACED PARALLEL APPROACHES EXAMINING THE FEASIBILITY OF PAIRED CLOSELY-SPACED PARALLEL APPROACHES Seven J. Landry and Amy R. Priche Georgia Insiue of Technology Alana GA 30332-0205 ABSTRACT Paired closely-spaced parallel approaches

More information

Economics 487. Homework #4 Solution Key Portfolio Calculations and the Markowitz Algorithm

Economics 487. Homework #4 Solution Key Portfolio Calculations and the Markowitz Algorithm Economics 87 Homework # Soluion Key Porfolio Calculaions and he Markowiz Algorihm A. Excel Exercises: (10 poins) 1. Download he Excel file hw.xls from he class websie. This file conains monhly closing

More information

LSU RISK ASSESSMENT FORM Please read How to Complete a Risk Assessment before completion

LSU RISK ASSESSMENT FORM Please read How to Complete a Risk Assessment before completion Please read How o Complee a Risk Assessmen before compleion EVENT OR ACTIVITY BEING RISK ASSESSED (add name of even where relevan) NAME OF DEPARTMENT Squad Training Neball DATE OF COMPLETION OF RISK ASSESSMENT

More information

A Probabilistic Approach to Worst Case Scenarios

A Probabilistic Approach to Worst Case Scenarios A Probabilisic Approach o Wors Case Scenarios A Probabilisic Approach o Wors Case Scenarios By Giovanni Barone-Adesi Universiy of Albera, Canada and Ciy Universiy Business School, London Frederick Bourgoin

More information

INSTALLATION AND OPERATION MANUAL

INSTALLATION AND OPERATION MANUAL 1,000 POUND CAPACITY MOTORCYCLE / ATV LIFT IMPORTANT SAFETY INSTRUCTIONS SAVE THESE INSTRUCTIONS PLEASE READ THE ENTIRE CONTENTS OF THIS MANUAL PRIOR TO INSTALLATION AND OPERATION. BY PROCEEDING WITH LIFT

More information

3 (R) 1 (P) N/en

3 (R) 1 (P) N/en 3/ way fail-safe safey valve, solenoid acuaed For mechanical presses and oher safey applicaions G /4... G, /4... NT Inherenly fail-safe wihou residual pressure ynamic self monioring ouble valve conrol

More information

COMPARATIVE STUDY OF VELOCITY REDUCTION ON FEATHER AND SYNTHETIC SHUTTLECOCKS USING CORRECTED INITIAL VELOCITY DURING OVERHEAD SMASH

COMPARATIVE STUDY OF VELOCITY REDUCTION ON FEATHER AND SYNTHETIC SHUTTLECOCKS USING CORRECTED INITIAL VELOCITY DURING OVERHEAD SMASH Journal of Engineering Science and Technolog Special Issue on AASEC 6, Ocober (7) 9-5 School of Engineering, Talor s Uniersi COMPARATIVE STUDY OF VELOCITY REDUCTION ON FEATHER AND SYNTHETIC SHUTTLECOCKS

More information

R410A Rotary Compressor Bearing Design Considerations

R410A Rotary Compressor Bearing Design Considerations Prde Universiy Prde e-pbs Inernaional Compressor Engineering Conference School of Mechanical Engineering 1998 R41A Roary Compressor Bearing Design Consideraions J. R. Lenz Tecmseh Prodcs Company Follow

More information

KEY CONCEPTS AND PROCESS SKILLS. 1. An allele is one of the two or more forms of a gene present in a population. MATERIALS AND ADVANCE PREPARATION

KEY CONCEPTS AND PROCESS SKILLS. 1. An allele is one of the two or more forms of a gene present in a population. MATERIALS AND ADVANCE PREPARATION Gene Squares 61 40- o 2 3 50-minue sessions ACIVIY OVERVIEW P R O B L E M S O LV I N G SUMMARY Sudens use Punne squares o predic he approximae frequencies of rais among he offspring of specific crier crosses.

More information

Urban public transport optimization by bus ways: a neural network-based methodology

Urban public transport optimization by bus ways: a neural network-based methodology Urban Transpor XIII: Urban Transpor and he Environmen in he 21s Cenury 347 Urban public ranspor opimizaion by bus ways: a neural nework-based mehodology M. Migliore & M. Caalano Deparmen of Transporaion

More information

INSTALLATION AND OPERATION MANUAL

INSTALLATION AND OPERATION MANUAL EUROPEAN USERS 400V 50Hz SUPPLY DETAILS ARE INCLUDED WITH ELECTRICAL CON- TROL BOX. DISREGARD SUPPLY WIR- ING DETAILS IN THIS MANUAL 14,000 POUND CAPACITY COMMERCIAL GRADE FOUR-POST LIFTS IMPORTANT SAFETY

More information

Rolling ADF Tests: Detecting Rational Bubbles in Greater China Stock Markets

Rolling ADF Tests: Detecting Rational Bubbles in Greater China Stock Markets Singapore Managemen Universiy Insiuional Knowledge a Singapore Managemen Universiy Disseraions and Theses Collecion (Open Access) Disseraions and Theses 2008 Rolling ADF Tess: Deecing Raional Bubbles in

More information

Physics Final Exam Review Fall 2013

Physics Final Exam Review Fall 2013 Physics Final Exam Review Fall 2013 The lines on the graph represent displacement vectors for the route along which a person moves. Use the figure to answer problems 1 2. 1. What is the total distance

More information

Asset and Liability Management, Caisse. a manager of public debt

Asset and Liability Management, Caisse. a manager of public debt Asse and Liabiliy Managemen by CADES, a manager of public deb Name Deparmen & affiliaion Mailing Address e-mail address(es) Phone number 331 55 78 58 19, 331 55 78 58 00 Fax number 331 55 78 58 02 Eric

More information

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10-kilogram object at rest at point A. The object accelerates uniformly from point A to point B in

More information

ANALYSIS OF RELIABILITY, MAINTENANCE AND RISK BASED INSPECTION OF PRESSURE SAFETY VALVES

ANALYSIS OF RELIABILITY, MAINTENANCE AND RISK BASED INSPECTION OF PRESSURE SAFETY VALVES ANALYSIS OF RELIABILITY, MAINTENANCE AND RISK BASED INSPECTION OF PRESSURE SAFETY VALVES Venilon Forunao Francisco Machado Mechanical Engineering Dep, Insiuo Superior Técnico, Av. Rovisco Pais, 049-00,

More information

INSTALLATION AND OPERATION MANUAL

INSTALLATION AND OPERATION MANUAL IMPORTANT SAFETY INSTRUCTIONS SAVE THESE INSTRUCTIONS PLEASE READ THE ENTIRE CONTENTS OF THIS MANUAL PRIOR TO INSTALLATION AND OPERATION. BY PROCEEDING WITH LIFT INSTALLATION AND OPERATION YOU AGREE THAT

More information

VERTICAL DOUBLE TEAM TECHNIQUE ON POWER / COUNTER ( DUECE / TREY )

VERTICAL DOUBLE TEAM TECHNIQUE ON POWER / COUNTER ( DUECE / TREY ) VERICAL DOUBLE EA ECHNIQUE ON POER / COUNER ( DUECE / REY ) COACHING POIN: GE HIP O HIP IH KNEES ORKING NORH & SOUH; 4 HANDS ON DL & 4 EYES ON LBer. I. POS (INSIDE BLOCKER): GAIN VERICAL LEVERAGE (YOUR

More information

Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit

Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit Sensors 2012, 12, 12927-12939; doi:10.3390/s121012927 Aricle OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Fron-Crawl Insananeous Velociy Esimaion Using a Wearable Inerial Measuremen

More information

The safe ships trajectory in a restricted area

The safe ships trajectory in a restricted area Scienific Journals Mariime Universiy of Szczecin Zeszyy Naukowe Akademia Morska w Szczecinie 214, 39(111) pp. 122 127 214, 39(111) s. 122 127 ISSN 1733-867 The safe ships rajecory in a resriced area Zbigniew

More information

Overview. Do white-tailed tailed and mule deer compete? Ecological Definitions (Birch 1957): Mule and white-tailed tailed deer potentially compete.

Overview. Do white-tailed tailed and mule deer compete? Ecological Definitions (Birch 1957): Mule and white-tailed tailed deer potentially compete. COMPETITION BETWEEN MULE AND WHITE- TAILED DEER METAPOPULATIONS IN NORTH-CENTRAL WASHINGTON E. O. Garon, Kris Hennings : Fish and Wildlife Dep., Univ. of Idaho, Moscow, ID 83844 Maureen Murphy, and Seve

More information

Real-time Stochastic Evacuation Models for Decision Support in Actual Emergencies

Real-time Stochastic Evacuation Models for Decision Support in Actual Emergencies Real-ime Sochasic Evacuaion Models for Decision Suppor in Acual Emergencies ARTURO CUESTA, DANIEL ALVEAR, ORLANDO ABREU and DELFÍN SILIÓ Transpors and echnology projecs and processes Universiy of Canabria

More information

WORLD GROWTH AND INTERNATIONAL CAPITAL FLOWS IN THE XXI st CENTURY

WORLD GROWTH AND INTERNATIONAL CAPITAL FLOWS IN THE XXI st CENTURY CEPREMAP WORLD GROWTH AND INTERNATIONAL CAPITAL FLOWS IN THE XXI s CENTURY A prospecive analysis wih he INGENUE 2 model by he INGENUE TEAM Michel AGLIETTA and Vladimir BORGY (Cepii), Jean CHATEAU (Ocde),

More information

DYNAMIC portfolio optimization is one of the important

DYNAMIC portfolio optimization is one of the important , July 2-4, 2014, London, U.K. A Simulaion-based Porfolio Opimizaion Approach wih Leas Squares Learning Chenming Bao, Geoffrey Lee, and Zili Zhu Absrac This paper inroduces a simulaion-based numerical

More information

SIMULATION OF WAVE EFFECT ON SHIP HYDRODYNAMICS BY RANSE

SIMULATION OF WAVE EFFECT ON SHIP HYDRODYNAMICS BY RANSE 1 h Inernaional Conference on Sabiliy of Ships and Ocean Vehicles 591 SIMULATION OF WAVE EFFECT ON SHIP HYDRODYNAMICS BY RANSE Qiuxin Gao, Universiy of Srahclyde, UK, Gao.q.x@srah.ac.uk Dracos Vassalos,

More information

MODEL SELECTION FOR VALUE-AT-RISK: UNIVARIATE AND MULTIVARIATE APPROACHES SANG JIN LEE

MODEL SELECTION FOR VALUE-AT-RISK: UNIVARIATE AND MULTIVARIATE APPROACHES SANG JIN LEE MODEL SELECTION FOR VALUE-AT-RISK: UNIVARIATE AND MULTIVARIATE APPROACHES By SANG JIN LEE Bachelor of Science in Mahemaics Yonsei Universiy Seoul, Republic of Korea 999 Maser of Business Adminisraion Yonsei

More information

RECOMMENDATION FOR INTERCHANGEABLE STUD BOLTS AND TAP END STUDS FOR API SPEC 6A FLANGES

RECOMMENDATION FOR INTERCHANGEABLE STUD BOLTS AND TAP END STUDS FOR API SPEC 6A FLANGES Issue Dae: June 6 15 Revision B June 2010 RECOMMENDAION FOR INERCHANGEABE UD BO AND A END UD FOR AI EC 6A FANGE ECHNICA REOR R501 Revision B AWHEM publicaions may be use by anyone esiring o o so. Every

More information

AMURE PUBLICATIONS. Working Papers Series

AMURE PUBLICATIONS. Working Papers Series AMURE PUBLICATIONS Working Papers Series N D-20-2006 < A Cos-Benefi Analysis of Improving Trawl Seleciviy: he Nephrops norvegicus Fishery in he Bay of Biscay > Claire MACHER */** Olivier GUYADER * Caherine

More information

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following. Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.

More information

Economic Growth with Bubbles

Economic Growth with Bubbles Economic Growh wih Bubbles AlberoMarin,andJaumeVenura March 2010 Absrac We develop a sylized model of economic growh wih bubbles. In his model, financial fricions lead o equilibrium dispersion in he raes

More information

Development of Urban Public Transit Network Structure Integrating Multi-Class Public Transit Lines and Transfer Hubs

Development of Urban Public Transit Network Structure Integrating Multi-Class Public Transit Lines and Transfer Hubs Developmen of Urban Public Transi Nework Srucure Inegraing Muli-Class Public Transi Lines and Transfer Hubs Zhenbao Wang 1, Anyan Chen 2 1College of Civil Engineering, Hebei Universiy of Engineering Handan,

More information

AN ANALYSIS OF THE ECONOMIC EFFECT OF A ROAD DIET IN ELIZABETHTOWN AND GEORGETOWN, KENTUCKY

AN ANALYSIS OF THE ECONOMIC EFFECT OF A ROAD DIET IN ELIZABETHTOWN AND GEORGETOWN, KENTUCKY AN ANALYSIS OF THE ECOMIC EFFECT OF A ROAD DIET IN ELIZABETHTOWN AND GEORGETOWN, KENTUCKY MARCH 2014 This repor was produced a he reques of he Ron Sco, Ciy Manager for Danville, Kenucky, under he supervision

More information

SWIMMING POOL HEAT PUMP UNITS. Installation & Instruction Manual DURA - series

SWIMMING POOL HEAT PUMP UNITS. Installation & Instruction Manual DURA - series SWIMMIG POO HEAT PUMP UITS Insallaion & Insrucion Manual DUA - series ev. 1.12 29.07.2014 Conens SWIMMIG POO HEAT PUMP UITS... 1! Conens... 2! 1. Preface... 3! 2. Specificaions... 4! 2.1 Technical daa

More information

Protecting the African Elephant: A Dynamic Bioeconomic Model of. Ivory Trade

Protecting the African Elephant: A Dynamic Bioeconomic Model of. Ivory Trade Proecing he African Elephan: A Dynamic Bioeconomic Model of Ivory Trade G. Cornelis van Kooen Deparmen of Economics Universiy of Vicoria P.O. Box 1700, Sn CSC Vicoria, BC V8W 2Y2 Canada Email: kooen@uvic.ca

More information

Sources of Over-Performance in Equity Markets: Mean Reversion, Common Trends and Herding

Sources of Over-Performance in Equity Markets: Mean Reversion, Common Trends and Herding The Universiy of Reading THE BUSINESS SCHOOL FOR FINANCIAL MARKETS Sources of Over-Performance in Equiy Markes: Mean Reversion, Common Trends and Herding ISMA Cenre Discussion Papers in Finance 2003-08

More information

FORECASTING TECHNIQUES ADE 2013 Prof Antoni Espasa TOPIC 1 PART 2 TRENDS AND ACCUMULATION OF KNOWLEDGE. SEASONALITY HANDOUT

FORECASTING TECHNIQUES ADE 2013 Prof Antoni Espasa TOPIC 1 PART 2 TRENDS AND ACCUMULATION OF KNOWLEDGE. SEASONALITY HANDOUT FORECASTING TECHNIQUES ADE 2013 Prof Anoni Espasa TOPIC 1 PART 2 TRENDS AND ACCUMULATION OF KNOWLEDGE. SEASONALITY HANDOUT February 2013 MAIN FACTORS CAUSING TRENDS Increases in populaion. Seady inflaion.

More information

Worksheet 1.1 Kinematics in 1D

Worksheet 1.1 Kinematics in 1D Worksheet 1.1 Kinematics in 1D Solve all problems on your own paper showing all work! 1. A tourist averaged 82 km/h for a 6.5 h trip in her Volkswagen. How far did she go? 2. Change these speeds so that

More information

COMPARING SIMULATED ROAD SAFETY PERFORMANCE TO OBSERVED CRASH FREQUENCY AT SIGNALIZED INTERSECTIONS

COMPARING SIMULATED ROAD SAFETY PERFORMANCE TO OBSERVED CRASH FREQUENCY AT SIGNALIZED INTERSECTIONS COMPARING SIMULATED ROAD SAFETY PERFORMANCE TO OBSERVED CRASH FREQUENCY AT SIGNALIZED INTERSECTIONS Janailson Q. Souza Research Assisan, Deparmen of Transporaion Engineering, Universidade Federal do Ceará,

More information

What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period?

What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period? 1 What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period? 7 A car traveling in a straight line has a velocity of +5.0

More information

QUANTITATIVE FINANCE RESEARCH CENTRE. Optimal Time Series Momentum QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE

QUANTITATIVE FINANCE RESEARCH CENTRE. Optimal Time Series Momentum QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 353 January 15 Opimal Time Series Momenum Xue-Zhong He, Kai Li and Youwei

More information

Methods for Estimating Term Structure of Interest Rates

Methods for Estimating Term Structure of Interest Rates Mehods for Esimaing Term Srucure of Ineres Raes Iskander Karibzhanov Absrac This paper compares differen inerpolaion algorihms for consrucing yield curves: cubic splines, linear and quadraic programming,

More information

Performance Attribution for Equity Portfolios

Performance Attribution for Equity Portfolios PERFORMACE ATTRIBUTIO FOR EQUITY PORTFOLIOS Performance Aribuion for Equiy Porfolios Yang Lu and David Kane Inroducion Many porfolio managers measure performance wih reference o a benchmark. The difference

More information

Market timing and statistical arbitrage: Which market timing opportunities arise from equity price busts coinciding with recessions?

Market timing and statistical arbitrage: Which market timing opportunities arise from equity price busts coinciding with recessions? Journal of Applied Finance & Banking, vol.1, no.1, 2011, 53-81 ISSN: 1792-6580 (prin version), 1792-6599 (online) Inernaional Scienific Press, 2011 Marke iming and saisical arbirage: Which marke iming

More information

Stock Return Expectations in the Credit Market

Stock Return Expectations in the Credit Market Sock Reurn Expecaions in he Credi Marke Hans Bysröm * Sepember 016 In his paper we compue long-erm sock reurn expecaions (across he business cycle) for individual firms using informaion backed ou from

More information

An Autonomous Blimp for the Wall Following Control.

An Autonomous Blimp for the Wall Following Control. An Auonomous Blimp for he Wall Following Conrol. Seung-Yong Oh *,**, Chi- Won Roh *, Sung- Chul Kang *, Eun-ai Kim ** * Inelligen Roboics Research Cener, Korea Insiue of Science an echnology, Seoul, Korea

More information

Motion. 1 Describing Motion CHAPTER 2

Motion. 1 Describing Motion CHAPTER 2 CHAPTER 2 Motion What You ll Learn the difference between displacement and distance how to calculate an object s speed how to graph motion 1 Describing Motion 2(D), 4(A), 4(B) Before You Read Have you

More information

Dynamics of market correlations: Taxonomy and portfolio analysis

Dynamics of market correlations: Taxonomy and portfolio analysis Dynamics of marke correlaions: Taxonomy and porfolio analysis J.-P. Onnela, A. Chakrabori, and K. Kaski Laboraory of Compuaional Engineering, Helsinki Universiy of Technology, P.O. Box 9203, FIN-02015

More information

Distance, Displacement, speed, velocity, acceleration

Distance, Displacement, speed, velocity, acceleration Problem 1 Distance, Displacement, speed, velocity, acceleration In the 2008 Olympics, Jamaican sprinter Usain Bolt shocked the world as he ran the 100-meter dash in 9.69 seconds. Determine Usain's average

More information

Movement and Position

Movement and Position Movement and Position Syllabus points: 1.2 plot and interpret distance-time graphs 1.3 know and use the relationship between average speed, distance moved and 1.4 describe experiments to investigate the

More information

A Dynamic Bioeconomic Model of Ivory Trade: Details and Extended Results

A Dynamic Bioeconomic Model of Ivory Trade: Details and Extended Results WORKING PAPER 2006-03 Resource Economics and Policy Analysis (REPA) Research Group Deparmen of Economics Universiy of Vicoria A Dynamic Bioeconomic Model of Ivory Trade: Deails and Exended Resuls G. Cornelis

More information

Clemco Industries Corp. ISO 9001 Certified

Clemco Industries Corp. ISO 9001 Certified Clemco Indusries Corp. ISO 9001 Cerified 6 cuf Classic Blas Machines Exclusively from... SIMPLE, RUGGED, RELIABLE More han 75 years of reliable field service have made Clemco blas machines he preferred

More information

1D Kinematics Answer Section

1D Kinematics Answer Section 1D Kinematics 1. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s. What is the average velocity? a. 1.7 m/s c. 3.4 m/s b. 2.5 m/s d. zero 2. A truck moves 70

More information

TROMSO, NORWAY JEPPESEN ' Y ARP. Elev 25' Meters 18-55

TROMSO, NORWAY JEPPESEN ' Y ARP. Elev 25' Meters 18-55 ENC Apt Elev ' - 9.^/. from RO.8, NORWAY N69.9 E8 55. *AIS * ower 6. 8. 8-5 8-5 8-5 8-55 8-56 8-57 8-58 8' 9 89^ Elev ' ^E ' Wind shear/eddies may occur on short final to rwy /9 with wind ^-7^ above K.

More information

Machine Learning for Stock Selection

Machine Learning for Stock Selection Machine Learning for Sock Selecion Rober J. Yan Compuer Science Dep., The Uniersiy of Wesern Onario jyan@csd.uwo.ca Charles X. Ling Compuer Science Dep., The Uniersiy of Wesern Onario cling@csd.uwo.ca

More information

Coefficients of Propeller-hull Interaction in Propulsion System of Inland Waterway Vessels with Stern Tunnels

Coefficients of Propeller-hull Interaction in Propulsion System of Inland Waterway Vessels with Stern Tunnels hp://www.ransnav.eu he Inernaional Journal on Marine Navigaion and Safey of Sea Transporaion Volume 8 Number 3 Sepember 214 DOI: 1.12716/11.8.3.8 Coefficiens of Propeller-hull Ineracion in Propulsion Sysem

More information

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

More information

A Statistical, Age-Structured, Life-History-Based Stock Assessment Model for Anadromous Alosa

A Statistical, Age-Structured, Life-History-Based Stock Assessment Model for Anadromous Alosa American Fisheries Sociey Symposium 35:275 283, 2003 2003 by he American Fisheries Sociey A Saisical, Age-Srucured, Life-Hisory-Based Sock Assessmen Model for Anadromous Alosa A. JAMIE F. GIBSON 1 Acadia

More information

Overreaction and Underreaction : - Evidence for the Portuguese Stock Market -

Overreaction and Underreaction : - Evidence for the Portuguese Stock Market - Overreacion and Underreacion : - Evidence for he Poruguese Sock Marke - João Vasco Soares* and Ana Paula Serra** March 2005 * Faculdade de Economia da Universidade do Poro ** (corresponding auhor) CEMPRE,

More information

INSTALLATION AND OPERATION MANUAL

INSTALLATION AND OPERATION MANUAL EUROPEN USERS 400V 0Hz SUPPLY DETILS RE IN- CLUDED WITH ELECTRICL CONTROL BOX. DISREGRD SUPPLY WIRING DETILS IN THIS MNUL IMPORTNT SFETY INSTRUCTIONS SVE THESE INSTRUCTIONS PLESE RED THE ENTIRE CONTENTS

More information

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers.

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Motion Graphs 6 The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Descriptions: 1. The car is stopped. 2. The car is traveling

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 12

BROCK UNIVERSITY. Name: Student #: Page 1 of 12 Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: July 2016 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 104 Examination date: 9 July 2016 Number of hours:

More information

AP Physics Chapter 2 Practice Test

AP Physics Chapter 2 Practice Test AP Physics Chapter 2 Practice Test Answers: E,E,A,E,C,D,E,A,C,B,D,C,A,A 15. (c) 0.5 m/s 2, (d) 0.98 s, 0.49 m/s 16. (a) 48.3 m (b) 3.52 s (c) 6.4 m (d) 79.1 m 1. A 2.5 kg ball is thrown up with an initial

More information

Breeding Incentive Programs and Demand for California Thoroughbred Racing: The Tradeoff Between Quantity and Quality. Martin D.

Breeding Incentive Programs and Demand for California Thoroughbred Racing: The Tradeoff Between Quantity and Quality. Martin D. Breeding Incenive Programs and Demand for California horoughbred Racing: he radeoff Beween Quaniy and Qualiy by Marin D. Smih Deparmen of Agriculural and Resource Economics Universiy of California, Davis

More information

A Stable Money Demand: Looking for the Right Monetary Aggregate

A Stable Money Demand: Looking for the Right Monetary Aggregate A Sable Money Demand: Looking for he Righ Moneary Aggregae Pedro Teles Federal Reserve Bank of Chicago, CEPR. Ruilin Zhou Pennsylvania Sae Universiy January, 2005 Absrac In his paper, we argue ha M1 is

More information

Math 10 Lesson 3-3 Interpreting and Sketching Graphs

Math 10 Lesson 3-3 Interpreting and Sketching Graphs number of cards Math 10 Lesson 3-3 Interpreting and Sketching Graphs I. Lesson Objectives: 1) Graphs communicate how two things are related to one another. Straight, sloped lines indicate a constant change

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

Is the Decline in the Frequency of Draws in Test Match Cricket Detrimental to the Long Form of the Game? # Liam J. A. Lenten *

Is the Decline in the Frequency of Draws in Test Match Cricket Detrimental to the Long Form of the Game? # Liam J. A. Lenten * Is he Decline in he Frequency of Draws in Tes Mach Cricke Derimenal o he Long Form of he Game? # Liam J. A. Lenen * Deparmen of Economics and Finance La Trobe Universiy Absrac The frequency of draws in

More information

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

More information

Ch. 2 & 3 Velocity & Acceleration

Ch. 2 & 3 Velocity & Acceleration Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.

More information