# Sprinting: A Biomechanical Approach By Tom Tellez

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Sprinting: A Biomechanical Approach By Tom Tellez World class male sprinters stride approximately forty-three times for a 100 meter race. If a mechanical error costs one-one thousandth of a second per stride, the total cost is.043 seconds by the finish. How can one be an efficient sprinter? However daunting the question appears, an answer lies in scientific principles alone. Kinesiology, biomechanics, and the laws of physics govern every sprinter s technique. Kinesiology, the study of movement, dictates how a sprinter should move. Contributing to the study of movement is the discipline biomechanics, which refers to the engineering of the body and laws of physics governing it. While referencing laws of physics, kinesiology and biomechanics view the body as a unified system of interdependent parts, an approach necessary for proper analysis. Overview At the start of a race, the body must begin movement from a rest state. Once moving, the body requires time to build into full speed, or accelerate to full speed. At the beginning of this process, stride length as well as the number of strides per unit of time is small. However, both increase as acceleration increases. While having the ability to accelerate over 100 meters would be ideal, the body is only capable of accelerating for approximately sixty meters. The last forty meters would simply be maintaining technique and speed. Analysis of sprint mechanic s explains the finer nuances of sprint technique, including impulse, stride length, stride frequency, running velocity, arm movement, and leg action. Impulse Impulse is not only a term for the foot-ground contact created by each step but also a numeric value defined as force X time. This is the starting point to understanding scientific sprint technique because the impulse is the body s only interaction with the ground, the one and only interaction, which produces linear movement. Impulse ultimately defines how the body should perform rotary movement (movement of body levers relative to body). Vector calculus defines impulse: each impulse has a direction and magnitude. Direction is the mixture of horizontal and vertical components, while magnitude is the measure of force. The best sprint technique consists of an ideal ratio between downward push and horizontal push (Fig. 9). This ratio, however, changes throughout the sprint race. Concerning force, of course great force can yield great stride length. However, misapplication of force translates to poor technique and loss of momentum. While the horizontal and vertical components of force within impulse play a role in creating body position, body position is also rotary. The ideal body position is perpendicular to the ground, where neck and head fall naturally in line. Depending on the impulse, the body may lean from the ground, as in the drive phase of sprinting, or remain vertical.

2 One finer detail of impulse relates to how various athletes contact the ground meter sprinters contact the ground on the ball of the foot (Fig. 1), meter runners contact in the arch (Fig. 2) and 1500 meter runners and up use almost the entire foot as a contact point (Fig 3). While producing the numerical value of each step in a print race requires special technologies, coaches can judge the quality of impulse by measuring momentum. For example, when sprinters show a low and long look like that of an ice skater, one possible error is too much horizontal force. A dramatic example of too much downward force would be an athlete who simply jogs in place without moving. But what if two athletes within a race produce near-perfect directional ratios, which one wins? The one applying more force, within the least amount of time wins (Weyand et al.1998). Force applied for long time intervals requires more energy output than force application for shorter time intervals. It is force applied with the proper directional ratio, which increases stride speed and creates longer stride length. Stride Length Stride length is the distance the center of gravity travels between each foot contact. Stride length is the resultant of momentum plus net impulse, which is given to the mass. It can be examined as the following: takeoff distance, flight distance, and landing distance (Fig. 4) Takeoff Distance Takeoff distance is the distance the center of gravity travels between the landing point and the point where ground contact is broken. The velocity at which the center of gravity is projected forward is also critical to the flight phase of the stride and is determined by the velocity at touch down and the vertical and horizontal impulses. Thus the speed through the takeoff distance along with good body position and angle of projection determines the takeoff velocity. It will therefore be advantageous to have a big takeoff distance coupled with a great amount of angular speed as the time element of impulse diminishes. Here, it should be noted that the negative velocity of the foot sets up the body position for take off but contributes very little to the actual take off which is the result of pushing the ground away from the body (body away from the ground). Flight Distance The flight distance is the distance that the center of gravity travels in the nonsupport phase of the stride. These factors determine the flight distance: angle of impulse, velocity at takeoff, relative height of center of gravity at takeoff, air resistance, and acceleration due to gravity. Landing Distance The landing distance is the distance the center of gravity is away from the landing foot. This distance is relatively short so as to reduce the breaking forces,

3 which decelerate the body. The point of course is to put the food down in a place, which can mechanically develop the most power. The foot lands slightly in front of the center of gravity before moving directly under the center of gravity for push off. If the foot lands behind the center of gravity, stumbling results. Whereas if the foot is too far forward I a reaching step, contact time with the ground will be too long, requiring too much force, resulting in a loss of momentum by the time the body is in a position to push off of the ground effectively. Stride Frequency Stride Frequency is the number of strides taken per unit of time. Stride time is easily confused with stride frequency. Stride time is the time it takes to complete one stride (time of support and time of nonsupport). Stride speed and angular velocity through the full range of motion (front and back oscillation) determine stride time. Because stride speed depends on the body state (fitness), it is more of a physiological function (muscle type, muscle flexibility, strength, neuromuscular coordination, etc.) than biomechanical function. But, the paths the legs take that create speed and mechanical advantage is biomechanical. Running Velocity Running velocity is a product of stride length times frequency. Each athlete has a unique combination of the two at different running speeds. Common analysis of stride length and frequency mistakenly show the two inversely related. Stride length frequency are interdependent, where the relationship is based on the amount of resistance that must be overcome. Power (force X velocity) generated by the muscles improves stride length and frequency. The velocity component of power allows more work to be done (stride length) and increases stride speed (stride frequency). ARMS Coordinated movement of arms and legs remains the key to efficient sprinting. It is through range and force that the two coordinate. While the movement coordinates, arms lead legs in tempo and range. The following method of movement produces the proper range and force necessitated by the legs. The hand is positioned approximately shoulder-high, but not exceeding the chin, and slightly in front of the chest (Fig. 8). From this point, the hand initiates the downward stroke by flipping downward while the upper arm rotates backwards from the shoulder, and the elbow joint opens or increases the angle between forearm and upper arm (Fig. 7). After the hand passes by the hip, the elbow joint begins to close again and drives backwards and upwards while the shoulder continues rotating through full range of motion (Fig. 6). The swing forward requires a reversal of this process, where the elbow opens again while passing by the hip but closes after passing the hip until he hand achieves the approximate-shoulder-high position. Forearms and chest remain as relaxed as possible.

4 Scientifically speaking, the shoulder is the axis of rotation for the arm, while the elbow acts to shorten the lever when necessary. Closing the angle reduces the moment of arm inertia, increasing angular velocity, in turn creating quicker turnover. Arm movement without utilizing the elbow joint produces a straight-arm, pendular-like swing moving much too slow for leg coordination. Arm swing can allow for greater takeoff distance, enhancing stride length. Leg Action Overview The vertical force comes at take-off when the mass is elevated by pushing downward (pushing off the heel back onto the ball of the foot). The recovery foot steps up and over the drive knee as the foot takes the shortest path to the front of the body as the center of mass rises above the surface (Fig. 7 & 8). The knee then raises and extends as the foot moves forward and the shin becomes plumb (Fig. 7). The thigh drops towards the ground while the knee extends, causing the foot to have a negative velocity at foot placement. As the athlete builds momentum (mass X velocity) the ratio between both forces (vertical and horizontal) increases as the net horizontal force decreases. The stride becomes progressively quicker and longer as stride frequency and length are optimized. Stretch Reflex The stretch reflex acts similarly to loading a Y sling shot, or forked sling shot. Before shooting the projectile, it remains poised in the stretched elastic, just as the hip flexors remain stretched before the recovery phase. When the sling shot elastic is released, it pops back into original form, sending away the projectile. Novacheck along with Vaughan claim that sprint efficiency is due in part to the storage and later return of elastic potential energy by the stretch of elastic structures (especially tendons) (Novacheck 81). Furthermore, stretched tendons efficiently return energy upon recoil (Novacheck 84). The stretch reflex refers mainly to the knee cycling during the recovery phase. Knee Action The sling shot release parallels the leg recovery phase: the knee cycles through because the hip flexor pops back into normal position from its stretched position. Therefore, the knee coming through occurs naturally and does not necessitate an athlete s conscious effort. Furthermore consciously lifting the knee high while sprinting inhibits the legs natural timing during the recovery phase. Consciously creating a high knee lift or normal knee lift is like stretching back a sling shot with projectile and helping push the projectile with the hand while the elastic is releasing. The action would cause a reduction of elastic force, resulting in slower movement with the sling shot as well as with sprinting. Scientific Overview

5 Start At the start, mass is at rest. The property of inertia inherent in the mass resists changes in velocity (a vector with magnitude and direction) and according to Newton s first law will maintain this velocity unless acted on by an external force. The amount of inertia within the mass is proportional to the amount of mass; objects with more mass require more force to move initially. When the sprinter applies force to the blocks, inertia is overcome and linear movement begins. Stride length and frequency are low because of inertia. This is why the first stride is the slowest and shortest. Force is initially applied backward and downward where the shin angles somewhat close to the ground and behind the knee. This motion is piston-like as it pushes the mass forward from its rest state. Horizontal impulse is greatest at this point (Weyand et al. 1991) but diminishes as mass increases speed. It is the net force that causes the mass to accelerate: the difference in mass forward force and the pushing force. At the start of a run when resistance is at its highest, it is easier to increase stride length because force needs something to work against. Acceleration Shortly after starting, stride length and frequency increase. As momentum builds, stride length tends to stabilize as momentum builds, resistance diminishes and net force approaches zero. Concurrently, frequency increases because resistance constantly decreases. In short sprints, it is important to accelerate over the longest possible distance in the shortest amount of time and try to maintain and decelerate gracefully. After the athlete has been successful in setting the body in motion, and the center of mass begins to gain momentum, a toppling would occur if the feet continued to go backward and downward. The acceleration process then goes through a mechanical transition where the legs go through the form of cycling motion. The lever lengthens to give a mechanical advantage and shortens on the recovery phase to give a speed advantage. The position of the body dictates how reactive forces affect the center of mass. The center of mass accelerates at a decreasing rate until maximum velocity (top speed) is attained. At max speed, the net horizontal force applied is zero. The ground tends to recede faster when the body picks up speed, resulting in reduction of contact time as well as effective force because of reduction in resistance. At this point in the race, the athlete tries to keep the effective force at zero until the net horizontal force becomes negative. When body momentum becomes greater than that of the legs, the body starts toppling over, causing a braking action each time the foot hits the ground. At this point, the athlete tries to relax and lets momentum of the mass take the body down the track. Movement

6 The human body is engineered to utilize a series of lever systems (third class) where force acts between the axis and the resistance. For any movement to occur, the lever must rotate around its axis. Based on this premise, it is safe to say that the origin of movement is rotary. Rotary motion simply refers to bodily motion. It is the interaction of physical laws and body levers. For an object to rotate, it must have two different types of forces acting on it at right angles: a centripetal or centrifugal force and tangential force. Centripetal and centrifugal forces cause objects to move toward the point of rotation, known as the axis. The axial or tangential force causes object to move perpendicularly in relation to the radius. In the human machine, force is closer than resistance to the axis. To illustrate, a sprinter resists the ground while producing movement and force with the thigh. This relationship makes the lever very inefficient because more torque is required for movement. For the sprinter, it is essential that the lever move through the full range of movement fast, requiring a torque (turning force) both forward and backward. Torque (force X movement arm) contributes to the angular velocity of the lever. If the length of the lever is constant, the lever would oscillate like a pendulum. But because lever length changes so does angular velocity, for any given force. Thus the angular velocity ties the length of the lever produces the linear velocity at the point farthest away from the axis. Both the arm and leg movement efficiency benefit from the ability to lengthen or shorten levers. By lengthening and shortening the lever, the athlete can change the moment of inertia (resistance to movement). The farther the moment of inertia (mass X radius) is away from the point of rotation, the harder it is to change motion. With a given amount of force, a shorter lever with the same mass as a longer lever would rotate faster than the longer but would have a mechanical disadvantage. It will therefore take more torque (moment of inertia X angular acceleration) to turn the longer lever than it would to turn the shorter. If no additional turning force is applied to the lever, angular momentum (moment of inertia X angular velocity) is conserved. An increase or decline in the moment of inertia will cause decline or increase in angular velocity respectively. This inverse relationship between the moment of inertia and angular velocity in the conservation of angular velocity in the conservation of angular momentum is one of the keys to great sprinting. Common Errors Stressing stride length or stride frequency

7 Debate on the best way of improving sprint speed focuses on two issues: increasing stride length versus increasing frequency. We are limited physiologically to the amount of strides than can be performed in a second. It is true that most good sprint athletes have just about the same frequency. So, an athlete with adequate conditioning who takes the longest strides usually wins. Stressing stride frequency alone results in inefficient sprint technique. Common knowledge portrays stride frequency as a speed advantage. However, stride frequency differs from stride speed. Stride speed is angular velocity of a stride, while frequency is the number of strides, or impulses, per second. Even if a sprinter has the fastest turnover, without proper force application, stride length will be small. This is because frequency alone does cause linear motion; applying force to the ground does. Proper force application results in stride length and frequency increases. Stride speed is involuntarily increased by the conservation of angular momentum. Shortening the radius, thus reducing the moment of inertia, results in an increase of angular velocity. The shorting of the lever occurs after the foot breaks contact with the ground. This movement is the response of the forces being applied correctly to the ground and is non-volitional. Illusion of Speed There is an illusion of speed when then lever does not go through the full range of motion; each movement looks and feels faster. For example if stride frequency is stressed, an athlete may not allow the hip extend through full range of motion to reap whatever benefits he created from applying force to the ground. Lack of hip extension detracts from momentum and ultimately decreases speed because of inefficiency. But the objective is not to move the lever fast but rather transport the mass down the track in the least time possible. Avoiding full range of motion also sacrifices proper force application. Leg preactivation: pawing action Pawing action is actually an illusion resulting from rapid hip extension. Too much voluntary action at the knees and ankles causes a reduction in angular velocity of the hip, which is the prime generator of force. Force causes motion while speed is a measurement of motion. Cyclic force is applied from the hip (radial force) which results in tangential motion of the foot. At foot placement, the shin should be approximately 90 degrees to the ground (Fig. 5). As the center of mass passes over the point of support, the heel briefly touches the ground and the ankle angle closes. This motion puts the Achilles tendon and calf in a stretch position while the knee is bent, allowing a greater push off force from the ball of the foot. Hips extend in one continuous motion from the knee lift position through the end of the push off

8 with no pauses in hip extension at foot contact. High knee lift Please see Knee action Reach and Pull Running action such as reaching and pulling with the hamstrings has been scientifically proven not to produce the most efficient movement (Weyand et. al. 1998). This running style is inefficient because it does not utilize the stretch reflex, but instead requires more muscle forces and volumes per unit of force applied to the ground (Weyand et al. 1998). Summary Scientific research across the world has yet to penetrate the track and field world. Athletes can be better sprinters with scientifically proven sprint technique. Better sprinters require coaches who are willing to learn scientific principles as well as a method of communicating their knowledge to the athlete. Works Cited Novacheck, Tom F. The biomechanics of running. Motion Analysis Laboratory, Gillette Children s Specialty Healthcare, University of Minnesota. 1998; Vaughan C.I. Biomechanics of running gait. Crit Rev Eng 12: 1-48 Weyand, Peter G., Deborah B. Sternlight, Matthew J. Bellizzi, and Seth Wright. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology 89:

### BIOMECHANICAL MOVEMENT

SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions - text book pages 169-172 1) For which of the following is the athlete s centre of mass most likely to lie outside of

### 100 / 110m HURDLES. Contemporary Technique & Training. RALPH LINDEMAN, Head Track Coach US Air Force Academy

RALPH LINDEMAN, Head Track Coach US Air Force Academy PRIMARY CONCERNS Teach hurdler to sprint over the barriers! Analyze for the causes of effects. Coach for balance eliminate causes of excessive rotation.

### USA Track & Field Heptathlon Summit- November

USA Track & Field Heptathlon Summit- November 1994 1 I. Technical considerations in the sprint hurdles Practical Biomechanics For the 100m Hurdles By Gary Winckler University of Illinois A. General flow

### THE INITIAL STAGE THE FINAL STAGE

THE JAVELIN RUN-UP By Hans Torim A detailed description of the author s views on the javelin run-up from the initial stages to the impulse stride and the pre-delivery position. The article is a slightly

### Rugby Strength Coach. Speed development guide

Rugby Strength Coach Speed development guide Outline Why do Newton's laws of motion matter? What is speed? The technique and physical demands of speed Speed training parameters Rugby specific speed training

### Structure (Down plane)

By Lauren Russell Structure (Down plane) The body (toes, knees, hips, wrists and shoulders) is aligned parallel to the intended target line. The torso is tilted over the ball from the hips whilst maintaining

### Positive running posture sums up the right technique for top speed

Positive running, a model for high speed running Frans Bosch positive running posture sums up the right technique for top speed building blocks in running: Pelvic rotation for- and backward and hamstring

### The Hurdle Events. Jeff Martin IATCCC Clinic. Indianapolis, Indiana. 5 Myth s about Hurdling

The Hurdle Events Jeff Martin Indianapolis, Indiana 5 Myth s about Hurdling - Speed is not a necessity to hurdle fast - Good form not pure speed makes a good hurdler - An athlete that can t jump, throw,

### Biomechanics Sample Problems

Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

### 30m Crouch Start. 100m Crouch Start. # of Steps

Approach Run PRECEPTS RALPH LINDEMAN Head Men s and Women s Track & Field Coach US Air Force Academy Coaching Staff, USA Men s Team, 2004 Olympic Games, Athens, Greece Coaching Staff, USA Men s Team, 2007

### 110m Hurdle Theory and Technique

110m Hurdle Theory and Technique Ralph Lindeman Head Track Coach, U.S. Air Force Academy Men's Hurdle Development Chairman, USATF WANTED: Highly motivated sprinters to attempt one of track & field's most

### by Michael Young Human Performance Consulting

by Michael Young Human Performance Consulting The high performance division of USATF commissioned research to determine what variables were most critical to success in the shot put The objective of the

### THE IMPULSE-STEP IN THE JAVELIN THROW

THE IMPULSE-STEP IN THE JAVELIN THROW Terseus Liebenberg North-West University Potchefstroom South Africa The most important biomechanical principle ultimately determining throwing distance is the release

### Running Form The Good, The Bad and The Ugly

Running Form The Good, The Bad and The Ugly Sherry Watts www.runninggoals.ca It is surprisingly controversial amongst runners and coaches whether you should tinker with running form. I believe that you

### Shot Technical Model

Shot Technical Model Progression related to Multi-Events Development (aged 8/9-12 years) can be referenced to Athletics 365. Further technical information can be found HERE Linear Shot - Whole Sequence

### Coaching the Triple Jump Boo Schexnayder

I. Understanding the Event A. The Run and Its Purpose B. Hip Undulation and the Phases C. Making the Connection II. III. IV. The Approach Run A. Phases B. Technical Features 1. Posture 2. Progressive Body

### The Takeaway. The waggle can be an excellent opportunity to rehearse your takeaway

The Takeaway Your approach to the ball is the final step over which you have total control. Once you actually start the swing, you need to depend on rhythm, tempo and balance to see you through the swing.

### Sprinting. Relevant Knowledge** Overall Level. Assessment Criteria. Learning Outcomes

Sprinting 1. coordinate their limbs. 2. be familiar with the starter s order.. swing their arms in rhythm. 1. coordinate their limbs. 2. swing their arms in rhythm.. react accurately to signals.. master

### THE DEVELOPMENT OF SPEED:

THE DEVELOPMENT OF SPEED: BEFORE YOU HOP ON THAT TREADMILL.. By Jason Shea, M.S., C.S.C.S, PES Doing a quick internet search for treadmill manufacturers, one can see what a lucrative business it is to

### ATHLETICS OMNIBUS - HIGH JUMP From the Athletics Omnibus of Richard Stander, South Africa

ATHLETICS OMNIBUS - HIGH JUMP From the Athletics Omnibus of Richard Stander, South Africa 1. HIGH JUMP The objective of high jumping is to try and jump as high as possible by taking a run-up and jump over

### 100/110 Hurdle Training. Wendy Truvillion

100/110 Hurdle Training Wendy Truvillion Introduction Hurdling is sprinting with rhythm! Hurdling deviates as least as possible from normal sprinting. The abilities needed in hurdling are very similar

### Components of the 400m Hurdles

Components of the 400m Hurdles By Ray Boyd NATIONAL 400M HURDLE COACH-AUSTRALIA FROM: Modern Athlete and Coach The 400m hurdles race can be broken up into four stages: Start to First Hurdle Movement Across

### Breaking Down the Approach

Breaking Down the Approach Written by Andre Christopher Gonzalez Sunday, July 31, 2005 One of the biggest weaknesses of the two-legged approach is the inability of the athlete to transfer horizontal momentum

### CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT 1. Vector mechanics apply to which of the following? A. displacement B. velocity C. speed D. both displacement and velocity 2. If velocity is constant, then

### A Biomechanical Approach to Javelin. Blake Vajgrt. Concordia University. December 5 th, 2012

A Biomechanical Approach to Javelin Blake Vajgrt Concordia University December 5 th, 2012 The Biomechanical Approach to Javelin 2 The Biomechanical Approach to Javelin Javelin is one of the four throwing

### BEGINNING PITCHING TIPS BRYC Softball Updated February 4, 2008

BEGINNING PITCHING TIPS BRYC Softball Updated February 4, 2008 General 1. Work on sound mechanics before anything else. The earlier a player learns the mechanics, the quicker she will progress in learning

### INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING Joseph P. Hunter 1, Robert N. Marshall 1,, and Peter J. McNair 3 1 Department of Sport and Exercise Science, The University of Auckland, Auckland,

### LEVEL 1 SKILL DEVELOPMENT MANUAL

LEVEL 1 SKILL DEVELOPMENT MANUAL Lesson Manual C A Publication Of The USA Hockey Coaching Education Program The USA Hockey Coaching Education Program is Presented By LESSON C-1 SPECIFIC OBJECTIVES 1. Refine

### Analysis of Movement

Orlando 2009 Biomechanics II: Analysis of Movement An overview and advanced discussion of the effects of movement, with a focus on the technology available to analyze skills and support science-based instruction.

### (2) BIOMECHANICS of TERRESTRIAL LOCOMOTION

(2) BIOMECHANICS of TERRESTRIAL LOCOMOTION Questions: - How does size influence the mode and speed of locomotion? - What determines the energy cost of locomotion? - Why do humans walk and run the way we

### PHYSICS REVIEW SHEET 2010 MID-TERM EXAM

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed

### Player Development. Pitching 1

Pitching Player Development Pitching 1 Delivery Mechanics Checklist: 1. Feet slightly spread on throwing arm side of rubber 2. Body weight positioned over stride leg 3. Torso upright 4. Hips and shoulders

### Developing tumbling excellence

Developing tumbling excellence 1. Importance of Staff Training! Review of the basics. Always a good idea no matter how much experience you have.! Get all staff on the same page technically! Create easier

### PROPER PITCHING MECHANICS

PROPER PITCHING MECHANICS While each pitcher is a different person and can display some individuality in his mechanics, everyone has similar anatomy (the same muscles, bones and ligaments in the same locations)

### Standing javelin. Development Stage: event group development. Outcome of Activity. What-2 Get the Athletes to Do. Equipment.

24 Standing javelin 5m 30m 5m THROW FROM HERE IN DIRECTION OF THE ARROW SAFE WAITING AREA event group development Athletes will be able to perform an overhead pull throw from the Power Position with a

### Discus Technique: Basic Technique A Technical Analysis Grip Fork Gr Purpose: To provide control over Discus is held with Discus is held

Discus Technique: A Technical Analysis Sandy Fowler University of Michigan Assistant Track & Field Coach Grip Purpose: To provide control over the implement throughout the spin. To provide for a proper

### Biomechanics and the Rules of Race Walking. Brian Hanley

Biomechanics and the Rules of Race Walking Brian Hanley Biomechanics and the Rules of Race Walking Brian Hanley b.hanley@leedsmet.ac.uk www.evaa.ch The rules and judging Judging is probably the most contentious

### VIDEO ANALYSIS OF BY: BONNIE CUTHBERT INSTRUCTOR: MR. HOPPER PE 117: TENNIS (F01)

VIDEO ANALYSIS OF BY: BONNIE CUTHBERT INSTRUCTOR: MR. HOPPER PE 117: TENNIS (F01) 1 Subject: Page Number: Backhand Groundstroke Introduction 3 Objective of the Backhand 3 Two-Handed Backhand 3 Two-Handed

### Dynamic Warm up. the age of the athlete current physical condition and prior exercise experience

Dynamic Warm up 10-20 minutes May be dependent on: the age of the athlete current physical condition and prior exercise experience Prepares the body for the demands of a work out or practice Increases

### Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF

Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF George Chen May 17, 2002 Stanford Neuromuscular Biomechanics Lab Group Muscle contribution

### HOW TO HOLD THE SHOT

HOW TO HOLD THE SHOT Balance the shot in his hand so it is resting at the point where the fingers are connected to the palm of the hand. Keep their fingers together and allow their thumb to gently rest

### Ma Long's forehand Power Looping Backspin Power looping backspin is the most common attacking method, and it is one of the most powerful forehand

Ma Long s Technique Ma Long, the latest men-single winner in Asian games, has beaten lots of top players in the world. Characteristic of his game is obvious - very good at initiating attack, fast and fierce,

### Catapult Project. Even though we will be wearing safety glasses, the catapult must not have any sharp edges that could injure yourself or others.

Catapult Project Objective. Design and build a catapult capable of launching a large metal projectile ( a nut about the size of 5 nickels) more than 12 ft and up to 32 feet away in order to accurately

### time v (vertical) time

NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

### Discus Technical Model

Discus Technical Model Progression related to Multi-Events Development (aged 8/9-12 years) can be referenced to Athletics 365 stages Red, Yellow & Green Whole Sequence Preparation Momentum Building Delivery

### Butterfly Technique Checklist

1 Butterfly Technique Checklist Marion Alexander, Brad Gerbrandt Sport Biomechanics Laboratory, University of Manitoba Armstroke Entry - Arms enter the water with hands about shoulder width apart and slice

### So what is point footwork? And how is it used for attacking and monitoring our opponents?

Get to the point!!! Point footwork of Latosa Escrima Author: Marty Odsather Anchorage, Alaska 1 st TG WT / 11 th SG LWS EBMAS To suggest that any martial art could be a success without the use of strong

### TECHNICAL MODELS & PROGRESSIONS FOR THE GLIDE SHOT PUT. Ben Bishop, Lake Park HS

TECHNICAL MODELS & PROGRESSIONS FOR THE GLIDE SHOT PUT Ben Bishop, Lake Park HS 1 WHEN IS THE GLIDE A VIABLE OPTION? Athletes that rely heavily on strength levels as opposed to other athletic domains,

### LEVEL 1 SKILL DEVELOPMENT MANUAL

LEVEL 1 SKILL DEVELOPMENT MANUAL Lesson Manual D A Publication Of The USA Hockey Coaching Education Program The USA Hockey Coaching Education Program is Presented By 1. Proper Stance: LESSON D-1 SPECIFIC

### 110 HURDLES 101. David Pennington Shawnee Mission East

110 HURDLES 101 David Pennington Shawnee Mission East TODAY WE WILL COVER Recruiting Hurdlers SM East Program Practice / Drills / Etc. Hurdle Technique & Mechanics Common Errors Selected Workouts Coaching

### Racewalking Training Manual for Junior Athletes. Leg drive & Feet placementy

Leg drive & Feet placementy ü The double support phase of a walkers stride occurs for only a fraction of a second. ü It should be the aim of every walker to reduce the time taken on this phase. ü Contact

### Coaching Principles. 1. Introduce 2. Demonstrate 3. Explain 4. Organize 5. Execute 6. Correct 7. Practice

5 Pin Bowling Drill Book Updated August 2008 Coaching Principles STEPS IN TEACHING A DRILL 1. Introduce 2. Demonstrate 3. Explain 4. Organize 5. Execute 6. Correct 7. Practice GENERAL PRINCIPLES Drills

### Fitness Drills and Games

Fitness Drills and Games Select from a large variety of Fitness drills and games to custom design your own practice sessions. There are fun and challenging practices for every age and skill level. Chasing

### SKILL ANALYSIS SAMPLE F

SKILL ANALYSIS SAMPLE F MOTOR SKILL: SOCCER SHOT (BALL STATIONARY) Aim/Purpose: The aim of this experiment is to record and analyse the movement process and technique required when kicking a soccer ball

### NAWGJ Education Committee

September 2017 The following are line art illustrations of 10 different performance varieties of compulsory handspring vaults. These are by no means the only variations of this vault but may be among the

### STRETCHES FOR GOLF. 7 Minutes to Longer Drives and Precision Based Shots SIMPLE GOLF SERIES

STRETCHES FOR GOLF 7 Minutes to Longer Drives and Precision Based Shots SIMPLE GOLF SERIES 1 TABLE OF CONTENTS Self Tests Phases of the Swing...5 Golf Self Tests...13 On Course Warm Up Winning Warm Up...23

### Normal and Abnormal Gait

Normal and Abnormal Gait Adrielle Fry, MD EvergreenHealth, Division of Sport and Spine University of Washington Board Review Course March 6, 2017 What are we going to cover? Definitions and key concepts

### Walking Tall: Mobility Drills for Seniors

Walking Tall: Mobility Drills for Seniors What is Functional Mobility Training? Selecting exercises that improve the foundation for movement Working in multiple planes Teaching reaction time, decision

### Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find

On the t Influence of Air Resistance and Wind during Long Jump Egoyan A. E. ( alex1cen@yahoo.com ), Khipashvili I. A. Georgian University GEOMEDI Abstract. In this article we perform theoretical analysis

### Practice Test: Vectors and Projectile Motion

ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

### TRACK AND FIELD STUDY GUIDE

TRACK AND FIELD STUDY GUIDE I. TRACK EVENTS Dash sprint Staggered Start runners line up on different lines to equalize the distance around the track Pace spreading out your energy for a longer race in

### The Physics of Pole Vault. By Marty Dahlman, BA, MEd Track Coach, Watkins Memorial High School (v )

The Physics of Pole Vault By Marty Dahlman, BA, MEd Track Coach, Watkins Memorial High School (v.1.1.1.16) The Physics of Pole Vault - Dahlman 2 The Physics of Pole Vault Table of Contents Page 2 Page

### 10 Steps to a Better Volley

10 Steps to a Better Volley Follow these 10 basic steps to immediately improve your volleys. 1. The Grip Use the continental grip. If you don t have a continental grip on your volley you will be forced

### Racing Start Safety Certification Protocol PROPOSAL. Combined Forward and Backstroke

Racing Start Safety Certification Protocol PROPOSAL Combined Forward and Backstroke DRAFT for Operational Risk Committee REVISED 6/05/2017 page 1 TEACHING RACING STARTS SAFELY Before You Teach, Be Sure:

Moorhead Baseball Routines/Hitting Drills Philosophy How we train: Teach everyday with the goal of our players becoming their own coach. Get them to feel what s going on. Consistent mix of instruction

### 7 Basic Skills Study Guide: (Folkstyle focus)

7 Basic Skills Study Guide: (Folkstyle focus) Search YouTube for USA Wrestling Seven Basic Sills or click this link https://youtu.be/sc3vxv_zi7k (Total video play time 59:14) 0:00-3:40 Highlight Clips

### ITF Coaches Education Programme Biomechanics of the forehand stroke

ITF Coaches Education Programme Biomechanics of the forehand stroke Original article: Bahamonde, R. (2001). ITF CSSR, 24, 6-8 Introduction The tennis forehand stroke has changed drastically over the last

### SWIMFIT 1KM. Your 12 week guide to swim 1km Freestyle

FIT 1KM Your 12 week guide to swim 1km Freestyle 200 1KM TAKE THE PLUNGE If you re a competent swimmer and want to get back in the water, or are wanting to push yourself in the pool, this is the programme

### GOALKEEPER DEVELOPMENT CURRICULUM

GOALKEEPER DEVELOPMENT CURRICULUM U6 and U8 *Using goalkeepers is not recommended for these two age groups. *In today s game, goalkeepers must be able to control the ball with their feet and pass as well

### Beginning Softball Pitching Adapted from a guide created by Stan VanderSlik

Beginning Softball Pitching Adapted from a guide created by Stan VanderSlik Pitching a softball is not like throwing a softball. Pitching is an underhand motion that, when done correctly, can result in

### 200 Meter Training. By Latif Thomas, CSCS, USATF Lv. II Creator of Complete Speed Training for Sprinters

200 Meter Training By Latif Thomas, CSCS, USATF Lv. II Creator of Complete Speed Training for Sprinters The 200 meter sprint is the Rodney Dangerfield of the sprint events. It gets no respect. When we

### KAYAK TECHNICAL TEMPLATE. Scott Oldershaw National Team Coach

KAYAK TECHNICAL TEMPLATE Scott Oldershaw National Team Coach Revised 09/2009 Introduction This Kayak Technical Template is for coaches involved with athletes preparing for competition at the Canada Games,

### JH Spring Break Workouts

JH Spring Break Workouts Below you will find a five day workout (six for 400-1600) schedule for spring break. We are asking you to do these workouts as faithfully as weather and facilities allow. Do the

### 100-meter Hurdles Technical Analysis

100-meter Hurdles Technical Analysis Loren Seagrave Director of Speed and Movement Director of Track & Field and Cross Country IMG Academy, Bradenton, Florida Global Overview:100m Hurdles The 100/110m

### QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms

### The Tennis Player s Posture The Value of Balance

The Tennis Player s Posture The Value of Balance Mike Crooks The Tennis Engineer www.thetennisengineer.wordpress.com You are probably aware that tennis is a one sided game in terms of dominant hand and

### Biomechanics Every Golf Instructor Should Know

Biomechanics Every Golf Instructor Should Know Dr. Phil Cheetham Senior Sport Technologist and Biomechanist United States Olympic Committee Olympic Training Center Chula Vista, CA LPGA Summit 2015 Australian

### AN31E Application Note

Balancing Theory Aim of balancing How an unbalance evolves An unbalance exists when the principle mass axis of a rotating body, the so-called axis of inertia, does not coincide with the rotational axis.

### Advanced Figures in NY/LA & Cuban Style

Advanced Figures in NY/LA & Cuban Style This page contains the "Script" (that is the spoken part) of the DVD "Advanced Figures. This may help non English speaking students to follow the video, as well

### Level 1 Vault STRETCH JUMP ONTO A RAISED MAT SURFACE (A MINIMUM OF 16 ) AND THEN HANDSTAND FALL TO STRAIGHT LYING POSITION ON THE BACK

Level 1 Vault The gymnast may perform the vault (both skills) two times. Each phase of the vault is worth 5.0 points with the score of each phase added together. The highest total score of the two vaults

Ready, Set - GOAL! ADVANCED SWIMMING PROGRAM Welcome to Ready, Set, Goal- Swim. Ready Set Goal is a four month physical activity training tool for beginner, intermediate and advanced level participants.

### Carolina Trace Country Club

Carolina Trace Country Club Short Game School Michael Krick Head Golf Professional Trace Member Table Of Contents Putting 1, 2 Putting Evaluation Matrix 3 Putting Positions 4 Chipping 5, 6 Pitching 7,

### Main Points Feet Balance Power Position (Power T Position)- Rotation Follow-through

Pitching Main Points 1. Feet-take a small step back with non-throwing side foot, keeping the weight over the stationary foot, which is turned parallel and touching the rubber 2. Balance Position-non-throwing

### Racing Start Safety Certification Protocol. Forward and Backstroke Starts. Updated: February 2018

Racing Start Safety Certification Protocol Forward and Backstroke Starts Updated: February 2018 1 Date: March 9, 2018 To: From: Subject: USA Swimming Member Clubs USA Swimming Member Coaches LSC General

### Landing Hip Turn Glove Side. non teach. Soft test the ice. button Acceleration occurs around front leg Paul Nyman. determines There are no

When I was asked to contribute to this series I initially declined. What could I possibly add to these distinguished pitching instructors? I re-thought that position when I remembered that my perspective

### A Biomechanical Analysis of Sprinters vs. Distance Runners at Equal and Maximal Speeds

Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2004-12-02 A Biomechanical Analysis of Sprinters vs. Distance Runners at Equal and Maximal Speeds Tyler D. Bushnell Brigham Young

### Biomechanical Analysis of a Sprint Start. Anna Reponen JD Welch

Biomechanical Analysis of a Sprint Start Anna Reponen JD Welch Introduction Our presentation will cover the Key Elements of our project. They will be presented along with the methods, results and discussion

### 03/11/2017. Critical Determinants of Sprint Hurdle Performance. Dr Paul Brice Consultant Biomechanist. Applied Biomechanical Support Track + Field

Critical Determinants of Sprint Hurdle Performance Consultant Biomechanist Applied Biomechanical Support Track + Field Very Simple Approach: To provide coach / athlete / practitioner with objective biomechanical

### Secondary Physics: The Compass Rose, Cars and Tracks

Secondary Physics: The Compass Rose, Cars and Tracks Secondary Physics at the NASCAR Hall of Fame The Great Hall and Glory Road Focus object or destination in the Hall: Compass Rose, 18 compass lines,

### A Women s Walking Training Program

A Women s Walking Training Program Our objective is to get women to the starting line of fitness. Regardless of your age or ability we aim to create opportunities in walking and running around the world.

### Tadasana Variation 7. Thighs back, buttocks in (with two helpers)

Tadasana Variation 7 Pro ps 2 ropes or belts, Thighs back, buttocks in (with two helpers) 2 helpers This variation produces a similar effect to the previous one but with a different method. Stand in Tadasana

### ATHLETICS OMNIBUS - JAVELIN THROW From the Boland Athletics website:

ATHLETICS OMNIBUS - JAVELIN THROW From the Boland Athletics website: www.bolandathletics.com 1. JAVELIN THROW Javelin Throw is regarded as a strength event. The Javelin Thrower is required to throw a spear

### Test Name Analysis Assessment Swing Correlation

Name: Caleb Wong Date: 2/21/14 Overview Because everyone s body is unique, understanding this is critical for safe and proper golf instruction and training. The Titleist Performance Institute (TPI) Physical

### Copyright, 1996 Dale Carnegie & Associates, Inc.

300m/400m Hurdle Technique and Training Amy Deem Head Men s & Women s Track and Field Coach University of Miami Introduction The 300m/400m hurdle events demand the ability to run a fast 400m as well as

### RG Active 12 Week Olympic Triathlon Plan Page Week OLYMPIC INTERMEDIATE TRIATHLON TRAINING PLAN

RG Active 12 Week Olympic Triathlon Plan Page 1 12 Week OLYMPIC INTERMEDIATE TRIATHLON TRAINING PLAN RG Active 12 Week Olympic Triathlon Plan Page 2 Key Notes The NSPCC has teamed up with RG Active to

### Core Velocity 3.0. Different Ways To Connect & Setup The Core Velocity Belt The Safest and Most Effective Way Possible.

Core Velocity 3.0 Different Ways To Connect & Setup The Core Velocity Belt The Safest and Most Effective Way Possible. Criss Cross Ideally the Criss Cross setup is designed for stationary exercises inside

### SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the A) mass of the object. B) force on the object. C) inertia