DISTANCE AND DISPLACEMENT. 1. Determine the distance and displacement of the following: 1 st. 2 nd

Size: px
Start display at page:

Download "DISTANCE AND DISPLACEMENT. 1. Determine the distance and displacement of the following: 1 st. 2 nd"

Transcription

1 DISTANCE AND DISPLACEMENT 1. Determine the distance and displacement of the following: 1 st 1 st 2 nd 1 st 2 nd 1 st 2 nd 1 st 2 nd

2 2. Determine the speed and velocity of the following: 1 st (10 seconds) 1 st (30 seconds) 2 nd (50 seconds) 1 st (80 seconds) 2 nd (45 seconds) 1 st (25 seconds) 2 nd (10 seconds) 2 nd (7 sec) 1 st (5 sec) 3. When are distance and displacement different? 4. When are speed and velocity different? AVERAGE SPEED AND VELOCITY

3 5. You walk from your home to the library, then to the park. a. What is the distance traveled? [1.95 mi] If it takes 190 seconds what is your speed? [0.01 m/s] b. What is your displacement? [0.75 mi] If it takes 190 seconds what is your velocity? [0.004 m/s] 6. Ignoring the curves.you start at A and run to B in 45 seconds. a. What is your speed? [2.88 m/s] b. What is your velocity? [2.22 m/s]

4 7. You start at home.you walk to the park in 150 seconds. You hangout at the park for 80 seconds. You then run to your friend s house in 90 seconds. What is you average velocity for the whole trip? 75 m 80 m 30 m [0.578 m/s] 8. You travel 250 m in 88 seconds. Then travel 550 m (opposite direction) in 287 seconds. a. What is the total distance traveled? [800 m] b. What is your average velocity? [-0.80 m/s]

5 9. A car goes 1500 m in 55 seconds. How long does it take to travel 7000 m if it s average velocity for the entire trip is 40 m/s? [158 s] ACCELERATION PROBLEMS 10. If an object accelerates from rest, with a constant acceleration of 3.4 m/s 2, what will its velocity be after 28 s? [95.2 m/s]

6 11. A train departs from its station at a constant acceleration of 5 m/s 2, what is the speed of the train after going 60 m? [24.5 m/s] 12. An object starts at rest and accelerates at 9.8 m/s 2 for 3 seconds. How far will it travel? [44.1 m]

7 13. An object is traveling at a constant velocity of 15 m/s when it experiences an acceleration of -3.5 m/s 2. How long will it take to stop? [4.29 s] 14. A bicyclist is traveling at a speed of 5 m/s when it suddenly accelerates, at a constant rate of 0.6 m/s 2, for a time of 10 s. What is the speed of the bicycle at the end of that 10s? [11 m/s]

8 15. An object is traveling at a velocity of 15 m/s when it experiences a constant acceleration of 3.5 m/s 2 for a distance of 10 m. What will its velocity be after that acceleration? 16. A car's speedometer reads 20 m/s after accelerating, from a standing start, for 25s. What was its acceleration? [17.2 m/s] [+0.8 m/s]

9 17. An object s velocity goes from 36 m/s to 22 m/s in 5 s. What is the acceleration of the object? [-2.8 m/s 2 ] 18. An object initially at rest experiences an acceleration of 9.8 m/s 2. How much time will it take it to achieve a velocity of 58 m/s? [5.92 s]

10 19. An object is moving at a velocity of 23 m/s. It accelerates to a velocity of 85 m/s over a time of 8.3 s. What acceleration did it experience? How many g s is this? [7.46 m/s 2 = 0.76 g s] 20. A car is driving at a velocity of 24 m/s. If its brakes can supply an acceleration of -5.0 m/s 2, how much time will be required to bring the car to a stop? [4.8 s]

11 21. A car is driving at a velocity of 35 m/s. If its brakes can supply an acceleration of -3.0 m/s 2, how much distance will be required to bring the car to a stop? 22. A car accelerates at 5.0 m/s 2 from a velocity of 20 m/s to velocity of 28 m/s. Determine the distance it traveled. [204 m] [38.4 m]

12 23. A sports car accelerates from rest to 27.8 m/s in 6.2 s. Calculate its acceleration in m/s 2. How many g's in this (1 g = 9.8m/s 2 )? [+4.48 m/s 2 ] [0.46 g s] 24. A car decelerates from a speed of 30.0 m/s to rest in 8.0 s. Calculate the distance that the traveled during this time. [120. m]

13 25. In coming to a stop, a car leaves skid marks on the highway 450 m long. Assuming a deceleration of 10 m/s 2, estimate the speed of the car just before braking. [95 m/s] MULTISTEP PROBLEMS 26. A car starts from rest and accelerates at 0.85 m/s 2 for 19 seconds. It then travels at a constant speed for 30 seconds. a. What was the final velocity of the car after accelerating?[16.2 m/s] b. How much distance (total) will it travel? [639 m]

14 27. A car starts from rest and accelerates at 2.2 m/s 2 for 12 seconds. It then travels at a constant speed for 80 seconds. a. What was the final velocity of the car after accelerating? [26.4 m/s] b. How much distance (total) will it travel? [2270 m] c. After traveling that distance the car is stopped in 0.5 seconds. What was it acceleration during stopping? [-52.8 m/s 2 ] 28. A car starts from rest and accelerates at 2 m/s 2 for 10 seconds. It then travels at a constant speed for 15 seconds. It finally hits the brakes and stops in 0.66 seconds. a. What was the final velocity of the car after accelerating? [20 m/s] b. What is the acceleration during braking? [-30.3 m/s 2 ] c. What was the total distance traveled? [407 m]

15 29. A truck is traveling at 28 m/s for 17 seconds. The driver sees a deer and slams on the brakes and stops the truck in 53 m. a. How far did the truck travel (total)? [529 m] b. What is the acceleration during braking? [-7.4 m/s 2 ] c. How long did it take for the truck to stop? [3.79 s] 30. A physics student is traveling back home to get their physics book. They start from rest (at school) and accelerate at 1.5 m/s 2 for 2.0 s, they then travel at a constant speed for 10.0 s, finally, the decelerate to rest at m/s 2 over a distance of 10.0 m. A. What is the total distance traveled? [43 m] B. What is the average velocity for the entire trip? [2.3 m/s]

16 VERTICAL MOTION PROBLEMS 31. What is the velocity of a dropped rock after it has fallen for 2.8 s? 32. What is the velocity of a dropped ball after it has fallen 11 m? [-27.4 m/s] [-14.7 m/s]

17 33. A ball is thrown straight up with a velocity of 14 m/s; what will be its velocity 2.0 s after being released? 34. A ball is thrown straight down with a velocity of 14 m/s; what will be its velocity 2.0 s after being released? [-5.6 m/s] [-33.6 m/s]

18 35. A ball is thrown straight up from the ground with an unknown velocity. It returns to the ground after 3.7 s. With what velocity did it leave the ground? [18.1 m/s] 36. A ball is thrown straight up from the ground with an unknown velocity. It reaches its highest point after 3.5s. With what velocity did it leave the ground? [34.3 m/s]

19 37. A ball is kicked upward from the ground at 18 m/s. a. How fast is it going when it is 11 m high?[±10.4 m/s] b. How long does it take to reach 11 m?[0.78 s and 2.9 s] c. Why are there two answers for a and b? 38. A baseball is hit and a fan observes it reaches its maximum height in 2.65 seconds. a. Calculate its initial velocity. [26 m/s] b. What is its maximum height? [34.4 m]

20 39. A balloon is rising at 5 m/s and is 40 m above the ground when a girl drops a sandbag. a. How much higher will the sandbag go? [1.28 m] b. What will be its velocity when it reaches the ground? [-28.4 m/s] c. How long will it spend in the air? [3.41 s] 40. A person throws a ball vertically from atop a 16 m tall building. What was the initial velocity of the ball (direction too!) if: a. It reaches the ground in 5.0 seconds? [up at 21.3 m/s] b. It reaches the ground in 1.0 seconds? [down at 11.1 m/s or m/s]

21 41. A rock is dropped from a cliff that is 25.0 m high. How long will it take to reach the bottom? 42. A soccer ball is kicked straight up with a velocity of 8.0 m/s. A. How high will it go? B. How long will it take to reach its maximum height? C. How much time will it spend in the air? D. What is its velocity after 1.25 seconds? [2.26 s] A [3.3 m] B. [0.82 s] C. [1.6 s] D. [ m/s]

22 43. A raindrop falls off a roof and reaches the ground 1.30 seconds later. A. How fast is it traveling when it reaches the ground? B. How will your answer in part A differ if there is air resistance? C. How tall is the building from which it fell? A. [-12.7 m/s] C. [8.28 m] 44. A snowball is thrown straight down with a velocity of 4.5 m/s from a roof that is 15.0 m high. What will be its velocity when it hits the ground? [-17.7 m/s]

23 45. Observe: A v 0 = 6.5 m/s B 10. m C A. What is the velocity of the ball at point A? Point B? [A: 0 m/s B: -6.5 m/s] B. How long does it take to reach point A? Point B? [A s B: 1.33 s] C. What is its velocity at point C? [-15 m/s] D. How long does it take to reach point C? [2.2 s] 46. An arrow is shot upward and after 0.65 seconds its velocity is m/s. How high will it go? (hint: get v 0 first!) [17.2 m]

24 47. A rock is dropped from atop a building. If it takes the rock to 2.50 seconds to reach the ground, how tall is the building? 48. A student throws a softball vertically upward at a speed of 12.0 m/s. A. How high will it go? B. How long will it be in the air? C. What will be its velocity at a height of 5.00 m? Why 2 answers? D. What will be the ball s speed after 2.00 seconds? [30.6 m] A. [7.35 m] B. [2.45 s] C. [±6.78 m/s] D. [-7.60 m/s]

25 49. A helicopter is rising at a velocity of 4.50 m/s. At a height of 25.0 m above the ground a passenger drops their camera out of the window. A. How high above the ground will the camera go? B. How long will it take to reach the ground? C. With what speed will it hit the ground? 50. Mr. Tracey is on call at a fire. A survivor falls into the safety net from 15.0 m in the air. A. How long will it take for the person to reach the net? B. How fast will the person be going when they hit it? C. If the net bends 1.0 m, what will be the deceleration of the survivor? How many g s is this? A. [26.0 m] B. [2.76 s] C. [-22.5 m/s] A. [1.75 s] B. [17.1 m/s] C. [147 m/s 2 ] [15 g s]

26 Conceptual questions: 1. What is zero at the maximum height? 2. When is Δy negative? 3. An object is observed to rise for 2.0 s. How long will it take to fall? 4. Indicate the sign (+ or -) of the following for a ball that is going UP: Δy v a t 5. Indicate the sign (+ or -) of the following for a ball that is going DOWN (not dropped): Δy v a t 6. A dart is thrown up at 5 m/s. What will be its velocity when it comes back down? 7. A ball is thrown up. On its way up its acceleration is. At its maximum height its acceleration is. On its way back down its acceleration is. 8. From a roof a ball is thrown up at v 0. An identical ball is thrown down at v 0. Which ball will be traveling faster when it reaches the ground? 9. From a roof a ball is thrown up at v 0. An identical ball is thrown down at v 0. Which ball will hit the ground first? 10. From a roof a ball is thrown up at v 0. An identical ball is thrown down at v 0. Which ball will travel the most distance? 11. From a roof a ball is thrown up at v 0. An identical ball is thrown down at v 0. Which ball will have the greater acceleration? 12. From a roof a ball is thrown up at v 0. An identical ball is thrown down at v 0. Which ball will be traveling faster when it reaches the ground? 13. Explain how air resistance will affect your answer to #6

Higher Projectile Motion Questions

Higher Projectile Motion Questions Higher Projectile Motion Questions 1. a) Name the two components of motion in projectiles. b) What is the acceleration on Earth for each of these two components. 2. A pencil case is dropped vertically

More information

1D Kinematics Answer Section

1D Kinematics Answer Section 1D Kinematics 1. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s. What is the average velocity? a. 1.7 m/s c. 3.4 m/s b. 2.5 m/s d. zero 2. A truck moves 70

More information

Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction.

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction. 1. A baseball is thrown at an angle of 40.0 above the horizontal. The horizontal component of the baseball s initial velocity is 12.0 meters per second. What is the magnitude of the ball s initial velocity?

More information

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

More information

Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

More information

Review - Kinematic Equations

Review - Kinematic Equations Review - Kinematic Equations 1. In an emergency braking exercise, a student driver stops a car travelling at 83 km/h [W] in a time of 4.0 s. What is the car s acceleration during this time? (The answer

More information

REVIEW : KINEMATICS

REVIEW : KINEMATICS 1 REVIEW 5-4-16: KINEMATICS Kinematics-Defining Motion 1 A student on her way to school walks four blocks east, three blocks north, and another four blocks east, as shown in the diagram. Compared to the

More information

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec 1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 3 Kinematics in Two Dimensions Interactive Lecture Questions 3.1.1. A truck drives due south for 1.2 km in 1.5 minutes. Then, the truck

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

Motion, Vectors, and Projectiles Review. Honors Physics

Motion, Vectors, and Projectiles Review. Honors Physics Motion, Vectors, and Projectiles Review Honors Physics The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. The shaded area under the

More information

Motion in 1 Dimension

Motion in 1 Dimension A.P. Physics 1 LCHS A. Rice Unit 1 Displacement, Velocity, & Acceleration: Motion in 1 Dimension In-Class Example Problems and Lecture Notes 1. Freddy the cat started at the 3 meter position. He then walked

More information

1 An object moves at a constant speed of 6 m/s. This means that the object:

1 An object moves at a constant speed of 6 m/s. This means that the object: Slide 1 / 57 1 n object moves at a constant speed of 6 m/s. This means that the object: Increases its speed by 6 m/s every second ecreases its speed by 6 m/s every second oesn t move Has a positive acceleration

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors CHAPTER 3: Kinematics in Two Dimensions; Vectors Questions 1. One car travels due east at 40 km h, and a second car travels north at 40 km h. Are their velocities equal? Explain. 2. Can you give several

More information

HONORS PHYSICS One Dimensional Kinematics

HONORS PHYSICS One Dimensional Kinematics HONORS PHYSICS One Dimensional Kinematics LESSON OBJECTIVES Be able to... 1. use appropriate metric units and significant figures for given measurements 2. identify aspects of motion such as position,

More information

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds?

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds? Name: Date: 1. Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.9 s, what is the magnitude

More information

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10-kilogram object at rest at point A. The object accelerates uniformly from point A to point B in

More information

b. What is the x-distance from the foot of the cliff to the point of impact in the lake?

b. What is the x-distance from the foot of the cliff to the point of impact in the lake? PROJECTILE MOTION An object launched into space without motive power of its own is called a projectile. If we neglect air resistance, the only force acting on a projectile is its weight, which causes its

More information

Physics Acceleration and Projectile Review Guide

Physics Acceleration and Projectile Review Guide Physics Acceleration and Projectile Review Guide Name: Major Concepts 1-D motion on the horizontal 1-D motion on the vertical Relationship between velocity and acceleration https://www.khanacademy.org/science/physics/one-dimensional-motion/acceleration-tutorial/a/acceleratio

More information

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram.

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram. MECHANICS: MOTION QUESTIONS High Jump (2017;2) Sarah, a 55.0 kg athlete, is competing in the high jump where she needs to get her body over the crossbar successfully without hitting it. Where she lands,

More information

2. On a position-time graph such as Figure 2-18, what represents the velocity?

2. On a position-time graph such as Figure 2-18, what represents the velocity? HONORS PHYSICS PROBLEM SET ONE DIMENSIONAL MOTION DISPLACEMENT AND VELOCITY 1. On the graph in Figure 2-18, what is the total distance traveled during the recorded time interval? What is the displacement?

More information

PHYSICS 218 EXAM 1 Thursday, September 24, 2009

PHYSICS 218 EXAM 1 Thursday, September 24, 2009 PHYSICS 218 EXAM 1 Thursday, September 24, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:10-10:00 526 Recitation Wed 11:30-12:20 527 Recitation Wed 1:50-2:40 528 Recitation Mon 11:30-12:20

More information

Physics for Scientist and Engineers third edition Kinematics 1-D

Physics for Scientist and Engineers third edition Kinematics 1-D Kinematics 1-D The position of a runner as a function of time is plotted along the x axis of a coordinate system. During a 3.00 s time interval, the runner s position changes from x1=50.0 m to x2= 30.5

More information

Force, Motion and Energy Review

Force, Motion and Energy Review NAME Force, Motion and Energy Review 1 In the picture to the right, two teams of students are playing tug-of-war. Each team is pulling in the opposite direction, but both teams are moving in the same direction.

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

2. Can an object have a varying speed if its velocity is constant? If yes, give examples.

2. Can an object have a varying speed if its velocity is constant? If yes, give examples. UCONN Physics: Name: Date: Period CHAPTER : Describing Motion: Kinematics in One Dimension Questions: Do not place answers on this sheet, use additional paper and place all answers on supplemental paper

More information

Phys 201A. Lab 6 - Motion with Constant acceleration Kinematic Equations

Phys 201A. Lab 6 - Motion with Constant acceleration Kinematic Equations Phys 201A Lab 6 - Motion with Constant acceleration Kinematic Equations Problems: It would be good to list your four kinematic equations below for ready reference. Kinematic equations 1) An amateur bowler

More information

time v (vertical) time

time v (vertical) time NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

More information

PHYSICS 20 Vectors and Dynamics

PHYSICS 20 Vectors and Dynamics NEWTONS 1st LAW 1. A 10.00 kg mass is tied to a string with a maximum strength of 100 N. A second string of equal strength is tied to the bottom of the mass. a) If the bottom string is pulled with a jerk

More information

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing.

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Distance vs. Time Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Plotting distance against time can tell you a lot about

More information

(2) An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s.

(2) An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s. 1. Linear motion Define the term acceleration. An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s. The motion of the object may be

More information

Unit 2 Review: Projectile Motion

Unit 2 Review: Projectile Motion Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

More information

Physics Final Exam Review Fall 2013

Physics Final Exam Review Fall 2013 Physics Final Exam Review Fall 2013 The lines on the graph represent displacement vectors for the route along which a person moves. Use the figure to answer problems 1 2. 1. What is the total distance

More information

LINEAR MOTION. General Review

LINEAR MOTION. General Review LINEAR MOTION General Review 1. Velocity is to speed as displacement is to A. acceleration B. momentum C. time D. distance 1. Velocity is to speed as displacement is to A. acceleration B. momentum C. time

More information

Honors/AP Physics 1 Homework Packet #2

Honors/AP Physics 1 Homework Packet #2 Section 3: Falling Objects Honors/AP Physics 1 Homework Packet #2 1. A ball is dropped from a window 10 m above the sidewalk. Determine the time it takes for the ball to fall to the sidewalk. 2. A camera

More information

1. downward 3. westward 2. upward 4. eastward

1. downward 3. westward 2. upward 4. eastward projectile review 1 Name 11-DEC-03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical

More information

TEACHER ANSWER KEY December 10, Projectile Review 1

TEACHER ANSWER KEY December 10, Projectile Review 1 Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1

PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1 Term: 161 Thursday, October 27, 2016 Page: 1 *Read the following (20) questions and choose the best answer: 1 The motion of a swimmer during 30.0 minutes workout is represented by the graph below. What

More information

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion Chapter 2: Linear Motion Chapter 3: Curvilinear Motion Linear Motion Horizontal Motion - motion along x-axis Vertical Motion (Free-Falling Bodies) motion along y-axis Equation for Uniformly Accelerated

More information

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched

More information

What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period?

What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period? 1 What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period? 7 A car traveling in a straight line has a velocity of +5.0

More information

2. A homemade car is capable of accelerating from rest to 100 km hr 1 in just 3.5 s. Assuming constant acceleration, find:

2. A homemade car is capable of accelerating from rest to 100 km hr 1 in just 3.5 s. Assuming constant acceleration, find: Preliminary Work 1. A motorcycle accelerates uniformly from rest to a speed of 100 km hr 1 in 5 s. Find: (a) its acceleration (b) the distance travelled in that time. [ Answer: (i) a = 5.56 ms 2 (ii) x

More information

SF016: PAST YEAR UPS QUESTIONS

SF016: PAST YEAR UPS QUESTIONS CHAPTER 2: KINEMATICS OF LINEAR MOTION Session 205/206. (a)(i) If the object has zero acceleration, what happen to its velocity? Explain your answer. (ii) A car is initially at rest at =0. It then accelerates

More information

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 2. A car is travelling at a constant speed of 26.0 m/s down a slope which is 12.0 to the horizontal. What

More information

1.0 Converting. 1. What is the speed of a person walking at 3.1 mph in m/s? Show your work and box your answer (check your units)

1.0 Converting. 1. What is the speed of a person walking at 3.1 mph in m/s? Show your work and box your answer (check your units) 1.0 Converting There are 1,609.34 meters in one mile. One meter equals 3.28 feet. I mph equals 0.44704 m/s 1. What is the speed of a person walking at 3.1 mph in m/s? Show your work and box your answer

More information

AP Physics Chapter 2 Practice Test

AP Physics Chapter 2 Practice Test AP Physics Chapter 2 Practice Test Answers: E,E,A,E,C,D,E,A,C,B,D,C,A,A 15. (c) 0.5 m/s 2, (d) 0.98 s, 0.49 m/s 16. (a) 48.3 m (b) 3.52 s (c) 6.4 m (d) 79.1 m 1. A 2.5 kg ball is thrown up with an initial

More information

Review Problems for Physics A Final

Review Problems for Physics A Final Review Problems for Physics A Final 1. The fastest helicopter, the Westland Lynx, can travel 3.33 km in the forward direction in just 30.0 s.what is the average velocity of this helicopter? Express your

More information

Velocity. Translational Motion. Date:

Velocity. Translational Motion. Date: Translational Motion Velocity Name: Date: 1. A caterpillar travels across the length of a 2.00-meter porch in 6.5 minutes. What is the average velocity of the caterpillar in m/s? v ave = 2. A hiker is

More information

Chapter : Linear Motion 2

Chapter : Linear Motion 2 Text: Chapter 2.5-2.9 Think and Explain: 4-8 Think and Solve: 2-4 Chapter 2.5-2.9: Linear Motion 2 NAME: Vocabulary: constant acceleration, acceleration due to gravity, free fall Equations: s = d t v =

More information

j~/ ... FIGURE 3-31 Problem 9.

j~/ ... FIGURE 3-31 Problem 9. 9. () An airplane is traveling 735 kmlh in a direction 41S west of north (Fig. 3-31). (a) Find the components of the velocity vector in the northerly and westerly directions. (b) How far north and how

More information

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Exam 1 Please write your CID Colton 2-3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Assignment 3.2: Projectile Motion

Assignment 3.2: Projectile Motion (Conceptual Questions): 1. What equation would you use to describe the horizontal acceleration of a ball being thrown? 2. Give an example of an object that would have horizontal acceleration? 3. The horizontal

More information

1) What is the magnitude of the momentum of a kg baseball traveling at 45.0 m/s?

1) What is the magnitude of the momentum of a kg baseball traveling at 45.0 m/s? Momentum review 6) Two friends are standing on opposite ends of a canoe that is initially at rest with respect to a frictionless lake. The person in the front throws a very massive ball toward the back,

More information

The table below shows how the thinking distance and braking distance vary with speed. Thinking distance in m

The table below shows how the thinking distance and braking distance vary with speed. Thinking distance in m Q1.The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed. Speed in m / s Thinking

More information

Projectile Motion. Regardless of its path, a projectile will always follow these rules:

Projectile Motion. Regardless of its path, a projectile will always follow these rules: Projectile Motion What is a projectile? Regardless of its path, a projectile will always follow these rules: 1. A horizontally launched projectile moves both horizontally and vertically and traces out

More information

at home plate at 1st base at 2nd base at 3rd base back at home distance displacement

at home plate at 1st base at 2nd base at 3rd base back at home distance displacement You might need a calculator: The typical baseball diamond is a square 90 ft long on each side. Suppose a player hits a homerun and makes one complete trip from home plate, around the bases, and back to

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Hang from a pair of gym rings and the upward support forces of the rings will always

More information

I Questions. I Problems

I Questions. I Problems Questions 1. One car travels due east at 40 kmh and a second car travels north at 40 kmh. Are their velocities equal? Explain. 2. Can you give several examples of an object's motion in which a great distance

More information

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

More information

Two dimensional kinematics. Projectile Motion

Two dimensional kinematics. Projectile Motion Two dimensional kinematics Projectile Motion 1. You throw a ball straight upwards with a velocity of 40m/s. How long before it returns to your hand? A. 2s B. 4s C. 6s D. 8s E. 10s 1.You throw a ball straight

More information

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter.

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. 6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in

More information

Los Altos High School Physics -Two Dimensional Kinematics Workbook Problems

Los Altos High School Physics -Two Dimensional Kinematics Workbook Problems 1. Consider a United States Coast Guard plane flying a rescue mission 300 Km West of the Faraloon Islands. The mission requires the plane's crew to deliver a 50 kg package of emergency supplies to the

More information

Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a).

Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a). Ch3 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch3 Supplemental Due: 6:59pm on Monday, February 13, 2017 To understand how points are awarded, read the Grading

More information

Chapter 2 Two Dimensional Kinematics Homework # 09

Chapter 2 Two Dimensional Kinematics Homework # 09 Homework # 09 Pthagorean Theorem Projectile Motion Equations a 2 +b 2 =c 2 Trigonometric Definitions cos = sin = tan = a h o h o a v =v o v =v o + gt =v o t = o + v o t +½gt 2 v 2 = v 2 o + 2g( - o ) v

More information

Chapter 3: Two-Dimensional Motion and Vectors

Chapter 3: Two-Dimensional Motion and Vectors Assumption College English Program Mr. Stephen Dobosh s EP- M 4 P h y s i c s C l a s s w o r k / H o m e w o r k P a c k e t Chapter 3: Two-Dimensional Motion and Vectors Section 1: Introduction to Vectors

More information

Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1

Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1 Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1 1. An arrow is fired upward at a speed of 100 m/s. What will be its height (in meters) one second before it reaches its maximum height? A) 505 B) 496 C)

More information

PHYSICS 218 EXAM 1 Monday, September 24, 2007

PHYSICS 218 EXAM 1 Monday, September 24, 2007 PHYSICS 218 EXAM 1 Monday, September 24, 2007 NAME: SECTION: 525 526 527 528 529 530 531 532 Note: 525 Recitation Thurs 2:20 529 Recitation Tues 9:35 526 Recitation Thurs 3:55 530 Recitation Tues 12:45

More information

Page 2. Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement

Page 2. Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement Q1.(a) Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement vector scalar (b) A tennis ball is thrown vertically downwards

More information

Practice Test: Vectors and Projectile Motion

Practice Test: Vectors and Projectile Motion ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

More information

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10.

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10. Practice exam semester 1 physics Walk this Way Activity, Graph Sketching and Recognition, Sonic Ranger Lab: Use the graph to the right for q s 1-3 1. Which object(s) is (are) not moving? 2. Which change

More information

What's Up (and Down) With KE and PE?

What's Up (and Down) With KE and PE? This document belongs to The Physics Classroom. It should not appear on other websites. What's Up (and Down) With KE and PE? Question Group 1 Question 1 Read the description of the motion of the bold-faced

More information

MATERIALS: softball, stopwatch, measuring tape, calculator, writing utensil, data table.

MATERIALS: softball, stopwatch, measuring tape, calculator, writing utensil, data table. 1 PROJECTILE LAB: (SOFTBALL) Name: Partner s Names: Date: PreAP Physics LAB Weight = 1 PURPOSE: To calculate the speed of a softball projectile and its launch angle by measuring only the time and distance

More information

AP Physics 1 - Test 04 - Projectile Motion

AP Physics 1 - Test 04 - Projectile Motion P Physics 1 - Test 04 - Projectile Motion Score: 1. stone thrown from the top of a tall building follows a path that is circular made of two straight line segments hyperbolic parabolic a straight line

More information

Projectile Motion applications

Projectile Motion applications Projectile Motion applications 1. A stone is thrown horizontally at a speed of 10.0 m/s from the top of a cliff 78.4 m high. a. How long does it take the stone to reach the bottom of the cliff? b. How

More information

CHAPTER 3 TEST REVIEW

CHAPTER 3 TEST REVIEW AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 20, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m Page 1 of 5 Sub work 10-10-02 Name 12-OCT-03 1. A car travels a distance of 98 meters in 10. seconds. What is the average speed of the car during this 10.-second interval? 1. 4.9 m/s 3. 49 m/s/ 2. 9.8

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 12

BROCK UNIVERSITY. Name: Student #: Page 1 of 12 Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: July 2016 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 104 Examination date: 9 July 2016 Number of hours:

More information

Ch. 2 & 3 Velocity & Acceleration

Ch. 2 & 3 Velocity & Acceleration Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.

More information

Angle Projectiles Class:

Angle Projectiles Class: Angle Projectiles Class: Name: Date: 1. The diagram here represents a ball being kicked by a foot and rising at an angle of 30 from the horizontal. The ball has an initial velocity of 5.0 meters per second.

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

JR. GENIUS EDUCATIONAL SERVICES INC.

JR. GENIUS EDUCATIONAL SERVICES INC. 1 Name: 1. Multiple Choice: 25 marks Copy to Scantron Card after finding the answer on the sheet. Fill in the Scantron card in the last 5 min. of the test. Do Short section first. 1. You are riding your

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

Unit 4: Projectiles ( Angled Projectiles )

Unit 4: Projectiles ( Angled Projectiles ) Unit 4: Projectiles ( Angled Projectiles ) When dealing with a projectile that is not launched/thrown perfectly horizontal, you must start by realizing that the initial velocity has two components: an

More information

Honors Assignment - Vectors

Honors Assignment - Vectors Honors Assignment - Vectors Reading Chapter 3 Homework Assignment #1: Read Chap 3 Sections 1-3 M: #2, 3, 5 (a, c, f), 6-9 Homework Assignment #2: M: #14, 15, 16, 18, 19 Homework Assignment #3: Read Chap

More information

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h.

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h. Physics Keller Midterm exam review The midterm exam will be seventy questions selected from the following. The questions will be changed slightly, but will remain essentially the same. 1) A truck is moving

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

Worksheet 1.1 Kinematics in 1D

Worksheet 1.1 Kinematics in 1D Worksheet 1.1 Kinematics in 1D Solve all problems on your own paper showing all work! 1. A tourist averaged 82 km/h for a 6.5 h trip in her Volkswagen. How far did she go? 2. Change these speeds so that

More information

You drop a package from a plane flying at constant speed in a straight line. Without air resistance, the package will:

You drop a package from a plane flying at constant speed in a straight line. Without air resistance, the package will: Question 4.2 You drop a package from a plane flying at constant speed in a straight line. Without air resistance, the package will: Dropping a Package a) quickly lag behind the plane while falling b) remain

More information

Name: 1. A car moves m/s north at a constant velocity. What is the car's displacement after 2.0 hours?

Name:   1. A car moves m/s north at a constant velocity. What is the car's displacement after 2.0 hours? Name: e-mail: Applied Physics I Fall 2007 Multiple Choice ( 6 Points ): 1. A car moves 26.82 m/s north at a constant velocity. What is the car's displacement after 2.0 hours? a.) 40 miles north b.) 120

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Force The ability to cause a change in a state of motion of an object (Vector) The only thing that can cause an object to accelerate is a Force An object at rest will remain at

More information

Two-Dimensional Motion and Vectors

Two-Dimensional Motion and Vectors Sample Problem Set II Answers Two-Dimensional Motion and Vectors Additional Practice D Holt McDougal Physics 1 Sample Problem Set II Holt McDougal Physics 2 Sample Problem Set II Two-Dimensional Motion

More information

Eg.#1 A diver steps off a 10. m. high diving board with an initial vertical velocity of zero and experiences an average acceleration 2

Eg.#1 A diver steps off a 10. m. high diving board with an initial vertical velocity of zero and experiences an average acceleration 2 1.3.1 Acceleration due to Gravity Defined as: For many years, it was thought that higher mass objects fall towards the Earth more quickly than lower mass objects. This idea was introduced in approximately

More information

Momentum Review. Momentum Expressed in (SI unit): kg m/s Commonly used symbols: p Conserved: yes Expressed in other quantities: p = mv

Momentum Review. Momentum Expressed in (SI unit): kg m/s Commonly used symbols: p Conserved: yes Expressed in other quantities: p = mv Momentum Review Momentum Expressed in (SI unit): kg m/s Commonly used symbols: p Conserved: yes Expressed in other quantities: p = mv Chapter 7 What is momentum? The momentum of an object is defined as

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g = +9.8ms

More information

Force and Motion Test Review

Force and Motion Test Review Name: Period: Force and Motion Test Review 1. I can tell you that force is.. 2. Force is measured in units called. 3. Unbalanced forces acting on an object will MOST LIKELY cause the object to A. remain

More information