Do Now 10 Minutes Topic Speed and Velocity

Size: px
Start display at page:

Download "Do Now 10 Minutes Topic Speed and Velocity"

Transcription

1 Do Now 10 Minutes Topic Speed and Velocity Clear off everything from your desk, except for a calculator and something to write with. We re taking a pop quiz.

2 Homework Complete the Distance vs. Displacement Lab Report Test Correction Pages Work is to be done on a separate piece of paper AND submitted with the test corrections sheets. NOTE: ALL PERIOD 4 HOMEWORK WILL BE DUE ON B-DAYS Due 10/10/14

3 Homework Hypothesis Assignment Significant Figures Worksheet Measurement vs Accuracy Lab Interim Reports are being sent out Friday. If you want these grades in there, get these assignments to me by TOMORROW.

4 Test Correction Page Number: Which question are you correcting? Type of Question: Dimensional Analysis, Scientific Notation, Significant Figures, etc. Question: Rewrite the question that you are correcting Answer: What is the CORRECT answer to the question? Reason Why: Explain why you got the problem wrong.

5 Additional Reading Many of the topics we are going to cover now are actually in the textbook. You do not have textbooks to take home, so I will scan in the pages after school and upload them to the class website. I will post when it s up on the class Twitter.

6 Speed A lot of Physics involves objects in motion. To begin to understand moving things, we need to talk get some terminology out of the way. It is not helpful to say something is fast, or even slow. Fast is a relative term.

7 Relative Speeds When we say fast, do we mean fast like a runner? (6 m/s) (13.4 mph) Or fast like Usain Bolt? (10.44 m/s) (23.35 mph)

8 Relative Speeds Fast like Lance Armstrong? (15 m/s) (34 mph) Or fast like Michael Schumacher? (103 m/s) (230 mph)

9 Relative Speeds Fast like a Boeing 747? (250 m/s) (514 mph) (2 hrs, 32 min from Newark to Miami) Or fast like a SR-71 Blackbird? (958 m/s) (2,143 mph) (That would be flying from Newark to Miami, FL in 30 minutes!)

10 Relative Speeds Fast like the Earth? (30,000 m/s) (67,108 mph) Or fast like the speed of light? (300,000,000 m/s) (671,080,887 mph)

11 Speed In all of these cases (except for the speed of the Earth), what is our reference point? The surface of the Earth, or an unchanging point. If we want to discuss how quickly (or slowly) an object moves, then we can talk about an object s speed. Speed is how fast an object is moving.

12 Speed Speed is equal to distance traveled divided by time. Speed= Distance Time Based on what you know about the SI system, what should the units for speed be? The units for speed and velocity are meters / second or m/s.

13 Sample Problem Roland rides his bike 300 meters in 50 seconds. What is his speed during this ride? Speed= = = 6 m/s

14 Distance Looking at our formula for speed, is it possible we can determine the distance an object travels? Speed=. Multiply both sides by time Distance [m] = Speed [m/s] x Time [s]

15 Distance Sample problem: In 2013, Tony Kanaan s average speed at the Indy 500 was 301 km/hr. If the race was 2.65 hours long, what distance did he travel? Identify what pieces of information we have. What formula should we use? Distance [m] = Speed [m/s] x Time [s] Distance = 301 km/hr x 2.65 hr = km

16 Which Speed? Whether it s a car, person, or bike, do objects always travel at the same speed? If we want to know an objects speed at any given instant, we look at its instantaneous speed. Instantaneous speed: an objects speed at any given instant. How you would a car s instantaneous speed.

17 Instantaneous Speed A car s speedometer tells us its instantaneous speed. A radar gun can also determine a car s instantaneous speed.

18 Which Speed? Were we using instantaneous speed when we calculated the cyclist s speed in the beginning of class? Were we using instantaneous speed when we calculated what distance Tony Kanaan travelled? No to both. We were using average speed.

19 Average Speed Average speed is the total distance travelled divided by total time. Average speed does not indicate variations in speed during a trip (red lights, speeding, etc.). The formula you write down in the beginning of class was your average speed. We ll be learning a formula for instantaneous speed after we learn about acceleration.

20 Examples Mr. Fineman lives 5800 m (3.4 miles) from VHS. It takes him about 15 minutes to get to school. Convert Mr. Fineman s travel time to seconds. 900 seconds Calculate Mr. Fineman s speed when he drives to school. 6.4 m/s (14.3 miles/hour) Justify: Is Mr. Fineman truly going 6.4 m/s the entire ride here? Why or why not.

21 Speed vs Velocity So far we have just talked about speed. However, in the English language, we tend to use the words velocity and speed interchangeably. Speed is how fast you re going. Velocity is speed in a given direction. Speed is a SCALAR Velocity is a VECTOR.

22 Velocity Example: If we say you run 5 m/s we are talking only about speed. If we say you run 5 m/s to the West, we are talking about velocity. Speed is a description of how fast an object moves; velocity is how fast and in what direction it moves.

23 Relatively Easy Problems A train passes you travelling at 20 m/s to the right. You are not moving. 0 m/s 20 m/s Relative to you, how fast is the train moving? (20 m/s 0 m/s) 20 m/s to the right!

24 Relatively Easy Problems A train passes you travelling at 20 m/s to the right. As the train is leaving, you start sprinting after it at a rate of 3 m/s to the right. 3 m/s 20 m/s Does the train seems to be moving away from you faster or slower than before. Relative to you, how fast is the train moving? (20 m/s 3 m/s) = 17 m/s

25 Relatively Easy Problems A train passes you travelling at 20 m/s to the right. As the train is leaving, you hop in a car and drive away 10 m/s to the left. 10 m/s 20 m/s Does the train seems to be moving away from you faster or slower than before. Relative to you, how fast is the train moving? (20 m/s + 10 m/s) = 30 m/s

Ch. 2 & 3 Velocity & Acceleration

Ch. 2 & 3 Velocity & Acceleration Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.

More information

Warm up # 20. Table of Contents TC1

Warm up # 20. Table of Contents TC1 Warm up # 20 Try and describe where something is located in class. Table of Contents TC1 Assignments Page # 7. Textbook scavenger hunt 8. Bubble gum lab 9. Averages 10. Scientific method quiz 11. Motion

More information

Motion. 1 Describing Motion CHAPTER 2

Motion. 1 Describing Motion CHAPTER 2 CHAPTER 2 Motion What You ll Learn the difference between displacement and distance how to calculate an object s speed how to graph motion 1 Describing Motion 2(D), 4(A), 4(B) Before You Read Have you

More information

Average speed is calculated by taking the total distance travelled and dividing it by the total time:

Average speed is calculated by taking the total distance travelled and dividing it by the total time: Speed Calculations Now that you know your definitions, you ll learn how to calculate some of the quantities. The following formulas are all very similar, but their slight differences are important since

More information

8.6B SS - differentiate between speed, velocity, and acceleration

8.6B SS - differentiate between speed, velocity, and acceleration 8.6B SS - differentiate between speed, velocity, and acceleration What is the difference between speed, acceleration and velocity? How is speed calculated? How do we know if something is moving quickly

More information

How do we know if something is moving quickly or slowly? What about the speed of things we can t see? (think about internet speed ) Has our idea of

How do we know if something is moving quickly or slowly? What about the speed of things we can t see? (think about internet speed ) Has our idea of How do we know if something is moving quickly or slowly? What about the speed of things we can t see? (think about internet speed ) Has our idea of speed changed over time? 8.6B SS - differentiate between

More information

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour.

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. Speed How are instantaneous speed and average speed different? Average

More information

Table of Contents STANDARD 1.F.

Table of Contents STANDARD 1.F. Table of Contents TC Assignments Page # 7. Textbook scavenger hunt 8. Bubble gum lab 9. Averages. Scientific method quiz. Averages handout. Motion Position notes. Speed and Graphing STANDARD.F. Students

More information

Chapter 11 Motion. Displacement-. Always includes Shorter than distance

Chapter 11 Motion. Displacement-. Always includes Shorter than distance Chapter 11 Motion Section 1 - an object s change in position relative to a reference point. Observe objects in to other objects. international unit for. Frame of Reference Frame of reference- a system

More information

x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m

x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m 3.1 Track Question a) Distance Traveled is 1600 m. This is length of the path that the person took. The displacement is 0 m. The person begins and ends their journey at the same position. They did not

More information

Remeber this? You still need to know this!!!

Remeber this? You still need to know this!!! Remeber this? You still need to know this!!! Motion: Speed: Measure of how fast something is moving Speed = Distance Time Speed is a rate: something divided by time SI units for Speed: (m/s) Instantaneous

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

Motion and Speed Classwork Classwork #1

Motion and Speed Classwork Classwork #1 Motion and Speed Classwork Classwork #1 8 th Grade PSI 1. Define motion. 2. When you look at the ground, you seem to be at rest. Why is this? Why does someone in space see you moving in a circle? 3. Define

More information

Section 1. Objectives:

Section 1. Objectives: Chapter 2 Motion Objectives: Section 1 Use a frame of reference to describe motion Differentiate between Speed and Velocity Calculate the speed of an object Use graphs to describe speed Observing Motion

More information

Chapter 11 Motion. Section 1

Chapter 11 Motion. Section 1 Chapter 11 Motion Objectives: Section 1 Use a frame of reference to describe motion Differentiate between Speed and Velocity Calculate the speed of an object Use graphs to describe speed 1 Observing Motion

More information

Physical Science You will need a calculator today!!

Physical Science You will need a calculator today!! Physical Science 11.3 You will need a calculator today!! Physical Science 11.3 Speed and Velocity Speed and Velocity Speed The ratio of the distance an object moves to the amount of time the object moves

More information

JR. GENIUS EDUCATIONAL SERVICES INC.

JR. GENIUS EDUCATIONAL SERVICES INC. 1 Name: 1. Multiple Choice: 25 marks Copy to Scantron Card after finding the answer on the sheet. Fill in the Scantron card in the last 5 min. of the test. Do Short section first. 1. You are riding your

More information

LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION:

LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION: LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 1 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION: How far? Describing change in linear or angular position Distance (Scalar

More information

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Exam 1 Please write your CID Colton 2-3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

HONORS PHYSICS One Dimensional Kinematics

HONORS PHYSICS One Dimensional Kinematics HONORS PHYSICS One Dimensional Kinematics LESSON OBJECTIVES Be able to... 1. use appropriate metric units and significant figures for given measurements 2. identify aspects of motion such as position,

More information

Unit 1 Uniform Velocity & Position-Time Graphs

Unit 1 Uniform Velocity & Position-Time Graphs Name: Unit 1 Uniform Velocity & Position-Time Graphs Hr: Grading: Show all work, keeping it neat and organized. Show equations used and include units in all work. Vocabulary Distance: how far something

More information

Homework: Turn in Tortoise & the Hare

Homework: Turn in Tortoise & the Hare Your Learning Goal: After students experienced speed in the Runner s Speed Lab, they will be able to describe how different speeds look like on a graph with 100% accuracy. Table of Contents: Notes: Graphs

More information

Broughton High School of Wake County

Broughton High School of Wake County 1 2 Physical Science Notebook Table of Contents Chapter 2 Motion: Speed & Acceleration Pg. # Date Description Turned In 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Received Back 3

More information

Activity #1: Significant Figures Kahoot!

Activity #1: Significant Figures Kahoot! davidbbell3@cmail.carleton.ca CSAS: 4th Floor MacOdrum Library What to Bring: This worksheet (either printed or digitally) Scientific Calculator Ruler and protractor (if you have one) Paper and pencil

More information

Physics 2204 Worksheet 6.5: Graphical Analysis of Non- Uniform Motion D-T GRAPH OF NON-UNIFORM MOTION (ACCELERATING) :

Physics 2204 Worksheet 6.5: Graphical Analysis of Non- Uniform Motion D-T GRAPH OF NON-UNIFORM MOTION (ACCELERATING) : Physics 2204 Worksheet 6.5: Graphical Analysis of Non- Uniform Motion D-T GRAPH OF NON-UNIFORM MOTION (ACCELERATING) : The d-t graph for uniformly Accelerated motion is definitely not the same as a d-t

More information

Speed and Acceleration. Measuring motion

Speed and Acceleration. Measuring motion Speed and Acceleration Measuring motion Measuring Distance Meter international unit for measuring distance. 1 mm = 50 m Calculating Speed Speed (S) = distance traveled (d) / the amount of time it took

More information

D/T = S. Motion Math pages 6 & 7 in your little book. Chp 5 Little Book, Motion Math & Work Sheet Answers:

D/T = S. Motion Math pages 6 & 7 in your little book. Chp 5 Little Book, Motion Math & Work Sheet Answers: Chp 5 Little Book, Motion Math & Work Sheet Answers: Be sure to show YOUR work and the formulas for credit! Motion Math pages 6 & 7 in your little book Solve the following problems. Show all your work

More information

1.6.1 Inertial Reference Frames

1.6.1 Inertial Reference Frames 1.6.1 Inertial Reference Frames The laws of physics which apply when you are at rest on the earth also apply when you are in any reference frame which is moving at a constant velocity with respect to the

More information

Section 6 : Average Speed (v av )and Average Velocity ( )

Section 6 : Average Speed (v av )and Average Velocity ( ) Section 6 : Average Speed (v av )and Average Velocity ( ) Realistically, when objects move, their movement is almost always non-uniform. Turning, or obstacles force them to change. When we describe the

More information

Where are you right now? How fast are you moving? To answer these questions precisely, you

Where are you right now? How fast are you moving? To answer these questions precisely, you 4.1 Position, Speed, and Velocity Where are you right now? How fast are you moving? To answer these questions precisely, you need to use the concepts of position, speed, and velocity. These ideas apply

More information

CHANGES IN FORCE AND MOTION

CHANGES IN FORCE AND MOTION reflect CRACK! That s the sound of a bat hitting a baseball. The ball fl ies through the air and lands over the fence for a home run. The motion of a batted ball seems simple enough. Yet, many forces act

More information

Shedding Light on Motion Episode 4: Graphing Motion

Shedding Light on Motion Episode 4: Graphing Motion Shedding Light on Motion Episode 4: Graphing Motion In a 100-metre sprint, when do athletes reach their highest speed? When do they accelerate at the highest rate and at what point, if any, do they stop

More information

Name: Date Due: Motion. Physical Science Chapter 2

Name: Date Due: Motion. Physical Science Chapter 2 Name: Date Due: Motion Physical Science Chapter 2 What is Motion? 1. Define the following terms: a. motion= a. frame of reference= b. distance= c. vector= d. displacement= 2. Why is it important to have

More information

Add this important safety precaution to your normal laboratory procedures:

Add this important safety precaution to your normal laboratory procedures: Student Activity Worksheet Speed and Velocity Are You Speeding? Driving Question What is speed and how is it related to velocity? Materials and Equipment For each student or group: Data collection system

More information

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT 1. Vector mechanics apply to which of the following? A. displacement B. velocity C. speed D. both displacement and velocity 2. If velocity is constant, then

More information

Practice Problem. How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2?

Practice Problem. How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2? Practice Problem How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2? Practice Problem If a car slams on its breaks and comes to a complete stop, after driving for 20

More information

(Mechanical) Kinetic Energy

(Mechanical) Kinetic Energy Science 10 Physics (Mechanical) Kinetic Energy What is Kinetic Energy? How do we describe motion? (watch the video clip and describe the motion you see) What gives an object MORE kinetic energy? (If a

More information

2 Motion BIGIDEA Write the Big Idea for this chapter.

2 Motion BIGIDEA Write the Big Idea for this chapter. 2 Motion BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in the What I Want to

More information

Introduction to solving acceleration problems

Introduction to solving acceleration problems Introduction to solving acceleration problems We learned previously that speed is a function of distance and time: s = d t We also learned that velocity is a nearly identical formula. The difference is

More information

Jeddah Knowledge International School. Science Revision Pack Answer Key Quarter 3 Grade 10

Jeddah Knowledge International School. Science Revision Pack Answer Key Quarter 3 Grade 10 Jeddah Knowledge International School Science Revision Pack Answer Key 2016-2017 Quarter 3 Grade 10 Name: Section: ANSWER KEY- SCIENCE GRADE 10, QUARTER 3 1 1. What are the units for mass? A Kilograms

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

UNIT 12. A WORLD IN MOTION

UNIT 12. A WORLD IN MOTION NAME: UNIT 12. A WORLD IN MOTION 1. INTRODUCTION. BRAINSTORM Think and discuss about these questions: a) Are your rucksacks moving at the moment? b) Is a rucksack into a car moving? Use these sentences:

More information

SF016: PAST YEAR UPS QUESTIONS

SF016: PAST YEAR UPS QUESTIONS CHAPTER 2: KINEMATICS OF LINEAR MOTION Session 205/206. (a)(i) If the object has zero acceleration, what happen to its velocity? Explain your answer. (ii) A car is initially at rest at =0. It then accelerates

More information

Physics of Sports. Homewood Campus, JHU Hodson Hall 213 Muhammad Ali Yousuf Assignment 1. Part 1

Physics of Sports. Homewood Campus, JHU Hodson Hall 213 Muhammad Ali Yousuf Assignment 1. Part 1 Assigned date: January 9 th, 2018. Due date: January 16 th, 2018 Your name: Part 1 Instructions for Part `\1: I. Since time is limited and problems may be open-ended, you are allowed to discuss with others.

More information

Compare the scalar of speed and the vector of velocity.

Compare the scalar of speed and the vector of velocity. Review Video QOD 2/14/12: Compare the scalar of speed and the vector of velocity. What are the equations for each? Feb 14 6:51 AM 1 Imagine that you are a race car driver. You push on the accelerator.

More information

Projectiles Shot up at an Angle

Projectiles Shot up at an Angle Projectile Motion Notes: continued Projectiles Shot up at an Angle Think about a cannonball shot up at an angle, or a football punt kicked into the air, or a pop-fly thrown into the air. When a projectile

More information

Relative Motion. New content!

Relative Motion. New content! Relative Motion New content! Task: Draw the speed vs time graphs for the six toy cars 2-D Kinematics Relative Motion Projectile Motion Angled Projectiles Announcements Meet in the lab tomorrow (bring

More information

Vocabulary. Page 1. Distance. Displacement. Position. Average Speed. Average Velocity. Instantaneous Speed. Acceleration

Vocabulary. Page 1. Distance. Displacement. Position. Average Speed. Average Velocity. Instantaneous Speed. Acceleration Vocabulary Term Definition Distance Displacement Position Average Speed Average Velocity Instantaneous Speed Acceleration Page 1 Homer walked as follows: Starting at the 0,0 coordinate, he walked 12 meters

More information

Due Next Class: U1.HW1.Dist/Disp & P-t Graphs All (problems 1-3) Do Now: 1. Walk in silently.

Due Next Class: U1.HW1.Dist/Disp & P-t Graphs All (problems 1-3) Do Now: 1. Walk in silently. Do Now: 1. Walk in silently. Due Next Class: U1.HW1.Dist/Disp & P-t Graphs All (problems 1-3) 2. Grab a calculator and any papers for today. 3. Put your homework on the corner of your desk. 4. Usain Bolt

More information

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM PHYSICS REVIEW SHEET 2010 MID-TERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed

More information

Acceleration Activity

Acceleration Activity Acceleration Acceleration is the rate of change in the speed of an object. To determine the rate of acceleration, you use the formula below. The units for acceleration are meters per second per second

More information

Chapter 1: Incredible speed races

Chapter 1: Incredible speed races Chapter 1: Incredible speed races High speeds and accelerations fascinate most of us. The feeling we get when an airplane takes off or when we start a ride on a roller coaster, is surely unique. In the

More information

AP Physics 1 Summer Assignment 2017

AP Physics 1 Summer Assignment 2017 AP Physics 1 Summer Assignment 2017 Begin this packet after you confirm your placement with guidance. This assignment is being handed out to all students who have requested AP Physics 1 in 2017-18. Receiving

More information

1.0 Converting. 1. What is the speed of a person walking at 3.1 mph in m/s? Show your work and box your answer (check your units)

1.0 Converting. 1. What is the speed of a person walking at 3.1 mph in m/s? Show your work and box your answer (check your units) 1.0 Converting There are 1,609.34 meters in one mile. One meter equals 3.28 feet. I mph equals 0.44704 m/s 1. What is the speed of a person walking at 3.1 mph in m/s? Show your work and box your answer

More information

Riverboat and Airplane Vectors

Riverboat and Airplane Vectors Grade Homework Riverboat and Airplane Vectors It all depends on your point of view It s all relative On occasion objects move within a medium that is moving with respect to an observer. In such instances,

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

Figure 1. What is the difference between distance and displacement?

Figure 1. What is the difference between distance and displacement? Q1.A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the same as the

More information

Speed Reading. Forces Cause Change. The force of a bat hitting a baseball causes the baseball to change direction.

Speed Reading. Forces Cause Change. The force of a bat hitting a baseball causes the baseball to change direction. Speed Reading Forces Cause Change The force of a bat hitting a baseball causes the baseball to change direction. The force of the wind blowing can cause a sailboat to change position as the sail is pushed.

More information

December 6, SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation.

December 6, SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation. December 6, 2016 Aims: SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation. Agenda 1. Do Now 2. Class Practice 3. Independent Practice 4. Practicing our AIMS: Homework:

More information

DATA EQUATIONS MATH ANSWER

DATA EQUATIONS MATH ANSWER HCP PHYSICS REVIEW SHEET MID TERM EXAM Concepts And Definitions 1. Definitions of fact, hypothesis, law, theory 2. Explain the scientific method 3. Difference between average and instantaneous speed and

More information

One Dimensional Kinematics Challenge Problems

One Dimensional Kinematics Challenge Problems One Dimensional Kinematics Challenge Problems Problem 1: One-Dimensional Kinematics: Two stones are released from rest at a certain height, one after the other. a) Will the difference between their speeds

More information

PHYSICS Unit 2 Key Topic Test 1 Aspects of Motion QUESTION BOOK. Student Name:

PHYSICS Unit 2 Key Topic Test 1 Aspects of Motion QUESTION BOOK. Student Name: Student Name: PHYSICS 2014 Unit 2 Key Topic Test 1 Aspects of Motion Recommended writing time*: 45 minutes Total number of marks available: 45 marks QUESTION BOOK SECTION A MULTIPLE-CHOICE QUESTIONS SECTION

More information

Bikes and Energy. Pre- Lab: The Bike Speedometer. A Bit of History

Bikes and Energy. Pre- Lab: The Bike Speedometer. A Bit of History Bikes and Energy Pre- Lab: The Bike Speedometer A Bit of History In this lab you ll use a bike speedometer to take most of your measurements. The Pre- Lab focuses on the basics of how a bike speedometer

More information

Note! In this lab when you measure, round all measurements to the nearest meter!

Note! In this lab when you measure, round all measurements to the nearest meter! Distance and Displacement Lab Note! In this lab when you measure, round all measurements to the nearest meter! 1. Place a piece of tape where you will begin your walk outside. This tape marks the origin.

More information

Rates and measurement Block 1 Student Activity Sheet

Rates and measurement Block 1 Student Activity Sheet Block 1 Student Activity Sheet 1. Complete the table below. Use the table, map, and graph to describe the field trip. Can you explain how the bus traveled in terms of distance, time, and speed? Speculate

More information

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should: This unit deals with the speed of objects. Speed is a basic concept used to quantify an object s movement, which can be measured by positional changes over time. It is important to express and object s

More information

EDUCATION DAY WORKBOOK

EDUCATION DAY WORKBOOK Grades 6 8 EDUCATION DAY WORKBOOK It is with great thanks for their knowledge and expertise that the individuals who devised this book are recognized. GETTING STARTED MAKING MEASUREMENTS 1. Time: The times

More information

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

More information

Introduction to Scientific Notation & Significant Figures. Packet #6

Introduction to Scientific Notation & Significant Figures. Packet #6 Introduction to Scientific Notation & Significant Figures Packet #6 Introduction A measurement is a quantity that has both a unit and number Measurements are fundamental to the experimental sciences. Measurements,

More information

LINEAR MOTION. General Review

LINEAR MOTION. General Review LINEAR MOTION General Review 1. Velocity is to speed as displacement is to A. acceleration B. momentum C. time D. distance 1. Velocity is to speed as displacement is to A. acceleration B. momentum C. time

More information

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart Kinematics 1 Name: Date: 1. 4. A cart moving across a level surface accelerates uniformly at 1.0 meter per second 2 for 2.0 seconds. What additional information is required to determine the distance traveled

More information

Motion Graphing Packet

Motion Graphing Packet Name: Motion Graphing Packet This packet covers two types of motion graphs Distance vs. Time Graphs Velocity vs. Time Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes

More information

Unit 1: Uniform Motion

Unit 1: Uniform Motion Unit 1: Uniform Motion Name Speed and Velocity Problems. Show every step and report all answers with appropriate units. 1. What is the average speed of a cheetah that sprints 100 m in 4 s? 2. How about

More information

Science 421 Class Test: Unit Analysis and Significant Figures in Measurement and Calculations

Science 421 Class Test: Unit Analysis and Significant Figures in Measurement and Calculations Science 421 Class Test: Unit Analysis and Significant Figures in Measurement and Calculations 1) How many significant figures are in each of the following measurements? (1 point each) A) 593 cm B) 0.014

More information

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

More information

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers.

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Motion Graphs 6 The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Descriptions: 1. The car is stopped. 2. The car is traveling

More information

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls

More information

Usain Bolt He is fast! In fact the fastest, but just how fast is fast?

Usain Bolt He is fast! In fact the fastest, but just how fast is fast? Name per date mail box Usain Bolt He is fast! In fact the fastest, but just how fast is fast? At the Beijing Olympics in 2008 he earned three medals as a sprinter. In track and field and in much of the

More information

The Math and Science of Bowling

The Math and Science of Bowling The Report (100 : The Math and Science of Bowling 1. For this project, you will need to collect some data at the bowling alley. You will be on a team with one other student. Each student will bowl a minimum

More information

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec 1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

More information

1 An object moves at a constant speed of 6 m/s. This means that the object:

1 An object moves at a constant speed of 6 m/s. This means that the object: Slide 1 / 57 1 n object moves at a constant speed of 6 m/s. This means that the object: Increases its speed by 6 m/s every second ecreases its speed by 6 m/s every second oesn t move Has a positive acceleration

More information

Velocity signifies the speed of an object AND the direction it is moving.

Velocity signifies the speed of an object AND the direction it is moving. Speed and Velocity Speed refers to how far an object travels in a given amount of time, regardless of direction. If a car travels 100 km in 2 hours, it s average speed was 50km/hour. 100km = 50 km/hr 2

More information

Physics 11 Honours Lesson 3 Distance and Displacement

Physics 11 Honours Lesson 3 Distance and Displacement Name: Block: Physics 11 Honours Lesson 3 Distance and Displacement In physics, every measured quantity is either a or a. Scalars: For example: Vectors: For example: Note: Vectors are either written in

More information

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables DISTANCE Last First Date Per SETTLE LAB: Speed AND Velocity (pp108-111 for help) Pre-Activity NOTES 1. What is speed? SPEED 5-4 - 3-2 - 1 2. What is the formula used to calculate average speed? 3. Calculate

More information

Quarterly Science Benchmark Assessment (QSBA) Physical Science. Quarter 1

Quarterly Science Benchmark Assessment (QSBA) Physical Science. Quarter 1 2014 2015 Quarterly Science Benchmark Assessment (QSBA) Physical Science Quarter 1 Miami-Dade County Public Schools Office of Academics and Transformation INTRODUCTION The Physical Science Quarterly Science

More information

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion Problems: 1. Once you have recorded the calibration frame for a data collection, why is it important to make sure the camera does not shut off? hat happens if the camera automatically shuts off after being

More information

Rate of Speed P.O.D. October 5, Last summer Ms. Moore hiked two different trails and got the data below.

Rate of Speed P.O.D. October 5, Last summer Ms. Moore hiked two different trails and got the data below. Rate of Speed October 5, 2017 P.O.D. Learning Target: Last summer Ms. Moore hiked two different trails and got the data below. Staunton State Park Arapahoe Lake Start: 9 am End: 3:00 pm Mileage: 11 miles

More information

REAL LIFE GRAPHS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

REAL LIFE GRAPHS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier Mathematics Revision Guides Real Life Graphs Page 1 of 19 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier REAL LIFE GRAPHS Version: 2.1 Date: 20-10-2015 Mathematics Revision Guides

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 20, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

Although many factors contribute to car accidents, speeding is the

Although many factors contribute to car accidents, speeding is the 74 Measuring Speed l a b o r at o ry Although many factors contribute to car accidents, speeding is the most common kind of risky driving. Unsafe speed is involved in about 20% of fatal car accidents in

More information

NCERT solution for Motion and Time

NCERT solution for Motion and Time 1 NCERT solution for Motion and Time Question 1 Classify the following as along a straight line, circular or oscillatory : (i) Motion of your hands while running. (ii) Motion of a horse pulling a cart

More information

AP Physics B Summer Homework (Show work)

AP Physics B Summer Homework (Show work) #1 NAME: AP Physics B Summer Homework (Show work) #2 Fill in the radian conversion of each angle and the trigonometric value at each angle on the chart. Degree 0 o 30 o 45 o 60 o 90 o 180 o 270 o 360 o

More information

Teacher's Manual. First Printing: September Master Books P.O. Box 726 Green Forest, AR Printed in the United States of America

Teacher's Manual. First Printing: September Master Books P.O. Box 726 Green Forest, AR Printed in the United States of America Teacher's Manual First Printing: September 2008 First Printing: February 2009 Copyright 2009 by Tom DeRosa and Carolyn Reeves. All rights reserved. No part of this book may be reproduced in any manner

More information

Physics 111 Lecture 1 Units

Physics 111 Lecture 1 Units Physics 111 Lecture 1 Units Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Course Information: Instructor Instructor: Ali Övgün Office: AS 245 ( Arts and Sciences Faculty) Office hour: To be announced

More information

Objective Determine how the speed of a runner depends on the distance of the race, and predict what the record would be for 2750 m.

Objective Determine how the speed of a runner depends on the distance of the race, and predict what the record would be for 2750 m. Mechanics Activity: Track Records Student Worksheet Objective Determine how the speed of a runner depends on the distance of the race, and predict what the record would be for 2750 m. Introduction Now

More information

Force, Motion and Energy Review

Force, Motion and Energy Review NAME Force, Motion and Energy Review 1 In the picture to the right, two teams of students are playing tug-of-war. Each team is pulling in the opposite direction, but both teams are moving in the same direction.

More information

time v (vertical) time

time v (vertical) time NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

More information

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction.

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction. 1. A baseball is thrown at an angle of 40.0 above the horizontal. The horizontal component of the baseball s initial velocity is 12.0 meters per second. What is the magnitude of the ball s initial velocity?

More information

Project 1 Those amazing Red Sox!

Project 1 Those amazing Red Sox! MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Spring Semester, 2005 Project 1 Those amazing Red

More information

Quizbank/College Physics/I T1study

Quizbank/College Physics/I T1study Quizbank/College Physics/I T1study From Wikiversity TrigPhys_I_T1_Study If you are reading this as a Wikiversity page, proper pagebreaks should result if printed using your browser's print option. On Chrome,

More information