QUICK WARM UP: Thursday 3/9

Size: px
Start display at page:

Download "QUICK WARM UP: Thursday 3/9"

Transcription

1 Name: pd: Unit 6, QUICK WARM UP: Thursday 3/9 1) The slope of a distance vs. time graph shows an object s. 2) The slope of a position vs. time graph shows an object s. 3) Can an object have a constant speed but NOT have a constant velocity? Explain by reading and filling out the missing information below: To have a CONSTANT VELOCITY, an object must travel the exact same in the exact same per each exact same unit of. o EXAMPLE OF CONSTANT VELOCITY: every an object travels. To have a CONSTANT SPEED, an object must only travel the exact same per each exact same unit of. o EXAMPLE OF CONSTANT SPEED: every an object travels. The of the motion is irrelevant. An object could be going the exact same per each exact same unit of (have a constant ), BUT, if that object is NOT going in the same, they would NOT have a constant. This is how something could have a constant but NOT constant. 4) a. Explain how you could use a POSITION vs. TIME (Velocity) graph to calculate something s SPEED even when there are negative slopes involved (such as in the one below). b. What is the average SPEED of the object that s motion is graphed below over the whole 12.5 seconds? Show your work/how you figured this out:

2 Name: Period: UNIT 6 Thursday 3/9 Graphing Motion with a Motion Detector! Using Logger-Pro and the Motion Detector to Analyze Velocity: Set up your motion detector so that you have a straight path out from it about 3-4 meters. *The path must be straight and uninterrupted. **Note: The motion detector will only collect accurate motion data correct motion from about ½ of a meter away and up to 4-5 meters out. Set up your logger pro graph on the computer. *Make sure motion detector and other cords are all attached and connected!!! 2A) Click on the start button in the bottom left corner of the screen 2B) In the search bar, type Logger Pro and click on the program Logger Pro 3.10 to open the program. If things are connected correctly, it will open with a graph that looks like THIS 2C) In the logger pro program opens, go to File OPEN Double click the file named: PHYSICAL SCIENCE W VERNIER Double click the graph file named: 35a Graphing Your Motion (a position vs. time graph should open up ) Once graph 35a is open o Click and drag the position and time axes until it shows 4-5 meters out and about seconds of collection time. 2D) Start reading directions for your activity. After each trial/activity, Clear the data. (Experiment clear latest run) However, THIS is NOT the graph you want. To get to the graph you ll be using, follow directions to the left. THIS IS the graph you want! (35a) ****HINT: When you are transcribing a motion graph from the computer to your paper, Use your best judgement to approximate what s being shown on the computer to your paper.

3 ACTIVITY 1: What does our motion look like on a position vs. graph? Take turns having 1 person in your group to do each of the following activities. When each person is done doing the motion described in their box and their motion graph has been created on the screen, copy (do your best) what the graph looks like on the screen onto this paper into the respective box. Use your best judgement to approximate your drawings on this sheet. **Have one person in the group click the green triangle button to begin data collection (still using graph 35a) and click on the same button to stop data collection after about 5-10 seconds. Clear the data (don t save) between each run. **Note: The motion detector will only collect accurate motion data correct motion from about ½ to ¾ of a meter away and up to 4-5 meters out. What does it look like on a position vs. time graph when someone. 1) Is standing still a couple meters away from the motion detector? 2) Moves towards the motion detector SLOWLY starting away from the detector about 4-5 meters? 3) Moves away from the motion detector at a FAST (still controlled) walk, to about 4-5 meters out? 4) Moves away from the motion detector SLOWLY to about 4-5 meters out? 5) Starts out moving away from the motion detector, then turns around and walks back towards it? (moderate/regular pace)? 6) Moves towards the motion detector at a FASTER (still controlled) walk, starting about 4-5 meters out? 7) Starts out moving very SLOW and ends up walking FAST moving away from the motion detector to about 4-5 meters out? 8) Starts out moving very FAST, then ends up walking very SLOW moving towards the motion detector from about 4-5 meters out? 9) Goes away from and back towards the motion detector several times at a pretty fast (but controlled) walking pace?

4 ACTIVITY 2: Clear all data and make sure your computer is still showing graph 35a. Each person in the group will move away/towards the motion detector at different rates so that they create a unique graph with 2 TO 3 segments. Your TOTAL motion graph should take 10 seconds (or less). You will then record their motion graph onto your paper. <in some cases you ll have to use your best judgement to distinguish different the different motion segments (graph can sometimes be hard to read)> Then, you ll do their velocity calculations for each segment. Ways you can move to create your unique motion graph: Remember, it s only tracking 2-dimensional motion- no side to side motion will be detected. Only UP TO 3 different segments per person! Feel free to mix up the order and do your own thing! AWAY from the detector. STOPPED, TOWARDS the motion detector PLANNING YOUR 3-segment MOTION GRAPH: FAST motion ( controlled-not running) SLOW motion Segment A: (circle one) I ll do this for about seconds AWAY from the detector FAST AWAY from the detector SLOW BACK Towards the detector FAST BACK Towards the detector SLOW STOPPED Segment B: (circle one) I ll do this for about seconds AWAY from the detector FAST AWAY from the detector SLOW BACK Towards the detector FAST BACK Towards the detector SLOW STOPPED Segment C: (circle one) I ll do this for about seconds AWAY from the detector FAST AWAY from the detector SLOW BACK Towards the detector FAST BACK Towards the detector SLOW STOPPED PERSON 1: Name: s motion graph: 1) On the computer, adjust the time and position intervals so they appear on the graph below (time up to 10 sec., position up to 4 m). 2) Press the start arrow and have the person start doing their motion segments. Press the stop button after 10 sec. 3) Observe the motion graph created on the computer and use it to approximate the start/end points of each segment 4) Record the person s approximate motion graph on the graph on this paper. 5) Calculate the person s different velocities for each of their motion segments in the areas that follow Segment A velocity: Person 1 Segment B velocity: Person 1 Segment C velocity: Person 1 WHOLE 10 seconds AVG. SPEED: person 1 (remember, speed is always POSITIVE. TOTAL (+ and velocities) DISTANCE over TOTAL time!)

5 PERSON 2: Name: s motion graph: 1) On the computer, adjust the time and position intervals so they appear on the graph below (time up to 10 sec., position up to 4 m). 2) Press the start arrow and have the person start doing their motion segments. Press the stop button after 10 sec. 3) Observe the motion graph created on the computer and use it to approximate the start/end points of each segment 4) Record the person s approximate motion graph on the graph on this paper. 5) Calculate the person s different velocities for each of their motion segments in the areas that follow Segment A velocity: Person 2 Segment B velocity: Person 2 Segment C velocity: Person 2 WHOLE 10 seconds AVG. SPEED: person 2 (remember, speed is always POSITIVE. TOTAL (+ and velocities) DISTANCE over TOTAL time!) PERSON 3: Name: s motion graph: 1) On the computer, adjust the time and position intervals so they appear on the graph below (time up to 10 sec., position up to 4 m). 2) Press the start arrow and have the person start doing their motion segments. Press the stop button after 10 sec. 3) Observe the motion graph created on the computer and use it to approximate the start/end points of each segment 4) Record the person s approximate motion graph on the graph on this paper. 5) Calculate the person s different velocities for each of their motion segments in the areas that follow Segment A velocity: Person 3 Segment B velocity: Person 3 Segment C velocity: Person 3 WHOLE 10 seconds AVG. SPEED: person 3 (remember, speed is always POSITIVE. TOTAL (+ and velocities) DISTANCE over TOTAL time!)

6 PERSON 4: Name: s motion graph: 1) On the computer, adjust the time and position intervals so they appear on the graph below (time up to 10 sec., position up to 4 m). 2) Press the start arrow and have the person start doing their motion segments. Press the stop button after 10 sec. 3) Observe the motion graph created on the computer and use it to approximate the start/end points of each segment 4) Record the person s approximate motion graph on the graph on this paper. 5) Calculate the person s different velocities for each of their motion segments in the areas that follow Segment A velocity: Person 4 Segment B velocity: Person 4 Segment C velocity: Person 4 WHOLE 10 seconds AVG. SPEED: person 1 (remember, speed is always POSITIVE. TOTAL (+ and velocities) DISTANCE over TOTAL time!)

7 ACTIVITY 3 (IF TIME) (Physical Science w/ Verneir 35b) ADJUSTING YOUR MOTION! 1) Study the motion graph below. Think about how you would have to move in order to trace the graph shown below. Optional: make a note for each segment describing how you d have to move to obtain a motion graph like this one: 2) Go to File OPEN PHYSICAL SCIENCE W VERNIER 35b Graphing Your Motion **Adjust time intervals on graph if necessary: 3) Each student will attempt to duplicate the motion represented by the graph. Record each student s trial on the graph with their name and explain why they did or did not duplicate the motions (or if there are certain parts that very close or far off). Person 1: Person 2: Person 3: Person 4:

8 WARM UP: FRIDAY MARCH 10 th, ) Make up a 5-step motion story to match the position vs. time graph shown below: 2) Is the motion graph above showing speed or velocity? How can you tell?

9 MOTION DETECTOR VELOCITY INVESTIGATION POST-LAB QUESTIONS: 1) Without the computer, approximate how the following motion stories would look on a position vs. time graph if you were to graph them with a motion detector. a) standing still 1 meter away from the motion detector for the full 10 seconds: b) Starting 3 meters away from the motion detector, and slowly moving towards it: c) starting 3 meters away from the motion detector, and Moving repeatedly, very fast, 1 meter closer to the motion detector, then 1 meter away. d) Starting close to the motion detector and gradually increasing your speed as you move away from it. e) Moving away at a moderate speed, stopping for 1 second, then moving back towards the motion detector. 2) In general, what does the SLOPE of the line tell us in either a distance vs. time OR position vs. time graph? Explain and draw an example: 3) What is the main thing that velocity can tell us that speed does not tell us? 4) In what situations/occupations would knowing something s velocity be more important than just knowing its speed?

Ball Toss. Vernier Motion Detector

Ball Toss. Vernier Motion Detector Experiment 6 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs. time would

More information

Add this important safety precaution to your normal laboratory procedures:

Add this important safety precaution to your normal laboratory procedures: Student Activity Worksheet Speed and Velocity Are You Speeding? Driving Question What is speed and how is it related to velocity? Materials and Equipment For each student or group: Data collection system

More information

In addition to reading this assignment, also read Appendices A and B.

In addition to reading this assignment, also read Appendices A and B. 1 Kinematics I Introduction In addition to reading this assignment, also read Appendices A and B. We will be using a motion detector to track the positions of objects with time in several lab exercises

More information

Chapter : Linear Motion 2

Chapter : Linear Motion 2 Text: Chapter 2.5-2.9 Think and Explain: 4-8 Think and Solve: 2-4 Chapter 2.5-2.9: Linear Motion 2 NAME: Vocabulary: constant acceleration, acceleration due to gravity, free fall Equations: s = d t v =

More information

Air Ball! Evaluation copy

Air Ball! Evaluation copy Air Ball! Computer 24 Do you ever wonder how the National Basketball Association (NBA) decides how much air should be in the basketballs used during a game? The NBA measures the pressure inside the ball

More information

Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we will use is air,

More information

Note! In this lab when you measure, round all measurements to the nearest meter!

Note! In this lab when you measure, round all measurements to the nearest meter! Distance and Displacement Lab Note! In this lab when you measure, round all measurements to the nearest meter! 1. Place a piece of tape where you will begin your walk outside. This tape marks the origin.

More information

The CBL cannot get accurate data closer than about 0.5 meters, so your graphs will be distorted anywhere the y-values are less than 0.5 meters.

The CBL cannot get accurate data closer than about 0.5 meters, so your graphs will be distorted anywhere the y-values are less than 0.5 meters. Name Hour Hiker Lab In this lab, you will be given a graph and you must try to walk in a manner so that the graph of your distance vs. time looks like the given graph. You will need: 1. A TI83 graphics

More information

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables DISTANCE Last First Date Per SETTLE LAB: Speed AND Velocity (pp108-111 for help) Pre-Activity NOTES 1. What is speed? SPEED 5-4 - 3-2 - 1 2. What is the formula used to calculate average speed? 3. Calculate

More information

Motion Graphing Packet

Motion Graphing Packet Name: Motion Graphing Packet This packet covers two types of motion graphs Distance vs. Time Graphs Velocity vs. Time Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes

More information

Exploring the Properties of Gases

Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment and materials and some general

More information

Student Exploration: Distance-Time and Velocity-Time Graphs

Student Exploration: Distance-Time and Velocity-Time Graphs Name: Date: Student Exploration: Distance-Time and Velocity-Time Graphs [NOTE TO TEACHERS AND STUDENTS: This lesson was designed as a follow-up to the Distance-Time Graphs Gizmo. We recommend you complete

More information

LAB : Using A Spark Timer

LAB : Using A Spark Timer LAB : Using A Spark Timer Read through the whole lab and answer prelab questions prior to lab day. Name: F1 Introduction A spark timer is used to make accurate time and distance measurements for moving

More information

Projectile Motion Lab (2019)

Projectile Motion Lab (2019) Nae: Date: Partner(s): Period: Projectile Motion Lab (2019) Object: Measure the velocity of a ball using two Photogates and coputer software for tiing. Apply concepts fro two-diensional kineatics to predict

More information

x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m

x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m 3.1 Track Question a) Distance Traveled is 1600 m. This is length of the path that the person took. The displacement is 0 m. The person begins and ends their journey at the same position. They did not

More information

Evaluation copy. Wind Chill. computer OBJECTIVES MATERIALS

Evaluation copy. Wind Chill. computer OBJECTIVES MATERIALS Wind Chill Computer 28 A nice breeze can cool you down on a hot day or send a chill through you on a day that is already cold. Wind carries heat away from our bodies making us feel cooler. This phenomenon

More information

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high)

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high) Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

Movement and Position

Movement and Position Movement and Position Syllabus points: 1.2 plot and interpret distance-time graphs 1.3 know and use the relationship between average speed, distance moved and 1.4 describe experiments to investigate the

More information

Boyle s Law: Pressure-Volume. Relationship in Gases

Boyle s Law: Pressure-Volume. Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use will be air,

More information

Activity 1: Walking Graphs. Answer the following questions based on your experiences in the Student Activity: Walk This Way.

Activity 1: Walking Graphs. Answer the following questions based on your experiences in the Student Activity: Walk This Way. I. Foundations for Functions 3.1 Interpreting Distance versus Graphs: Activity 1 Activity 1: Walking Graphs Answer the following questions based on your experiences in the Student Activity: Walk This Way.

More information

Experiment 11: The Ideal Gas Law

Experiment 11: The Ideal Gas Law Experiment 11: The Ideal Gas Law The behavior of an ideal gas is described by its equation of state, PV = nrt. You will look at two special cases of this. Part 1: Determination of Absolute Zero. You will

More information

Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases Experiment The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use

More information

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing.

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Distance vs. Time Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Plotting distance against time can tell you a lot about

More information

Where are you right now? How fast are you moving? To answer these questions precisely, you

Where are you right now? How fast are you moving? To answer these questions precisely, you 4.1 Position, Speed, and Velocity Where are you right now? How fast are you moving? To answer these questions precisely, you need to use the concepts of position, speed, and velocity. These ideas apply

More information

Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases Computer 6 The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use

More information

Air Ball! LabQuest Vernier Gas Pressure Sensor Vernier Motion Detector basketball stopper with needle, stopper stem and tubing attached meter stick

Air Ball! LabQuest Vernier Gas Pressure Sensor Vernier Motion Detector basketball stopper with needle, stopper stem and tubing attached meter stick Air Ball! LabQuest 24 Do you ever wonder how the National Basketball Association (NBA) decides how much air should be in the basketballs used during a game? The NBA measures the pressure inside the ball

More information

(Lab Interface BLM) Acceleration

(Lab Interface BLM) Acceleration Purpose In this activity, you will study the concepts of acceleration and velocity. To carry out this investigation, you will use a motion sensor and a cart on a track (or a ball on a track, if a cart

More information

Physical Science You will need a calculator today!!

Physical Science You will need a calculator today!! Physical Science 11.3 You will need a calculator today!! Physical Science 11.3 Speed and Velocity Speed and Velocity Speed The ratio of the distance an object moves to the amount of time the object moves

More information

MoLE Gas Laws Activities

MoLE Gas Laws Activities MoLE Gas Laws Activities To begin this assignment you must be able to log on to the Internet using Internet Explorer (Microsoft) 4.5 or higher. If you do not have the current version of the browser, go

More information

Homework: Turn in Tortoise & the Hare

Homework: Turn in Tortoise & the Hare Your Learning Goal: After students experienced speed in the Runner s Speed Lab, they will be able to describe how different speeds look like on a graph with 100% accuracy. Table of Contents: Notes: Graphs

More information

LABORATORY INVESTIGATION

LABORATORY INVESTIGATION LABORATORY INVESTIGATION MEASURING THE RATE OF PHOTOSYNTHESIS Light and Photosynthesis About 2.5-3 billion years ago a new chemical process, photosynthesis, was evolved by a unicellular life form. This

More information

Impulse Lab Write Up. K leigh Olsen. 6th hour

Impulse Lab Write Up. K leigh Olsen. 6th hour Impulse Lab Write Up K leigh Olsen 6th hour March 13th, 2014 ! Over the course of the week my group composed of Tyler, Valerie, Isaac and my self, were asked to design an experiment to find out if different

More information

Gravity: How fast do objects fall? Teacher Version (Grade level: 4 7)

Gravity: How fast do objects fall? Teacher Version (Grade level: 4 7) Gravity: How fast do objects fall? Teacher Version (Grade level: 4 7) *** Experiment with Audacity to be sure you know how to do what s needed for the lab*** Kinematics is the study of how things move

More information

Biology Unit 2, Structure of Life, Lab Activity 2-3

Biology Unit 2, Structure of Life, Lab Activity 2-3 Biology Unit 2, Structure of Life, Lab Activity 2-3 Cellular respiration is the release of energy from organic compounds by metabolic chemical oxidation in the mitochondria within each cell. Cellular respiration

More information

Module 3 Developing Timing Plans for Efficient Intersection Operations During Moderate Traffic Volume Conditions

Module 3 Developing Timing Plans for Efficient Intersection Operations During Moderate Traffic Volume Conditions Module 3 Developing Timing Plans for Efficient Intersection Operations During Moderate Traffic Volume Conditions CONTENTS (MODULE 3) Introduction...1 Purpose...1 Goals and Learning Outcomes...1 Organization

More information

Boyle s Law: Pressure-Volume Relationship in Gases. PRELAB QUESTIONS (Answer on your own notebook paper)

Boyle s Law: Pressure-Volume Relationship in Gases. PRELAB QUESTIONS (Answer on your own notebook paper) Boyle s Law: Pressure-Volume Relationship in Gases Experiment 18 GRADE LEVEL INDICATORS Construct, interpret and apply physical and conceptual models that represent or explain systems, objects, events

More information

Motion in 1 Dimension

Motion in 1 Dimension A.P. Physics 1 LCHS A. Rice Unit 1 Displacement, Velocity, & Acceleration: Motion in 1 Dimension In-Class Example Problems and Lecture Notes 1. Freddy the cat started at the 3 meter position. He then walked

More information

Ch. 2 & 3 Velocity & Acceleration

Ch. 2 & 3 Velocity & Acceleration Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.

More information

Student Exploration: Distance-Time Graphs

Student Exploration: Distance-Time Graphs Name: Date: Procedure: Student Exploration: Distance-Time Graphs 1. Launch Internet Explorer 2. Go to www.explorelearning.com 3. Click on Login. 4. Enter the Username: orange1011 Password: black1011 5.

More information

MoLE Gas Laws Activities

MoLE Gas Laws Activities MoLE Gas Laws Activities To begin this assignment you must be able to log on to the Internet using Internet Explorer (Microsoft) 4.5 or higher. If you do not have the current version of the browser, go

More information

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation?

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation? Classwork Exploratory Challenge 1. Watch the first 1:08 minutes of the video below and describe in words the motion of the man. Elevation vs. Time #2 [http://www.mrmeyer.com/graphingstories1/graphingstories2.mov.

More information

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation?

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation? J Hart Interactive Algebra 1 Classwork Exploratory Challenge 1. Watch the first 1:08 minutes of the video below and describe in words the motion of the man. Elevation vs. Time #2 [http://www.mrmeyer.com/graphingstories1/graphingstories2.mov.

More information

Kinematics Lab #1: Walking the Graphs Results and Discussion. By: Alex Liu Teacher: Mr. Chung Due: October 28, 2010 SPH3U1-01

Kinematics Lab #1: Walking the Graphs Results and Discussion. By: Alex Liu Teacher: Mr. Chung Due: October 28, 2010 SPH3U1-01 Kinematics Lab #1: Walking the Graphs Results and Discussion By: Teacher: Mr. Chung Due: October 28, 2010 SPH3U1-01 1 Introduction The goal of this lab was to match, as accurately as possible, three position-time

More information

Hitting Your Marks on the Drag Strip

Hitting Your Marks on the Drag Strip By Ten80 Education Hitting Your Marks on the Drag Strip STEM Lesson for TI-Nspire Technology Objective: Collect data, analyze the data using graphs, and use the results to determine the best driver. Frameworks:

More information

Higher, Lower; Faster, Slower? Student Data Page Activity 4B Part 2

Higher, Lower; Faster, Slower? Student Data Page Activity 4B Part 2 Activity Materials: (Per Group): Higher, Lower; Faster, Slower? Student Data Page Activity 4B Part 2 30 cm ramp made of cardboard Meter stick Table Ring stand 16 Washers or weight set Pom-Pom Granny Model

More information

Lab #12:Boyle s Law, Dec. 20, 2016 Pressure-Volume Relationship in Gases

Lab #12:Boyle s Law, Dec. 20, 2016 Pressure-Volume Relationship in Gases Chemistry Unit 6:States of Matter & Basic Gas Laws Name Lab Partner Lab #12:Boyle s Law, Dec. 20, 2016 Pressure-Volume Relationship in Gases Purpose: The primary objective of this experiment is to determine

More information

Downloading/Transferring Golf Courses

Downloading/Transferring Golf Courses Open the Application by double clicking the Application icon on the desktop. Once the application is opened you will see the Bushnell Golf website. From here you will notice: -Top left corner: states is

More information

Ozobot Bit Classroom Application: Boyle s Law Simulation

Ozobot Bit Classroom Application: Boyle s Law Simulation OZO AP P EAM TR T S BO RO VE D Ozobot Bit Classroom Application: Boyle s Law Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org Topics Chemistry,

More information

Relative Motion. A look at "Frames of Reference" Website

Relative Motion. A look at Frames of Reference Website Name Relative Motion A look at "Frames of Reference" Website http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=140.msg704#msg704 Introduction An object may appear to have one motion to one observer and

More information

Table of Contents STANDARD 1.F.

Table of Contents STANDARD 1.F. Table of Contents TC Assignments Page # 7. Textbook scavenger hunt 8. Bubble gum lab 9. Averages. Scientific method quiz. Averages handout. Motion Position notes. Speed and Graphing STANDARD.F. Students

More information

AP Physics Chapter 2 Practice Test

AP Physics Chapter 2 Practice Test AP Physics Chapter 2 Practice Test Answers: E,E,A,E,C,D,E,A,C,B,D,C,A,A 15. (c) 0.5 m/s 2, (d) 0.98 s, 0.49 m/s 16. (a) 48.3 m (b) 3.52 s (c) 6.4 m (d) 79.1 m 1. A 2.5 kg ball is thrown up with an initial

More information

RATE OF CHANGE AND INSTANTANEOUS VELOCITY

RATE OF CHANGE AND INSTANTANEOUS VELOCITY RATE OF CHANGE AND INSTANTANEOUS VELOCITY Section 2.2A Calculus AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:34 AM 2.2A: Rates of Change 1 AVERAGE VELOCITY A. Rates of change play a role whenever

More information

Compare the scalar of speed and the vector of velocity.

Compare the scalar of speed and the vector of velocity. Review Video QOD 2/14/12: Compare the scalar of speed and the vector of velocity. What are the equations for each? Feb 14 6:51 AM 1 Imagine that you are a race car driver. You push on the accelerator.

More information

EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW)

EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW) EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW) INTRODUCTION: In order to specify fully the condition of a gas it is necessary to know its pressure, volume, and temperature. This quantities are

More information

What a Drag! Evaluation copy. Make observations and predictions about shoes. Measure the force needed to pull different shoes across a surface.

What a Drag! Evaluation copy. Make observations and predictions about shoes. Measure the force needed to pull different shoes across a surface. What a Drag! Computer 29 Why do you have to wear tennis shoes to your physical education class? Have you ever worn slippery-soled dress shoes? In this lab, you will observe the differences between the

More information

Respiratory Response to Physiologic Challenges. Evaluation copy

Respiratory Response to Physiologic Challenges. Evaluation copy Respiratory Response to Physiologic Challenges Computer 20 The respiratory cycle of inspiration and expiration is controlled by complex mechanisms involving neurons in the cerebral cortex, brain stem,

More information

Boyle s Law. Pressure-Volume Relationship in Gases. Figure 1

Boyle s Law. Pressure-Volume Relationship in Gases. Figure 1 Boyle s Law Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use will be air,

More information

Step 1. CoderDojo Milltown Exercise 1 Pong Page 1 of 13

Step 1. CoderDojo Milltown Exercise 1 Pong Page 1 of 13 CoderDojo Milltown Exercise 1 Pong Page 1 of 13 Step 1 Open up Scratch on your computer or online at http://scratch.mit.edu/projects/editor/? tip_bar=getstarted Scratch 1.4 looks like this Scratch 2.0

More information

Purpose: Hypothesis: Procedure:

Purpose: Hypothesis: Procedure: Name: Block: Properties of Water Lab As we have discussed in class and on notes, water has many unique properties that are critical to life on Earth. The goal of this lab is to study the properties of

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure 1, it

More information

Energy Skate Park - Conservation of Energy. Skate Park Energy Simulation - Conservation of Energy

Energy Skate Park - Conservation of Energy. Skate Park Energy Simulation - Conservation of Energy Physics Energy Skate Park - Conservation of Energy Name: Hour: Date: Skate Park Energy Simulation - Conservation of Energy Purpose: When Tony Hawk wants to launch himself as high as possible off the half-pipe,

More information

Motion. 1 Describing Motion CHAPTER 2

Motion. 1 Describing Motion CHAPTER 2 CHAPTER 2 Motion What You ll Learn the difference between displacement and distance how to calculate an object s speed how to graph motion 1 Describing Motion 2(D), 4(A), 4(B) Before You Read Have you

More information

Tyler Runge and Kelly McCaffrey. The Dynamic Relation between String Length and Height with a Set Mass

Tyler Runge and Kelly McCaffrey. The Dynamic Relation between String Length and Height with a Set Mass The Dynamic Relation between String Length and Height with a Set Mass Introduction: The purpose of this experiment was to find the relation between string length and height while keeping the mass constant

More information

SCRATCH CHALLENGE #3

SCRATCH CHALLENGE #3 SCRATCH CHALLENGE #3 Objective: Demonstrate your understanding of scratch by designing the pong game. **View this Pong Game PDF for the instructions on how to design the pong game.** Scroll down for the

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

One Dimensional Kinematics Challenge Problems

One Dimensional Kinematics Challenge Problems One Dimensional Kinematics Challenge Problems Problem 1: One-Dimensional Kinematics: Two stones are released from rest at a certain height, one after the other. a) Will the difference between their speeds

More information

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers.

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Motion Graphs 6 The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Descriptions: 1. The car is stopped. 2. The car is traveling

More information

Time, Speed, and Distance: Student Guide

Time, Speed, and Distance: Student Guide Time, Speed, and Distance: Student Guide You are going to be using Sphero to figure out how time, speed, and distance relate to each other. Sphero can be programmed to roll at a certain speed for a certain

More information

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method)

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) L. W. Braile and S. J. Braile (June, 2000) braile@purdue.edu http://web.ics.purdue.edu/~braile Walk

More information

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Exam 1 Please write your CID Colton 2-3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Position and displacement

Position and displacement /1/14 Position and displacement Objectives Describe motion in 1D using position, distance, and displacement. Analyze motion in 1D using position, distance, and displacement. Correctly use and interpret

More information

Parametric Ball Toss TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Parametric Ball Toss TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will be able to use parametric equations to represent the height of a ball as a function of time as well as the path of a ball that has been thrown straight up. Students will be

More information

Figure 1: A hockey puck travels to the right in three different cases.

Figure 1: A hockey puck travels to the right in three different cases. Question (12) Average velocity and position (update) for three hockey pucks You view the motion of a hockey puck in a video and mark its location every. The resulting image for three different hockey pucks

More information

Write a hypothesis for your experiment (which factor increases cricket chirping) in the If then format.

Write a hypothesis for your experiment (which factor increases cricket chirping) in the If then format. Name: Date: Virtual Scientific Method Lab: What Makes a Cricket Chirp? Question: Some say that if you listen to the sound of a cricket chirping, you can determine the temperature. Is this true or is it

More information

Objectives. Materials TI-73 CBL 2

Objectives. Materials TI-73 CBL 2 . Objectives Activity 18 To model the cooling rate of different sizes of animals To determine the effect of skin surface area on the cooling rate of animals Materials TI-73 Body Cooling Rate of Animals

More information

Exp. 5 Ideal gas law. Introduction

Exp. 5 Ideal gas law. Introduction Exp. 5 Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls.

More information

Mapping a Magnetic Field. Evaluation copy. Figure 1: Detecting the magnetic field around a bar magnet

Mapping a Magnetic Field. Evaluation copy. Figure 1: Detecting the magnetic field around a bar magnet Mapping a Magnetic Field Experiment 16 The region around a magnet where magnetic forces can be detected is called a magnetic field. All magnets, no matter what their shape, have two poles labeled north

More information

Figure 1 shows the distance time graph for a person walking to a bus stop. Figure 1. Time in seconds

Figure 1 shows the distance time graph for a person walking to a bus stop. Figure 1. Time in seconds (a) Figure shows the distance time graph for a person walking to a bus stop. Figure Time in seconds (i) Which one of the following statements describes the motion of the person between points R and S on

More information

Squash Questions PLAY AND PAUSE. Open the video file Service lob. 1) Play the video at all the different speeds.

Squash Questions PLAY AND PAUSE. Open the video file Service lob. 1) Play the video at all the different speeds. Squash is a fast game requiring high levels of agility combined with strategy. Players vary the power and direction of their shot in order to move their opponent around the court. Their objective is to

More information

Simple Measurements & Buoyancy Force

Simple Measurements & Buoyancy Force Simple Measurements & Buoyancy Force 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home SIMPLE MEASUREMENTS The TA will go over the following tutorials. Error

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

Procedure 1: Volume vs. Pressure 1.) Using the lap tops, go to the Physics Education Technology from the University of Colorado at:

Procedure 1: Volume vs. Pressure 1.) Using the lap tops, go to the Physics Education Technology from the University of Colorado at: Deriving the Gas Laws Background The gaseous state of matter consists of particles (gas molecules like oxygen, nitrogen, and carbon dioxide) which, according to the kinetic theory of gases, are in constant

More information

Beetle Races! Measuring Distance and Time and Calculating Rate

Beetle Races! Measuring Distance and Time and Calculating Rate Measuring Distance and Time and Calculating Rate Beetle Races! PURPOSE In this activity, you will measure the distance traveled by your selected mealworm beetle, Tenebrio molitor, during three 45-second

More information

Diving Questions PLAY AND PAUSE. Open the video file 10m Tuck

Diving Questions PLAY AND PAUSE. Open the video file 10m Tuck High board divers must control their spin, twist and timing in order to achieve high scores in competition. Use the video files below to complete the following questions to help you gain a better understanding

More information

Introduction to Waves. If you do not have access to equipment, the following experiments can be observed here:

Introduction to Waves. If you do not have access to equipment, the following experiments can be observed here: Introduction to Waves If you do not have access to equipment, the following experiments can be observed here: http://tinyurl.com/lupz3dh 1.1 There is a tray with water in it. This can model throwing a

More information

Two-Dimensional Motion and Vectors

Two-Dimensional Motion and Vectors Science Objectives Students will measure and describe one- and two-dimensional position, displacement, speed, velocity, and acceleration over time. Students will graphically calculate the resultant of

More information

4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2.

4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2. Warm Up 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2. Objectives Find rates of change and slopes. Relate a constant rate of change to the slope of

More information

Exploring the relationship between the pressure of the ball and coefficient of restitution.

Exploring the relationship between the pressure of the ball and coefficient of restitution. Exploring the relationship between the pressure of the ball and coefficient of restitution. When I started thinking about possible investigations I knew I wanted to create a lab that was related to sports.

More information

Heating of Land and Water. Evaluation copy. lamp with a 100 W (or greater) bulb. 2 Temperature Probes 2 one-hole stoppers 2 pans beaker.

Heating of Land and Water. Evaluation copy. lamp with a 100 W (or greater) bulb. 2 Temperature Probes 2 one-hole stoppers 2 pans beaker. Name Date Heating of Land and Water Computer 2 How fast land and water heat and cool influences our weather. In Part I of this experiment, you will heat sand and water. You will use two Temperature Probes

More information

Student Exploration: Uniform Circular Motion

Student Exploration: Uniform Circular Motion Name: Date: Student Exploration: Uniform Circular Motion Vocabulary: acceleration, centripetal acceleration, centripetal force, Newton s first law, Newton s second law, uniform circular motion, vector,

More information

Newton /PowerPod CdA Measurement Instruction Manual. January 2017 Newton FW PowerPod FW 6.21+

Newton /PowerPod CdA Measurement Instruction Manual. January 2017 Newton FW PowerPod FW 6.21+ Newton /PowerPod CdA Measurement Instruction Manual January 2017 Newton FW 5.15+ PowerPod FW 6.21+ 1 THE CDA FEATURE REQUIRES FW 5.15 OR HIGHER (NEWTON), OR FW 6.21 OR HIGHER (POWERPOD), AND PURCHASE OF

More information

Model 400ML Audible Information Device

Model 400ML Audible Information Device 909 Grace St. Elgin, IL 60120 (847) 931-2455 Model 400ML Audible Information Device Congratulations you have just purchased an A.D.A. Audible Motion Detected Pedestrian Information Devise for the visually

More information

Wild Thing. Objective 1 (E1): To calculate the average speed of the train for one trip.

Wild Thing. Objective 1 (E1): To calculate the average speed of the train for one trip. Wild Thing Objective 1 (E1): To calculate the average speed of the train for one trip. SUGGESTED PROCEDURE: Given the length of the track (not just the horizontal components!) and use the time required

More information

You should know how to find the gradient of a straight line from a diagram or graph. This next section is just for revision.

You should know how to find the gradient of a straight line from a diagram or graph. This next section is just for revision. R1 INTERPRET THE GRADIENT OF A STRAIGHT LINE GRAPH AS A RATE OF CHANGE; RECOGNISE AND INTERPRET GRAPHS THAT ILLUSTRATE DIRECT AND INVERSE PROPORTION (foundation and higher tier) You should know how to

More information

Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams)

Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams) Name Lab Partners Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams) Part 1. Lung Volumes and Capacities Objectives 1. Obtain graphical representation of lung capacities

More information

Student Exploration: Distance-Time Graphs

Student Exploration: Distance-Time Graphs Name: Date: Student Exploration: Distance-Time Graphs Vocabulary: speed, y-intercept Prior Knowledge Questions (Do these BEFORE using the Gizmo.) Max ran 50 meters in 10 seconds. Molly ran 30 meters in

More information

Ideal gas law. Introduction

Ideal gas law. Introduction Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls. The

More information

A position graph will give the location of an object at a certain time.

A position graph will give the location of an object at a certain time. Calculus 3.4 Notes A position graph will give the location of an object at a certain time. At t = 4, the car is 20 miles away from where it started. A position function is usually written as or. If the

More information