x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m

Size: px
Start display at page:

Download "x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m"

Transcription

1 3.1 Track Question a) Distance Traveled is 1600 m. This is length of the path that the person took. The displacement is 0 m. The person begins and ends their journey at the same position. They did not change their position after the time interval and so their displacement is 0 m. b) Distance Traveled is 200 m. The distance the person moved is m. x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m 3.2 Represent and Reason a) The bike starts at a position of -4 m and travels at a constant -4 m/s towards -36 m, the person on the bike then stops and takes a break for 7 s, and turns around and then travels at a non-constant, faster speed than previous until the 18 m mark where the bike starts to slow down until it reaches +30 m. The person on the bike then stops for a brief 2 s break, and then turns around again and travels at a constant -5 m/s towards a position of 0 meters. The bike rider then takes another 4 second break, and pedals at a slower, constant -2 m/s until she reaches -16 m. b) Velocity vs. Clock Reading

2 3.3 Textbook 1. Displacement can be zero even though distance traveled is non zero. A runner that begins a race at the start line, does four labs around the lab, and finishes at the same place they started has traveled a distance of 1 mile but their final position and the initial position are the same and so they have not experienced a displacement. Distance traveled cannot be zero when displacement is non-zero because in order to change your position you must travel some distance. The only way this would be possible is if we could teleport. 2. You can t say anything about their displacement unless you knew the path this person took to get there. This person is referring to the distance they traveled. They could have been walking in a circular path, traveled the distance they said they traveled but ended at the same place they started making their displacement 0 m. 3. You can say that at minimum the object traveled a distance of 300 m. The most direct route to the final position from the initial position would be a straight line between the two points. If the person traveled along this path then the path would be 300 m long, for the displacement to also be 300 m. The person could have taken a longer, less-direct route to the final position and, if they had, the distance traveled would be greater than 300 m. 5. Yes, the average velocity only considers displacement after an amount of time has passed. It does not consider what occures between. The jogger could have jogged at a steady pace, turned around a jogged in the negative direction for a brief moment in time, and then turned again and sprinted towards the positive direction. 3.4 Represent and Reason

3 a) The hiker walks south at a constant velocity of 2.5 m/s from 0 s to about 50 s, from 50 s to about 60 s the hiker takes a break before moving again to the south at 4.0 m/s from 60 s to 110 s b) The hiker moved for 15 s between the 10 s and 25 s clock reading at a velocity of 2.5 m/s. Using the graph we can find the area traced out by this rectangle: (2.5 m/s)(15 s) = 37.5 m c) To find how far the hiker moved from 40 to 70 seconds, we find the area of the two rectangles while he was moving and add these together. The first is from 40 s to 50 s: (2.5 m/s)(10 s) = 25 m The second is from 60s to 70s: (4.0 m/s)(10 s) = 40 m. The total displacement of the hiker is 65m meters. d) The average speed of the hiker is the Path Length / Trip Time. Because the hiker is hiking along a straight path, the path length is equal to the displacement. The total displacement for the hiker is the total area of both rectangles: 3.5 Evaluate First rectangle: (2.5m/s)(50s) = 125 m Second rectangle: (4.0m/s)(50s) = 200 m Total Displacement = 325 m Total Time = 110 s Average Speed = (325 m)/(110 s) = 3.38 m/s Stop and read the graphs! Notice that Bike A is a velocity vs time graph while Bike B is a position vs time graph. a) Bike A started at a positive velocity. Graph A is a velocity vs time graph. At time reading zero Bike A has a velocity of 0 m/s. b) Bike B climbed over a flat hill. Graph B is a position vs time graph, the vertical axis is labeled as position of the object along the coordinate axis. The change in position only occurs in 1-Dimension. c) Bike A stopped twice during the trip. If you consider the bike to be stopped at the zero clock reading because the bike begins with a velocity of 0 m/s then Bike A did stop twice. If you do not, the bike only stops once.

4 d) Bike B stopped twice during the trip. Since Bike B is a position vs time graph the two parts of the graph where the line is completely horizontal indicate that the bike has 0 velocity during these points. The bike s position stays constant over time during these intervals. e) The last part of the trip bike A was not moving. The line of the velocity vs. time graph is negative. The Bike must be moving in the negative direction. f) The last part of the trip bike B was moving at constant speed in the negative direction. The line of the position vs. time graph is horizontal. The object does not change their position at the end of the observed time interval and so Bike B cannot be moving. g) The last part of the trip bike A was moving at constant speed in the negative direction. Since Bike A is a velocity vs time graph, during the last part of the trip the line is below the x-axis meaning that the bike was traveling in the negative direction. The speed is constant since the line is completely horizontal, meaning that the speed does not change with time during this interval. h) When we started observing Bike B it was moving at constant positive velocity. Initially the line has a positive slope which indicates a positive velocity on a position vs time graph. i) When we started observing bike A it was moving at increasing velocity in the positive direction, then it reached some constant velocity (positive) and continued moving for a while, then its velocity started decreasing and it some point it became zero. The it continued to increased in the negative direction until it reached some new velocity which it maintained for a while. On a velocity vs time graph constantly increasing velocity is indicated by a positive slope whereas constantly decreasing velocity is indicated by a negative slope, finally constant velocity is indicated by 0 slope. Given this the graph matches the description. j) When we started observing bike B it was moving at constant velocity in the positive direction, then it stopped for a while, then it started going back to the origin and then in the negative direction. Finally it stopped. On a position vs time graph constant velocity in the positive direction is indicated by a positive slope whereas constant velocity in the negative direction is indicated by a negative slope, finally zero velocity is indicated by 0 slope. Given this the graph matches the description. 3.6 Represent and Reason a) Total Trip Time = 3 hr 20 min = 3.3hr First part of trip: (130 mi)/(65 mi/hr) = 2.0 hr Second part of trip: (3.3 hr 2.0 hr) = 1.3 hr (1.3 hr)(55 mi/hr) = 72 mi

5 65 mi/hr 55 mi/hr Home University of Delaware 130 mi 202mi Average Speed: Path Length / Time = 202 mi / 3.3 hr = 61 mi/hr Average Velocity: Assuming the car traveled in the same direction Path Length = Displacement so Average Velocity = Average Speed b) On this scale it is difficult to notice the slight change in slope from hrs c) Time (hr)

6 3.7 Evaluate a) The first two graphs (A and B) provide the same information. A is a position vs time graph while B is a velocity vs time graph. A says that the object stayed at the same positive position for 4 s while B says the object moved at a constant positive velocity for 4 s. A person might choose this wrong answer as correct because the two graphs look the same despite having different axis. b) The second two graphs (C and D) provide the same information. D is a position vs time graph while C is a velocity vs time graph. A says that the object stayed at the same negative position for 4 s while B says the object moved at a constant negative velocity for 4 s. A person might choose this wrong answer as correct because the two graphs look the same despite having different axis. c) Object A traveled 60 meters in 3 seconds from the location is was at the 0 clock reading. This would be true if A was a velocity vs. time graph, which is what a person choosing e) Object C was not moving during the experiment. This would be true if C was a position vs. time graph, which is what a person choosing h) Object D was moving in the negative direction at the speed of 20 m/s This would be true if D was a velocity vs. time graph, which is what a person choosing i) Object C was moving in the negative direction at the speed of (-20 m/s). This doesn t make sense since speed is the magnitude of velocity and is always positive. This person much be mixing up velocity and speed. j) Object D traveled 40 m in 2 seconds in the negative direction. This would be true if D was a velocity vs. time graph, which is what a person choosing

Motion. 1 Describing Motion CHAPTER 2

Motion. 1 Describing Motion CHAPTER 2 CHAPTER 2 Motion What You ll Learn the difference between displacement and distance how to calculate an object s speed how to graph motion 1 Describing Motion 2(D), 4(A), 4(B) Before You Read Have you

More information

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing.

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Distance vs. Time Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Plotting distance against time can tell you a lot about

More information

Motion Graphing Packet

Motion Graphing Packet Name: Motion Graphing Packet This packet covers two types of motion graphs Distance vs. Time Graphs Velocity vs. Time Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes

More information

Physical Science You will need a calculator today!!

Physical Science You will need a calculator today!! Physical Science 11.3 You will need a calculator today!! Physical Science 11.3 Speed and Velocity Speed and Velocity Speed The ratio of the distance an object moves to the amount of time the object moves

More information

Homework: Turn in Tortoise & the Hare

Homework: Turn in Tortoise & the Hare Your Learning Goal: After students experienced speed in the Runner s Speed Lab, they will be able to describe how different speeds look like on a graph with 100% accuracy. Table of Contents: Notes: Graphs

More information

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Exam 1 Please write your CID Colton 2-3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Chapter 11 Motion. Section 1

Chapter 11 Motion. Section 1 Chapter 11 Motion Objectives: Section 1 Use a frame of reference to describe motion Differentiate between Speed and Velocity Calculate the speed of an object Use graphs to describe speed 1 Observing Motion

More information

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour.

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. Speed How are instantaneous speed and average speed different? Average

More information

Add this important safety precaution to your normal laboratory procedures:

Add this important safety precaution to your normal laboratory procedures: Student Activity Worksheet Speed and Velocity Are You Speeding? Driving Question What is speed and how is it related to velocity? Materials and Equipment For each student or group: Data collection system

More information

time v (vertical) time

time v (vertical) time NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

More information

Ch. 2 & 3 Velocity & Acceleration

Ch. 2 & 3 Velocity & Acceleration Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.

More information

Section 1. Objectives:

Section 1. Objectives: Chapter 2 Motion Objectives: Section 1 Use a frame of reference to describe motion Differentiate between Speed and Velocity Calculate the speed of an object Use graphs to describe speed Observing Motion

More information

Table of Contents STANDARD 1.F.

Table of Contents STANDARD 1.F. Table of Contents TC Assignments Page # 7. Textbook scavenger hunt 8. Bubble gum lab 9. Averages. Scientific method quiz. Averages handout. Motion Position notes. Speed and Graphing STANDARD.F. Students

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

JR. GENIUS EDUCATIONAL SERVICES INC.

JR. GENIUS EDUCATIONAL SERVICES INC. 1 Name: 1. Multiple Choice: 25 marks Copy to Scantron Card after finding the answer on the sheet. Fill in the Scantron card in the last 5 min. of the test. Do Short section first. 1. You are riding your

More information

Shedding Light on Motion Episode 4: Graphing Motion

Shedding Light on Motion Episode 4: Graphing Motion Shedding Light on Motion Episode 4: Graphing Motion In a 100-metre sprint, when do athletes reach their highest speed? When do they accelerate at the highest rate and at what point, if any, do they stop

More information

Movement and Position

Movement and Position Movement and Position Syllabus points: 1.2 plot and interpret distance-time graphs 1.3 know and use the relationship between average speed, distance moved and 1.4 describe experiments to investigate the

More information

2 Motion BIGIDEA Write the Big Idea for this chapter.

2 Motion BIGIDEA Write the Big Idea for this chapter. 2 Motion BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in the What I Want to

More information

Compare the scalar of speed and the vector of velocity.

Compare the scalar of speed and the vector of velocity. Review Video QOD 2/14/12: Compare the scalar of speed and the vector of velocity. What are the equations for each? Feb 14 6:51 AM 1 Imagine that you are a race car driver. You push on the accelerator.

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

Speed and Acceleration. Measuring motion

Speed and Acceleration. Measuring motion Speed and Acceleration Measuring motion Measuring Distance Meter international unit for measuring distance. 1 mm = 50 m Calculating Speed Speed (S) = distance traveled (d) / the amount of time it took

More information

1.6 Sketching a Piecewise Function

1.6 Sketching a Piecewise Function 1.6 Sketching a Piecewise Function Now that we understand qualitative descriptions of graphs, we can use that information to sketch graphs of a function or give a verbal description of an already sketched

More information

Vocabulary. Page 1. Distance. Displacement. Position. Average Speed. Average Velocity. Instantaneous Speed. Acceleration

Vocabulary. Page 1. Distance. Displacement. Position. Average Speed. Average Velocity. Instantaneous Speed. Acceleration Vocabulary Term Definition Distance Displacement Position Average Speed Average Velocity Instantaneous Speed Acceleration Page 1 Homer walked as follows: Starting at the 0,0 coordinate, he walked 12 meters

More information

Chapter : Linear Motion 2

Chapter : Linear Motion 2 Text: Chapter 2.5-2.9 Think and Explain: 4-8 Think and Solve: 2-4 Chapter 2.5-2.9: Linear Motion 2 NAME: Vocabulary: constant acceleration, acceleration due to gravity, free fall Equations: s = d t v =

More information

REAL LIFE GRAPHS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

REAL LIFE GRAPHS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier Mathematics Revision Guides Real Life Graphs Page 1 of 19 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier REAL LIFE GRAPHS Version: 2.1 Date: 20-10-2015 Mathematics Revision Guides

More information

CHANGES IN FORCE AND MOTION

CHANGES IN FORCE AND MOTION reflect CRACK! That s the sound of a bat hitting a baseball. The ball fl ies through the air and lands over the fence for a home run. The motion of a batted ball seems simple enough. Yet, many forces act

More information

A position graph will give the location of an object at a certain time.

A position graph will give the location of an object at a certain time. Calculus 3.4 Notes A position graph will give the location of an object at a certain time. At t = 4, the car is 20 miles away from where it started. A position function is usually written as or. If the

More information

4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2.

4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2. Warm Up 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2. Objectives Find rates of change and slopes. Relate a constant rate of change to the slope of

More information

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion Problems: 1. Once you have recorded the calibration frame for a data collection, why is it important to make sure the camera does not shut off? hat happens if the camera automatically shuts off after being

More information

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart Kinematics 1 Name: Date: 1. 4. A cart moving across a level surface accelerates uniformly at 1.0 meter per second 2 for 2.0 seconds. What additional information is required to determine the distance traveled

More information

Jeddah Knowledge International School. Science Revision Pack Answer Key Quarter 3 Grade 10

Jeddah Knowledge International School. Science Revision Pack Answer Key Quarter 3 Grade 10 Jeddah Knowledge International School Science Revision Pack Answer Key 2016-2017 Quarter 3 Grade 10 Name: Section: ANSWER KEY- SCIENCE GRADE 10, QUARTER 3 1 1. What are the units for mass? A Kilograms

More information

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m Page 1 of 5 Sub work 10-10-02 Name 12-OCT-03 1. A car travels a distance of 98 meters in 10. seconds. What is the average speed of the car during this 10.-second interval? 1. 4.9 m/s 3. 49 m/s/ 2. 9.8

More information

Motion in 1 Dimension

Motion in 1 Dimension A.P. Physics 1 LCHS A. Rice Unit 1 Displacement, Velocity, & Acceleration: Motion in 1 Dimension In-Class Example Problems and Lecture Notes 1. Freddy the cat started at the 3 meter position. He then walked

More information

4-3 Rate of Change and Slope. Warm Up Lesson Presentation. Lesson Quiz

4-3 Rate of Change and Slope. Warm Up Lesson Presentation. Lesson Quiz 4-3 Rate of Change and Slope Warm Up Lesson Presentation Lesson Quiz Holt Algebra McDougal 1 Algebra 1 Warm Up 1. Find the x- and y-intercepts of 2x 5y = 20. x-int.: 10; y-int.: 4 Describe the correlation

More information

LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION:

LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION: LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 1 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION: How far? Describing change in linear or angular position Distance (Scalar

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds. b. Determine the sprinters velocity after 2 seconds have elapsed.

a. Determine the sprinter's constant acceleration during the first 2 seconds. b. Determine the sprinters velocity after 2 seconds have elapsed. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables DISTANCE Last First Date Per SETTLE LAB: Speed AND Velocity (pp108-111 for help) Pre-Activity NOTES 1. What is speed? SPEED 5-4 - 3-2 - 1 2. What is the formula used to calculate average speed? 3. Calculate

More information

Physics 2204 Worksheet 6.5: Graphical Analysis of Non- Uniform Motion D-T GRAPH OF NON-UNIFORM MOTION (ACCELERATING) :

Physics 2204 Worksheet 6.5: Graphical Analysis of Non- Uniform Motion D-T GRAPH OF NON-UNIFORM MOTION (ACCELERATING) : Physics 2204 Worksheet 6.5: Graphical Analysis of Non- Uniform Motion D-T GRAPH OF NON-UNIFORM MOTION (ACCELERATING) : The d-t graph for uniformly Accelerated motion is definitely not the same as a d-t

More information

D/T = S. Motion Math pages 6 & 7 in your little book. Chp 5 Little Book, Motion Math & Work Sheet Answers:

D/T = S. Motion Math pages 6 & 7 in your little book. Chp 5 Little Book, Motion Math & Work Sheet Answers: Chp 5 Little Book, Motion Math & Work Sheet Answers: Be sure to show YOUR work and the formulas for credit! Motion Math pages 6 & 7 in your little book Solve the following problems. Show all your work

More information

1 An object moves at a constant speed of 6 m/s. This means that the object:

1 An object moves at a constant speed of 6 m/s. This means that the object: Slide 1 / 57 1 n object moves at a constant speed of 6 m/s. This means that the object: Increases its speed by 6 m/s every second ecreases its speed by 6 m/s every second oesn t move Has a positive acceleration

More information

RATE OF CHANGE AND INSTANTANEOUS VELOCITY

RATE OF CHANGE AND INSTANTANEOUS VELOCITY RATE OF CHANGE AND INSTANTANEOUS VELOCITY Section 2.2A Calculus AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:34 AM 2.2A: Rates of Change 1 AVERAGE VELOCITY A. Rates of change play a role whenever

More information

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

More information

Acceleration Activity

Acceleration Activity Acceleration Acceleration is the rate of change in the speed of an object. To determine the rate of acceleration, you use the formula below. The units for acceleration are meters per second per second

More information

Where are you right now? How fast are you moving? To answer these questions precisely, you

Where are you right now? How fast are you moving? To answer these questions precisely, you 4.1 Position, Speed, and Velocity Where are you right now? How fast are you moving? To answer these questions precisely, you need to use the concepts of position, speed, and velocity. These ideas apply

More information

Practice Problem. How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2?

Practice Problem. How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2? Practice Problem How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2? Practice Problem If a car slams on its breaks and comes to a complete stop, after driving for 20

More information

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

More information

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec 1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

More information

Do Now 10 Minutes Topic Speed and Velocity

Do Now 10 Minutes Topic Speed and Velocity Do Now 10 Minutes Topic Speed and Velocity Clear off everything from your desk, except for a calculator and something to write with. We re taking a pop quiz. Homework Complete the Distance vs. Displacement

More information

Chapter 11 Motion. Displacement-. Always includes Shorter than distance

Chapter 11 Motion. Displacement-. Always includes Shorter than distance Chapter 11 Motion Section 1 - an object s change in position relative to a reference point. Observe objects in to other objects. international unit for. Frame of Reference Frame of reference- a system

More information

December 6, SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation.

December 6, SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation. December 6, 2016 Aims: SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation. Agenda 1. Do Now 2. Class Practice 3. Independent Practice 4. Practicing our AIMS: Homework:

More information

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation?

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation? Classwork Exploratory Challenge 1. Watch the first 1:08 minutes of the video below and describe in words the motion of the man. Elevation vs. Time #2 [http://www.mrmeyer.com/graphingstories1/graphingstories2.mov.

More information

QUICK WARM UP: Thursday 3/9

QUICK WARM UP: Thursday 3/9 Name: pd: Unit 6, QUICK WARM UP: Thursday 3/9 1) The slope of a distance vs. time graph shows an object s. 2) The slope of a position vs. time graph shows an object s. 3) Can an object have a constant

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. THE DISTANCE-TIME RELATIONSHIP Q1. A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between

More information

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation?

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation? J Hart Interactive Algebra 1 Classwork Exploratory Challenge 1. Watch the first 1:08 minutes of the video below and describe in words the motion of the man. Elevation vs. Time #2 [http://www.mrmeyer.com/graphingstories1/graphingstories2.mov.

More information

The CBL cannot get accurate data closer than about 0.5 meters, so your graphs will be distorted anywhere the y-values are less than 0.5 meters.

The CBL cannot get accurate data closer than about 0.5 meters, so your graphs will be distorted anywhere the y-values are less than 0.5 meters. Name Hour Hiker Lab In this lab, you will be given a graph and you must try to walk in a manner so that the graph of your distance vs. time looks like the given graph. You will need: 1. A TI83 graphics

More information

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds?

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds? Name: Date: 1. Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.9 s, what is the magnitude

More information

Math 10 Lesson 3-3 Interpreting and Sketching Graphs

Math 10 Lesson 3-3 Interpreting and Sketching Graphs number of cards Math 10 Lesson 3-3 Interpreting and Sketching Graphs I. Lesson Objectives: 1) Graphs communicate how two things are related to one another. Straight, sloped lines indicate a constant change

More information

Physics Final Exam Review Fall 2013

Physics Final Exam Review Fall 2013 Physics Final Exam Review Fall 2013 The lines on the graph represent displacement vectors for the route along which a person moves. Use the figure to answer problems 1 2. 1. What is the total distance

More information

2015 AQA A Level Physics. Motion Introduction

2015 AQA A Level Physics. Motion Introduction 2015 AQA A Level Physics Motion Introduction 9/22/2018 Distance and Displacement Distance is the actual path length that is taken Displacement is the change in position x = xf x 0 Where x is the displacement,

More information

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT 1. Vector mechanics apply to which of the following? A. displacement B. velocity C. speed D. both displacement and velocity 2. If velocity is constant, then

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

Honors/AP Physics 1 Homework Packet #2

Honors/AP Physics 1 Homework Packet #2 Section 3: Falling Objects Honors/AP Physics 1 Homework Packet #2 1. A ball is dropped from a window 10 m above the sidewalk. Determine the time it takes for the ball to fall to the sidewalk. 2. A camera

More information

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 2. A car is travelling at a constant speed of 26.0 m/s down a slope which is 12.0 to the horizontal. What

More information

8.6B SS - differentiate between speed, velocity, and acceleration

8.6B SS - differentiate between speed, velocity, and acceleration 8.6B SS - differentiate between speed, velocity, and acceleration What is the difference between speed, acceleration and velocity? How is speed calculated? How do we know if something is moving quickly

More information

Practice Test: Vectors and Projectile Motion

Practice Test: Vectors and Projectile Motion ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

More information

Ball Toss. Vernier Motion Detector

Ball Toss. Vernier Motion Detector Experiment 6 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs. time would

More information

Note! In this lab when you measure, round all measurements to the nearest meter!

Note! In this lab when you measure, round all measurements to the nearest meter! Distance and Displacement Lab Note! In this lab when you measure, round all measurements to the nearest meter! 1. Place a piece of tape where you will begin your walk outside. This tape marks the origin.

More information

University of Colorado-Boulder MATH 1300 Homework 1

University of Colorado-Boulder MATH 1300 Homework 1 Turn in the following problems: 1. Consider the following mathematical statements. Determine if the statements are always true, sometimes true, or never true. (a) (x + 2) 4 = x 4 + 16 (b) x 4 + 8x 2 +

More information

½ 3. 2/3 V (1/3 (1/2V)+1/3(V)+1/3(1/2V))

½ 3. 2/3 V (1/3 (1/2V)+1/3(V)+1/3(1/2V)) TEST 2 Q 1 some HONORS review questions to try Define: displacement, velocity, average velocity, average speed, acceleration. Displacement: change in distance from start (with direction) Velocity: change

More information

Student Exploration: Distance-Time and Velocity-Time Graphs

Student Exploration: Distance-Time and Velocity-Time Graphs Name: Date: Student Exploration: Distance-Time and Velocity-Time Graphs [NOTE TO TEACHERS AND STUDENTS: This lesson was designed as a follow-up to the Distance-Time Graphs Gizmo. We recommend you complete

More information

AP Physics Chapter 2 Practice Test

AP Physics Chapter 2 Practice Test AP Physics Chapter 2 Practice Test Answers: E,E,A,E,C,D,E,A,C,B,D,C,A,A 15. (c) 0.5 m/s 2, (d) 0.98 s, 0.49 m/s 16. (a) 48.3 m (b) 3.52 s (c) 6.4 m (d) 79.1 m 1. A 2.5 kg ball is thrown up with an initial

More information

One Dimensional Kinematics Challenge Problems

One Dimensional Kinematics Challenge Problems One Dimensional Kinematics Challenge Problems Problem 1: One-Dimensional Kinematics: Two stones are released from rest at a certain height, one after the other. a) Will the difference between their speeds

More information

7.3.2 Distance Time Graphs

7.3.2 Distance Time Graphs 7.3.2 Distance Time Graphs 35 minutes 39 marks Page 1 of 11 Q1. A cyclist goes on a long ride. The graph shows how the distance travelled changes with time during the ride. (i) Between which two points

More information

Review - Kinematic Equations

Review - Kinematic Equations Review - Kinematic Equations 1. In an emergency braking exercise, a student driver stops a car travelling at 83 km/h [W] in a time of 4.0 s. What is the car s acceleration during this time? (The answer

More information

Exam 1 Kinematics September 17, 2010

Exam 1 Kinematics September 17, 2010 Physics 16 Name KEY Exam 1 Kinematics September 17, 21 This is a closed book examination. You may use a 3x5 index card that you have made with any information on it that you would like. You must have your

More information

REVIEW : KINEMATICS

REVIEW : KINEMATICS 1 REVIEW 5-4-16: KINEMATICS Kinematics-Defining Motion 1 A student on her way to school walks four blocks east, three blocks north, and another four blocks east, as shown in the diagram. Compared to the

More information

Motion, Vectors, and Projectiles Review. Honors Physics

Motion, Vectors, and Projectiles Review. Honors Physics Motion, Vectors, and Projectiles Review Honors Physics The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. The shaded area under the

More information

Lesson 5.3 Interpreting and Sketching Graphs Exercises (pages )

Lesson 5.3 Interpreting and Sketching Graphs Exercises (pages ) Lesson 5.3 Interpreting and Sketching Graphs Exercises (pages 281 283) A 3. a) Bear F has the greatest mass because it is represented by the point on the graph farthest to the right and the horizontal

More information

HONORS PHYSICS One Dimensional Kinematics

HONORS PHYSICS One Dimensional Kinematics HONORS PHYSICS One Dimensional Kinematics LESSON OBJECTIVES Be able to... 1. use appropriate metric units and significant figures for given measurements 2. identify aspects of motion such as position,

More information

Unit 1 Uniform Velocity & Position-Time Graphs

Unit 1 Uniform Velocity & Position-Time Graphs Name: Unit 1 Uniform Velocity & Position-Time Graphs Hr: Grading: Show all work, keeping it neat and organized. Show equations used and include units in all work. Vocabulary Distance: how far something

More information

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the A) mass of the object. B) force on the object. C) inertia

More information

1.67 m/s m/s. 4 m/s

1.67 m/s m/s. 4 m/s Physics Problem Set 2 Week 2 (5620108) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1. Question Details OSColPhys1 2.P.043.WA. [2707255] An athlete is training on a 100 m long linear track. His

More information

Graphing Stories Writing Equations

Graphing Stories Writing Equations Exploratory Activity Consider the story: Maya and Earl live at opposite ends of the hallway in their apartment building. Their doors are 50 ft. apart. Each starts at his or her own door and walks at a

More information

Homework Helpers Sampler

Homework Helpers Sampler Homework Helpers Sampler This sampler includes s for Algebra I, Lessons 1-3. To order a full-year set of s visit >>> http://eurmath.link/homework-helpers Published by the non-profit Great Minds. Copyright

More information

Physics 11 Honours Lesson 3 Distance and Displacement

Physics 11 Honours Lesson 3 Distance and Displacement Name: Block: Physics 11 Honours Lesson 3 Distance and Displacement In physics, every measured quantity is either a or a. Scalars: For example: Vectors: For example: Note: Vectors are either written in

More information

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10-kilogram object at rest at point A. The object accelerates uniformly from point A to point B in

More information

SF016: PAST YEAR UPS QUESTIONS

SF016: PAST YEAR UPS QUESTIONS CHAPTER 2: KINEMATICS OF LINEAR MOTION Session 205/206. (a)(i) If the object has zero acceleration, what happen to its velocity? Explain your answer. (ii) A car is initially at rest at =0. It then accelerates

More information

1. downward 3. westward 2. upward 4. eastward

1. downward 3. westward 2. upward 4. eastward projectile review 1 Name 11-DEC-03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical

More information

TEACHER ANSWER KEY December 10, Projectile Review 1

TEACHER ANSWER KEY December 10, Projectile Review 1 Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]

More information

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method)

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) L. W. Braile and S. J. Braile (June, 2000) braile@purdue.edu http://web.ics.purdue.edu/~braile Walk

More information

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter.

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. 6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in

More information

Physics 2048 Test 1 Name: Dr. Jeff Saul

Physics 2048 Test 1 Name: Dr. Jeff Saul Physics 248 Test 1 Name: Dr. Jeff Saul Group: Spring 22 Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted, but

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Distance, Displacement, speed, velocity, acceleration

Distance, Displacement, speed, velocity, acceleration Problem 1 Distance, Displacement, speed, velocity, acceleration In the 2008 Olympics, Jamaican sprinter Usain Bolt shocked the world as he ran the 100-meter dash in 9.69 seconds. Determine Usain's average

More information

Unit 1: Uniform Motion

Unit 1: Uniform Motion Unit 1: Uniform Motion Name Speed and Velocity Problems. Show every step and report all answers with appropriate units. 1. What is the average speed of a cheetah that sprints 100 m in 4 s? 2. How about

More information

Average speed is calculated by taking the total distance travelled and dividing it by the total time:

Average speed is calculated by taking the total distance travelled and dividing it by the total time: Speed Calculations Now that you know your definitions, you ll learn how to calculate some of the quantities. The following formulas are all very similar, but their slight differences are important since

More information

Representing the relation between quantities

Representing the relation between quantities Test: Niklas gets on his bike and starts a ride from his home. Then he rides along the street with constant speed before it carves up a hill. On top of the hill, he pauses for a few minutes to enjoy the

More information

Chapter 11: Motion. How Far? How Fast? How Long?

Chapter 11: Motion. How Far? How Fast? How Long? Chapter 11: Motion How Far? How Fast? How Long? 1. Suppose the polar bear was running on land instead of swimming. If the polar bear runs at a speed of about 8.3 m/s, how far will it travel in 10.0 hours?

More information

NYC Marathon Quarter 1 Review Task. The New York City Marathon was last weekend. Over 50,000 people ran 26.2 miles around the city!

NYC Marathon Quarter 1 Review Task. The New York City Marathon was last weekend. Over 50,000 people ran 26.2 miles around the city! NYC Marathon Quarter 1 Review Task Name: Alg: The New York City Marathon was last weekend. Over 50,000 people ran 26.2 miles around the city! 1. The 2015 male winner was Stanely Biwott, his time was 2

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)... Math 10170, Exam 2 April 25, 2014 The Honor Code is in effect for this examination. All work is to be your own. You may use your Calculator. The exam lasts for 50 minutes. Be sure that your name is on

More information