ITTC Recommended Procedures and Guidelines

Size: px
Start display at page:

Download "ITTC Recommended Procedures and Guidelines"

Transcription

1 Page 1 of 10 Table of Contents Speed/Power Trials PURPOSE DEFINITIONS RESPONSIBILITIES Shipbuilders Responsibilities The Trial Team PROCEDURES Trial Preparation Shipbuilder s Support Requirement: Space Requirements Ship Inspection Preparation for the trials Ship Inspection Reporting of Results and Distribution of Information Hull- and Propulsor Survey Instrumentation Installation and Calibration Instrumentation Installation Instrumentation Calibration Check Trial Conditions Wind: Sea State: Current: Trial Conduct: REFERENCES Updated / Edited by Approved Specialist Committee on Powering Performance of 24 th ITTC Date Date 24 th ITTC

2 Page 2 of PURPOSE The general purpose of this procedure is to define basic requirements for the preparation and conduct of speed trials. The primary purpose of speed trials is to determine ship performance in terms of speed, power and propeller revolutions under prescribed ship conditions, and thereby verify the satisfactory attainment of the contractually stipulated ship speed. The applicability of this procedure is limited to commercial ships of the displacement type. The procedure is to provide guidelines to document the trial preparation prior to the conduct of a full scale Speed/Power trial, to define the responsibility sharing among the parties who take part in the sea trial for the smooth preparation and execution of the speed trial to establish a guideline for conducting inspections for the purpose of installing instrumentation prior to the conduct of a full scale Speed/Power trial, to establish a baseline of the ship hull and propulsor condition prior to the conduct of a full-scale Speed/Power trial;(hull and propulsor surveys are recommended to allow an evaluation of the trial results for scientific purposes), to install and calibrate trial instrumentation for full scale Speed/Power trials, to define acceptable limits for trial conditions needed to validate hydrodynamic design and/or satisfy contractual requirements, for acceptable conduct of each speed trial. 2. DEFINITIONS Ship Speed is that realized under the contractually stipulated conditions. Ideal conditions to which the speed would be corrected would be no wind (or maximum wind speed according to Beaufort 2) no waves (or waves with maximum wave heights and wave periods according to Beaufort 1) no current deep water smooth hull and propeller surfaces Docking Report: Report that documents the condition of the ship hull and propulsors (available from the most recent dry - docking).

3 Page 3 of 10 Trial Agenda: Document outlining the scope of a particular Speed/Power trial. This document contains the procedures on how to conduct the trial and table(s) portraying the runs to be conducted. Trial Log: For each run, the log contains the run number, type of maneuver, approach speed by log, approach shaft speed, times when the maneuvers start and stop, and any comments about the run. Propeller Pitch: the design pitch also for controllable pitch propellers. Running Pitch: the operating pitch of a CPP Brake Power: Power delivered by the output coupling of the propulsion machinery before passing through any speed reducing and transmission devices and with all continuously operating engine auxiliaries in use. Shaft Power: Net power supplied by the propulsion machinery to the propulsion shafting after passing through all speedreducing and other transmission devices and after power for all attached auxiliaries has been taken off. 3. RESPONSIBILITIES 3.1 Shipbuilders Responsibilities The Shipbuilder has the responsibility for planning, conducting and evaluating the trials. Speed Power - Trials may be conducted by institutions acknowledged as competent to perform those trials, as agreed between the Shipbuilder and the Ship owner The Shipbuilder has to provide all permits and certificates needed to go to sea. The Shipbuilder is responsible to ensure that all qualified personnel, needed for operating the ship and all engines, systems and equipment during the trials have been ordered. The Shipbuilder is responsible to ensure that all regulatory bodies, Classification Society, Ship Owner, ship agents, suppliers, subcontractors, harbor facilities, delivering departments of provisions, fuel, water, towing, etc., needed for conducting the sea trials, have been informed and are available and on board, if required. It is the Shipbuilder s responsibility that all safety measures have been checked and all fixed, portable and individual material (for crew, trial personnel and guests) is on board and operative. It is the Shipbuilder s responsibility that dock trials of all systems have been executed as well as all alarms, warning and safety systems. It is the Shipbuilder s responsibility that an inclining test has been performed and/or at least a preliminary stability booklet has been approved, covering the sea trial condition, in accordance with the 1974 SOLAS Convention. The Shipbuilder is responsible for the overall trial coordination between the ship's crew, trial personnel, and the owner representative. A pre-trial meeting between the trial team, owner and the ship s crew will

4 Page 4 of 10 be held to discuss the various trial events and to resolve any outstanding issues. The Shipbuilder has, if necessary, to arrange for divers to inspect the ship s hull and propellers. The Trial Leader is the duly authorized (shipbuilder s representative) person responsible for the execution of all phases of the Speed/Power trials including the pretrial preparation. 3.2 The Trial Team The trial team is responsible for correct measurements and analysis of the measured data according to the state of the art. The trial team is responsible for the following: a. Conduct ship inspection, if possible or necessary. b. Provide, install and operate all required trial instrumentation and temporary cabling. c. If previously arranged, provide the ship master and owner s representative with a preliminary data package before debarking. The contents of the data package will be determined in consultation with the owner s representative at the initial pre-trial briefing. d. Provide a final report after completion of the trials in accordance with any agreement between the shipbuilder and the ship owner. 4. PROCEDURES 4.1 Trial Preparation Shipbuilder s Support Requirement: Prior to the trials the required instrumentation has to be installed. The assistance of the ship s or shipbuilder s crew will be required when making electrical connections to the ship's systems and circuits such as heading, wind speed, wind direction, and rudder angle synchronous repeaters. The following support is requested from the Shipbuilder to properly prepare for the trials: a. Provide access to the ship for trial instrumentation. b. Assistance is required for the following electrical connections: Gyrocompass Wind meter Rudder angle indicator Log Speed Propeller Pitch c. Vary the output level of each of the above measurement sources to ensure the proper operation and alignment of the test instrumentation Space Requirements Spaces and an electric supply adequate for the trial equipment will be required for the trial instrumentation and computers.

5 Page 5 of Ship Inspection There are three stages of a ship inspection: in-house preparation, the actual inspection, and the reporting of results and distribution of information to the various parties involved in the trial Preparation for the trials Review shafting dimensions, propulsion plant specifications, etc. Review trials agenda, if available Ship Inspection Inspect hull- and propeller surface condition, if possible. Inspect ship s instrumentation for accessibility. Determine routes for cable runs/data transfer conduits between trial room and bridge or control area. Contact the Engineer on duty to discuss trial instrumentation requirements. Inspect machinery spaces as applicable Reporting of Results and Distribution of Information Document all pertinent information related to the ship inspection a) Last date of cleaning. b) Means of cleaning. c) Propeller roughness measurement, if available, which should include average, standard deviation, distribution along the blades, and existing physical damage. d) For a clean hull; documentation indicating manufacturer and kind of paint used, paint layer thickness and, if available, roughness measurements (average, standard deviation, and distribution along the hull) should be provided. The majority of this information may be contained in the docking report. e) For a dirty hull, documentation indicating visual observations of any fouling and date of last dry-docking should be provided. 4.3 Hull- and Propulsor Survey A roughness survey is recommended to document the conditions of the ship hull, appendages, and propulsor(s) prior to the start of the full-scale speed/ power trial. Cleaning may be required if fouling is found to be such that it would bias the trial data. Ideally, roughness surveys should be conducted prior to the trials. The average hull roughness should not exceed 250 µm (µ = 1x10-6 m) (6.35 mils) and the average propulsor roughness level should not be greater than 150 µm (3.81 mils). 4.4 Instrumentation Installation and Calibration Instrumentation Installation The installation of instrumentation should be scheduled at a time of minimal conflict with ship operations.

6 Page 6 of 10 The bias limits of the instrumentation used for the measurements should be known and assessed. The instrumentation used for the on-boardmeasurements must be calibrated before application on board. If this is not possible, for some reason, the consequences of this should be highlighted in the final trial report. Electrical calibration is recommended for the torque measurement device and, in case of use during the sea trials, for the thrust measurement device. Further a calibration should be done for the pick ups and the respective amplifiers used for the measurement of the rate of revolutions. A calibration of a (differential) GPS-System is not possible without excessive measures, but at least the function of the device should be checked before use on board. If portable radar tracking or (differential) GPS is utilized, a Receiver/Transmitter (R/T) unit or GPS antenna is to be installed. In case the soft ware program used for the evaluation of the data received does not allow for varying positions on the uppermost deck of the ship the antenna should be placed in a location along the ship s centerline as close to the ship s CG as possible. This location will ideally be located on a mast or site that is clear of obstructions, such as the ship s superstructure Instrumentation Calibration Check All shipboard signals to be recorded during the trials must be adjusted to zero or should have their zero value checked (e.g. for a (D) GPS-device) after the instrumentation installation is completed and prior to the trials. The zero values of the torsiometers, the thrust measurement devices and the devices for the measurement of the rates of revolutions must be checked before the trial runs start and after they have been finished. As part of the pre-trial calibration, the torsion meters zero torque readings must be determined since there is a residual torque in the shaft, which is resting on the line shaft bearings. This might be done in different ways; one possible way is to use the jacking motors. The shaft is jacked both ahead and astern and the average of the readings noted. The zeroes are set at the midpoint of the torque required to jack each shaft ahead and the torque required to jack each shaft astern. An allowance is normally made for frictional losses in the stern tube bearings. As part of the pre-trial calibration for a ship equipped with controllable pitch propellers, maximum ahead pitch, the design pitch and the maximum astern pitch should be determined and then the ship indicators should be adjusted to reflect the measurement. 4.5 Trial Conditions Speed/Power trials require accurate position data. The use of (D) GPS provides great latitude in choosing a trial site. Regardless of the instrumentation utilized for obtaining positional data, the operational area should be free from substantial small boat traffic. The tracking range should be agreed between the Trial Director and the ship s master. Draft, trim and displacement of the ship on trials should be obtained by averaging the ship draft mark readings. The ship should be brought into a condition that is as close as possible to the contract condition and/or the condi-

7 Page 7 of 10 tion on which model tests have been carried out. This will allow for the correction of the displacement and trim with respect to the trials that were conducted and will be applicable to the suggestions outlined in the ITTC Procedure for the Analysis of Speed/Power Trial Data. Draft, trim and displacement should be obtained at the beginning and at the end of the trial. This may be accomplished using a loading computer or by taking a second draft reading. The accuracy of the draft readings and the method used to establish draft and displacement underway will be compared in port by direct draft readings both port and starboard in conjunction with a liquid load calculation. Displacement should be derived from the hydrostatic curves by utilizing the draft data and the density of the water. Environmental factors may significantly influence the data obtained during sea trials; consequently, these factors should be monitored and documented to the greatest extent possible: High wind and sea states can force the use of excessive rudder to maintain heading, and thus cause excessive fluctuations in shaft torque, shaft speed and ship speed. Sea states of 3 or less and a true wind speed below Beaufort 6 (20 Kn) are the desired conditions for sea trials. When working under the time constraints of a contract, corrections to the trials data can be made in accordance with the recommendations provided in the ITTC Procedure for the Analysis of Speed/Power Trial Data for sea states less than or equal to 5. For sea states greater than 5, corrections to the trials data can be applied but are not considered reliable from a scientific standpoint. The local seawater temperature and specific gravity at the trial site are recorded to enable the calculation of ship's displacement. An acceptable minimum water depth for the trials where the data do not need to be corrected for shallow water can be calculated using: h > 6.0(A m ) 0.5 and h > 0.5 V 2 (1) with A m = midship section area, [m 2 ] V= ship speed, [m/s] The larger of the 2 values obtained from the two equations should be used. Current speed and direction should be determined in the test area by prognostic analysis. When current speed and direction is unknown, the ship s global drift (also including wind effect) in some cases might be determined by a 360 turning test conducted at low ahead speed to magnify any environmental effect. The runs should be conducted into and against the waves; i.e., head and following seas, respectively. To ensure that tests are performed in comparable conditions, the data between reciprocal runs should be reviewed for consistency and/or anomalies. Individual speed runs conducted in the same conditions should be averaged with their reciprocal runs to take into account global drift.

8 Page 8 of 10 In accordance with ISO the following, general recommendations can be given: Wind: Wind speed and direction shall be measured as relative wind; continuous recording of relative wind during each run is recommended. Care has to be taken whether the data derived from the wind indicator are reliable; checks, such as parallel measurements with a portable instrument, comparison of the data received from the wind indicator with wind speeds and directions received from local weather stations sufficiently close to the actual position of the ship or, if possible, calibration of the wind indicator (taking into consideration the effects of boundary layers of the superstructure on the measured values) in a wind tunnel are recommended. It is suggested that wind force during the trial runs under no conditions should be higher than Beaufort 6 for ships with lengths equal or exceeding 100m and Beaufort 5 for ships shorter than 100m Sea State: If possible, instruments such as buoys or instruments onboard ships (e.g. seaway analysis radar) should be used to determine the wave height, wave period and direction of seas and swell. Considering usual practice the wave heights may be determined from observations by multiple, experienced observers, including the nautical staff on board. During the trial runs the total wave height (double amplitude), which allows for the wave heights of seas and swell (see ISO 15016), should not exceed 3m for ships of 100m length and more and 1,5m for ships with lengths smaller than 100m Current: Current speed and direction shall be obtained either as part of the evaluation of run and counter-run of each double run, by direct measurement with a current gauge buoy or by use of nautical charts of the respective trial area. It is recommended to compare measured data with those included on the nautical charts. 4.6 Trial Conduct: All speed trials shall be carried out using double runs, i.e. each run is followed by a return run in the opposite direction, performed with the same engine settings. The number of such double runs should not be less than three. This three runs should be at different engine settings. The time necessary for a speed run depends on the ship s speed, size and power. Steady state conditions should be achieved before the speed runs start. It is recommended that the time of one run should be as long as possible but should at least be 10 min. The ideal path of a ship in a typical speed/power maneuver is shown in Figure 1:

9 Page 9 of 10 Min. 10 min Steady Approach Steady Approach Min 10 min Figure 1 Prior to the trial, the data specified below shall be recorded, based on measurements where relevant: Date Trial area Weather conditions Air temperature Mean water depth in the trial area Water temperature and density Draughts Corresponding displacement Propeller pitch in the case of a CPP It is recommended to retain a record of the following factors, which should prove useful for verifying the condition of the ship at the time of the speed trial: Time elapsed since last hull and propeller cleaning Surface condition of hull and propeller. The following data should be monitored and recorded on each run: Clock time at commencement Time elapsed over the measured distance Ship heading Ship s speed over ground Propeller rate of revolutions Propeller shaft torque and/or brake power Water depth Relative wind velocity and direction Air temperature Observed wave height (or: wave height corresponding to observed and/or agreed wind conditions) Rudder angle Ship position and track

10 Page 10 of 10 Data such as ship s speed, rate of revolutions of the propeller, torque, rudder angle and drift angle to be used for the analyses shall be the average values derived on the measured distance. (2) ITTC Procedure for the Analysis of Speed/Power Trial Data (3) ISO REFERENCES (1) ISO 15016, Ships and marine technology Guidelines for the assessment of speed and power performance by analysis of speed trial data

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 11 Table of Contents... 2 1. PURPOSE... 2 2. TERMS AND DEFINITIONS... 2 3. RESPONSIBILITIES... 3 4. ANALYSIS PROCEDURE... 3 4.1 Measured and observed data prior to the trials... 3 4.2 Data on

More information

Technical Information

Technical Information Subject Preparation, conduct and analysis method of speed trial for EEDI verification To whom it may concern Technical Information No. TEC-1030 Date 29 May 2015 In order to determine the ship's attained

More information

Subject: Tech.inf CONTENT: 3- Application of ISO15016:2015: 1- Preface. 2- Background. 3- Application of ISO15016:2015

Subject: Tech.inf CONTENT: 3- Application of ISO15016:2015: 1- Preface. 2- Background. 3- Application of ISO15016:2015 در طراحي شماره: تاريخ : 1394/3/24 CONTENT: 1- Preface 2- Background 3- Application of ISO15016:2015 4- Major change items of conduct/analysis method of speed trial 1- Preface: In order to determine ship's

More information

TECHNICAL INFORMATION BOLLARDPULL TRIALCODE. ForTugs with SteerpropPropulsion. Steerprop

TECHNICAL INFORMATION BOLLARDPULL TRIALCODE. ForTugs with SteerpropPropulsion. Steerprop TECHNICAL INFORMATION BOLLARDPULL TRIALCODE ForTugs with SteerpropPropulsion Steerprop A Skogman / 22 March 2001 BOLLARD PULL TRIAL CODE FOR TUGS This Bollard Pull Trial Code is established to define the

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines 7.5- Page 1 of 23 Table of Contents 1. PURPOSE... 3 2. DEFINITIONS... 3 3. RESPONSIBILITIES... 4 3.1 Shipbuilders responsibilities... 4 3.2 The Trial Team... 5 4. TRIAL PREPARATIONS... 5 4.1 Installation

More information

Conventional Ship Testing

Conventional Ship Testing Conventional Ship Testing Experimental Methods in Marine Hydrodynamics Lecture in week 34 Chapter 6 in the lecture notes 1 Conventional Ship Testing - Topics: Resistance tests Propeller open water tests

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

DQM Annual Hopper QA Checks

DQM Annual Hopper QA Checks DQM Annual Hopper QA Checks The following document is intended to be a guide for conducting annual Dredge Quality Management quality assurance checks on hopper dredges. The procedures should provide general

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines 02 - Page 1 of 17 Table of Contents.....2 1. PURPOSE OF PROCEDURE... 2 2. RECOMMENDED PROCEDURES FOR MANOEUVRING TRIAL... 2 2.1 Trial Conditions... 2 2.1.1 Environmental Restrictions... 2 2.1.2 Loading

More information

Full Scale Measurements Sea trials

Full Scale Measurements Sea trials Full Scale Measurements Sea trials 1 Experimental Methods in Marine Hydrodynamics Lecture in week 45 Contents: Types of tests How to perform and correct speed trials Wave monitoring Measurement Observations

More information

Note to Shipbuilders, shipowners, ship Managers and Masters. Summary

Note to Shipbuilders, shipowners, ship Managers and Masters. Summary MARINE GUIDANCE NOTE MGN 301 (M+F) Manoeuvring Information on Board Ships Note to Shipbuilders, shipowners, ship Managers and Masters This note supersedes Marine Guidance Note MGN 201 (M+F) Summary The

More information

MANOEUVRING BOOKLET V1.06

MANOEUVRING BOOKLET V1.06 MANOEUVRING BOOKLET V1.6 Mathematical model of Integrated Tug Barge 45 Version: v9 Dll Version: 2.31.558 According to: Solas II-1, regulation 28.3 St. Petersburg 26 1. GENERAL DESCRIPTION 1.1. Ships particulars

More information

GUIDELINES ON OPERATIONAL INFORMATION FOR MASTERS IN CASE OF FLOODING FOR PASSENGER SHIPS CONSTRUCTED BEFORE 1 JANUARY 2014 *

GUIDELINES ON OPERATIONAL INFORMATION FOR MASTERS IN CASE OF FLOODING FOR PASSENGER SHIPS CONSTRUCTED BEFORE 1 JANUARY 2014 * E 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210 MSC.1/Circ.1589 24 May 2018 GUIDELINES ON OPERATIONAL INFORMATION FOR MASTERS IN CASE OF FLOODING FOR PASSENGER

More information

Part 1: General principles

Part 1: General principles Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 19030-1 First edition 2016-11-15 Ships and marine technology Measurement of changes in hull and propeller performance Part 1: General principles

More information

RESOLUTION MSC.137(76) (adopted on 4 December 2002) STANDARDS FOR SHIP MANOEUVRABILITY

RESOLUTION MSC.137(76) (adopted on 4 December 2002) STANDARDS FOR SHIP MANOEUVRABILITY MSC 76/23/Add.1 RESOLUTION MSC.137(76) THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) of the Convention on the International Maritime Organization concerning the functions of the Committee, RECALLING

More information

Bollard Pull. Bollard Pull is, the tractive force of a tug, expressed in metric tonnes (t) or kn.

Bollard Pull. Bollard Pull is, the tractive force of a tug, expressed in metric tonnes (t) or kn. Bollard Pull (Capt. P. Zahalka, Association of Hanseatic Marine Underwriters) Bollard Pull is, the tractive force of a tug, expressed in metric tonnes (t) or kn. This figure is not accurately determinable

More information

IACS History File + TB

IACS History File + TB IACS History File + TB Part A UI SC246 Steering gear test with the vessel not at the deepest seagoing draught Part A. Revision History Version no. Approval date Implementation date when applicable New

More information

BMA INFORMATION BULLETIN No. 96

BMA INFORMATION BULLETIN No. 96 BMA INFORMATION BULLETIN No. 96 MAINTAINING PASSENGER SHIPS WATERTIGHT DOORS OPEN DURING NAVIGATION Guidance and Instructions for Ship-owners, Managers, Masters, Bahamas Recognised Organisations and Bahamas

More information

Rules for Classification and Construction Additional Rules and Guidelines

Rules for Classification and Construction Additional Rules and Guidelines VI Rules for Classification and Construction Additional Rules and Guidelines 3 Machinery Installations 4 Guidelines for Equipment on Fire Fighting Ships Edition 2008 The following Guidelines come into

More information

MANOEUVRING BOOKLET V1.06

MANOEUVRING BOOKLET V1.06 MANOEUVRING BOOKLET V.6 Mathematical model of VLCC (Dis.769t) bl. Version: v Dll Version:.3.558 According : Solas II-, regulation 8.3 St. Petersburg 6 . GENERAL DESCRIPTION.. Ships particulars... Ships

More information

Development of an On-board Performance and Trial Trip Analysis Tool

Development of an On-board Performance and Trial Trip Analysis Tool Development of an On-board Performance and Trial Trip Analysis Tool Abstract Lennart Pundt, TUHH, Hamburg/Germany, Lennart.Pundt@tu-harburg.de The requirements of a software to record and evaluate the

More information

MSC Guidelines for Review of Stability for Towing Vessels (M)

MSC Guidelines for Review of Stability for Towing Vessels (M) S. E. HEMANN, CDR, Chief, Hull Division References Contact Information a. 46 CFR Subchapter M, Part 144 b. 46 CFR Subchapter S, Parts 170, 173 c. Navigation and Vessel Circular No. 17-91, CH 1, Guidelines

More information

Gerald D. Anderson. Education Technical Specialist

Gerald D. Anderson. Education Technical Specialist Gerald D. Anderson Education Technical Specialist The factors which influence selection of equipment for a liquid level control loop interact significantly. Analyses of these factors and their interactions

More information

Part 7 Fleet in service Chapter 2 Inclining test and light weight check

Part 7 Fleet in service Chapter 2 Inclining test and light weight check RULES FOR CLASSIFICATION Inland navigation vessels Edition December 2015 Part 7 Fleet in service Chapter 2 Inclining test and light weight check The content of this service document is the subject of intellectual

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

MSC Guidelines for Review of Stability for Sailing Catamaran Small Passenger Vessels (T)

MSC Guidelines for Review of Stability for Sailing Catamaran Small Passenger Vessels (T) K.B. FERRIE, CDR, Chief, Hull Division References: a. 46 CFR Subchapter T, Parts 178, 179 b. 46 CFR Subchapter S, Parts 170, 171 c. Marine Safety Manual (MSM), Vol. IV d. Navigation and Vessel Circular

More information

Interceptors in theory and practice

Interceptors in theory and practice Interceptors in theory and practice An interceptor is a small vertical plate, usually located at the trailing edge on the pressure side of a foil. The effect is a completely different pressure distribution

More information

An Investigation into the Capsizing Accident of a Pusher Tug Boat

An Investigation into the Capsizing Accident of a Pusher Tug Boat An Investigation into the Capsizing Accident of a Pusher Tug Boat Harukuni Taguchi, National Maritime Research Institute (NMRI) taguchi@nmri.go.jp Tomihiro Haraguchi, National Maritime Research Institute

More information

05 Boat Handling. Captain

05 Boat Handling. Captain 05 Boat Handling Competence (Skills) Knowledge, Understanding and Proficiency Level Required Boat handling theory and techniques Coxswain Crew RQ RQ Describe the forces acting on a vessel while manoeuvering

More information

Maneuverability characteristics of ships with a single-cpp and their control

Maneuverability characteristics of ships with a single-cpp and their control Maneuverability characteristics of ships with a single-cpp and their control during in-harbor ship-handlinghandling Hideo YABUKI Professor, Ph.D., Master Mariner Tokyo University of Marine Science and

More information

Bollard Pull Certification Procedures Guidance Information, 1992

Bollard Pull Certification Procedures Guidance Information, 1992 Bollard Pull Certification Procedures Guidance Information, 1992 1. Introduction 1.1 Whilst full scale bollard pull certification is neither a statutory or classification requirement, a true figure of

More information

RULES FOR CLASSIFICATION Naval vessels. Part 1 Classification and surveys Chapter 5 Surveys for submarines. Edition January 2016 DNV GL AS

RULES FOR CLASSIFICATION Naval vessels. Part 1 Classification and surveys Chapter 5 Surveys for submarines. Edition January 2016 DNV GL AS RULES FOR CLASSIFICATION Naval vessels Edition January 2016 Part 1 Classification and surveys Chapter 5 The content of this service document is the subject of intellectual property rights reserved by ("DNV

More information

ANNEX 4 ALTERNATIVE TEXT FOR OPERATIONAL GUIDELINES FOR VERIFICATION OF DAMAGE STABILITY REQUIREMENTS FOR TANKERS

ANNEX 4 ALTERNATIVE TEXT FOR OPERATIONAL GUIDELINES FOR VERIFICATION OF DAMAGE STABILITY REQUIREMENTS FOR TANKERS Annex 4, page 1 ANNEX 4 ALTERNATIVE TEXT FOR OPERATIONAL GUIDELINES FOR VERIFICATION OF DAMAGE STABILITY REQUIREMENTS FOR TANKERS GUIDELINES FOR VERIFICATION OF DAMAGE STABILITY FOR TANKERS PART 2 OPERATIONAL

More information

ANNEX 16 RESOLUTION MEPC.232(65) Adopted on 17 May 2013

ANNEX 16 RESOLUTION MEPC.232(65) Adopted on 17 May 2013 Annex 16, page 1 ANNEX 16 RESOLUTION MEPC.3(65) Adopted on 17 May 013 013 INTERIM GUIDELINES FOR DETERMING MINIMUM PROPULSION POWER TO MAINTAIN THE MANOEUVRABILITY OF SHIPS IN ADVERSE CONDITIONS THE MARINE

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines 7.5- -- Page 1 of 6 Table of Contents 1 PURPOSE OF PROCEDURE 2 2 PARAMETERS...2 2.1 Definition of Variables...2 3 DESCRIPTION OF PROCEDURE...2 3.1...2 3.1.1 Hull Model...2 3.1.2 Propeller Model...3 3.1.3

More information

RESOLUTION A.751(18) adopted on 4 November 1993 INTERIM STANDARDS FOR SHIP MANOEUVRABILITY

RESOLUTION A.751(18) adopted on 4 November 1993 INTERIM STANDARDS FOR SHIP MANOEUVRABILITY INTERNATIONAL MARITIME ORGANIZATION A 18/Res.751 22 November 1993 Original: ENGLISH ASSEMBLY - 18th session Agenda item 11 RESOLUTION A.751(18) adopted on 4 November 1993 THE ASSEMBLY, RECALLING Article

More information

ADMINISTRATIVE INSTRUCTION No. STCW-14 QUALIFICATION / CERTIFICATION REQUIRED FOR OPERATION OF A DOMESTIC VESSESL

ADMINISTRATIVE INSTRUCTION No. STCW-14 QUALIFICATION / CERTIFICATION REQUIRED FOR OPERATION OF A DOMESTIC VESSESL ADMINISTRATIVE INSTRUCTION No. STCW-14 QUALIFICATION / CERTIFICATION REQUIRED FOR OPERATION OF A DOMESTIC VESSESL (Issued under section 3(5) of the Gibraltar Merchant Shipping (Safety etc.) Ordinance 1993

More information

Enclosure (5) to NVIC 03-16

Enclosure (5) to NVIC 03-16 TOWING OFFICER ASSESSMENT RECORD LIMITED LOCAL AREA LOCAL LIMITED AREA (LLA) TOAR INSTRUCTIONS FOR USE The following Towing Officer Assessment Record (TOAR) is intended as a model for endorsements as Limited

More information

Periodical surveys of cargo installations on ships carrying liquefied gases in bulk

Periodical surveys of cargo installations on ships carrying liquefied gases in bulk (June 1999) (Rev.1 Mar 2006) (Rev.2 May 2007) (Rev.3 Mar 2010) (Corr.1 Feb 2011) (Rev.4 Oct 2013) Periodical surveys of cargo installations on ships carrying liquefied gases in bulk 1 General 1.1 Scope

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 7 Table of Contents 2 1. PURPOSE... 2 2. PARAMETERS... 2 2.2. General Considerations... 2 2.3. Special Requirements for Ro-Ro Ferries... 3 3.3. Instrumentation... 4 3.4. Preparation... 5 3.5.

More information

REDUNDANT PROPULSION SHIPS RULES FOR CLASSIFICATION OF NEWBUILDINGS DET NORSKE VERITAS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2

REDUNDANT PROPULSION SHIPS RULES FOR CLASSIFICATION OF NEWBUILDINGS DET NORSKE VERITAS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2 RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2 REDUNDANT PROPULSION JANUARY 1996 CONTENTS PAGE Sec. 1 General Requirements... 5 Sec. 2 System

More information

Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe

Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe Includes Basic ship Terminologies and Investigation Check list Index 1. Ship Terminology 03 2. Motions of a Floating Body...09 3. Ship Stability.10 4. Free

More information

RESOLUTION A.567(14) adopted on 20 November 1985 REGULATION FOR INERT GAS SYSTEMS ON CHEMICAL TANKERS

RESOLUTION A.567(14) adopted on 20 November 1985 REGULATION FOR INERT GAS SYSTEMS ON CHEMICAL TANKERS INTERNATIONAL MARITIME ORGANIZATION A 14/Res.567 16 January 1986 Original: ENGLISH ASSEMBLY - 14th session Agenda item lo(b) IMO RESOLUTION A.567(14) adopted on 20 November 1985 THE ASSEMBLY, RECALLING

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Free-Sailing Model Test Procedure

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Free-Sailing Model Test Procedure Testing and Extrapolation Methods Free-Sailing Model Test Procedure Page 1 of 10 22 CONTENTS 1. PURPOSE OF PROCEDURE 2. DESCRIPTION OF PROCEDURE 2.1 Preparation 2.1.1 Ship model characteristics 2.1.2 Model

More information

HELSINKI COMMISSION HELCOM SAFE NAV 4/2014 Group of Experts on Safety of Navigation Fourth Meeting Helsinki, Finland, 4 February 2014

HELSINKI COMMISSION HELCOM SAFE NAV 4/2014 Group of Experts on Safety of Navigation Fourth Meeting Helsinki, Finland, 4 February 2014 HELSINKI COMMISSION HELCOM SAFE NAV 4/2014 Group of Experts on Safety of Navigation Fourth Meeting Helsinki, Finland, 4 February 2014 Agenda Item 3 Accidents and ship traffic in the Baltic Sea Document

More information

Rule Change Notice For: RULES FOR CLASSIFICATION OF MOBILE OFFSHORE UNITS

Rule Change Notice For: RULES FOR CLASSIFICATION OF MOBILE OFFSHORE UNITS CHINA CLASSIFICATION SOCIETY Rule Change Notice For: RULES FOR CLASSIFICATION OF MOBILE OFFSHORE UNITS Version: December, 2016,RCN No.2 Effective date: 03 January, 2017 Beijing Contents PART ONE PROVISIONS

More information

MSC Guidelines for the Submission of Stability Test (Deadweight Survey or Inclining Experiment) Results

MSC Guidelines for the Submission of Stability Test (Deadweight Survey or Inclining Experiment) Results S. E. HEMANN, CDR, Chief, Hull Division References a. 46 CFR 170, Subpart F Determination of Lightweight Displacement and Centers of Gravity b. NVIC 17-91 Guidelines for Conducting Stability Tests c. ASTM

More information

PROJECT and MASTER THESES 2016/2017

PROJECT and MASTER THESES 2016/2017 PROJECT and MASTER THESES 2016/2017 Below you ll find proposed topics for project and master theses. Most of the proposed topics are just sketches. The detailed topics will be made in discussion between

More information

SLOP RECEPTION AND PROCESSING FACILITIES

SLOP RECEPTION AND PROCESSING FACILITIES RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS SPECIAL SERVICE AND TYPE ADDITIONAL CLASS PART 5 CHAPTER 8 SLOP RECEPTION AND PROCESSING FACILITIES JANUARY 2011 CONTENTS PAGE Sec. 1 General Requirements...

More information

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments By Dag Friis Christian Knapp Bob McGrath Ocean Engineering Research Centre MUN Engineering 1 Overview:

More information

IAGC Guidelines for Marine Small Boat Training and Competency Appendix 3 - Backup Coxswain Competency and Enabling Objectives September 2013

IAGC Guidelines for Marine Small Boat Training and Competency Appendix 3 - Backup Coxswain Competency and Enabling Objectives September 2013 IAGC Guidelines for Marine Small Boat Training and Competency Appendix 3 - Backup Coxswain Competency and Enabling Objectives September 2013 Guidelines for Marine Small Boat Training and Competency Appendix

More information

RESOLUTION MSC.141(76) (adopted on 5 December 2002) REVISED MODEL TEST METHOD UNDER RESOLUTION 14 OF THE 1995 SOLAS CONFERENCE

RESOLUTION MSC.141(76) (adopted on 5 December 2002) REVISED MODEL TEST METHOD UNDER RESOLUTION 14 OF THE 1995 SOLAS CONFERENCE MSC 76/23/Add.1 RESOLUTION MSC.141(76) THE MARITIME SAFETY COMMITTEE, RECALLING Article 38(c) of the Convention on the International Maritime Organization concerning the functions of the Committee, RECALLING

More information

SEMI FINAL EXAMINATION

SEMI FINAL EXAMINATION SEMI FINAL EXAMINATION 1. Which vessel may exhibit, if practicable, the lights for sailing vessels, but if she does not, she shall have ready at hand a electric torch or lighted lantern showing a white

More information

Assessment of Ships and Managers for the Acceptance of Extended Interval Between Bottom Surveys in Dry-Dock

Assessment of Ships and Managers for the Acceptance of Extended Interval Between Bottom Surveys in Dry-Dock CLASSIFICATION NOTES No. 72.2 Assessment of Ships and Managers for the Acceptance of Extended Interval Between Bottom Surveys in Dry-Dock MAY 2012 The electronic pdf version of this document found through

More information

COURSE OBJECTIVES CHAPTER 9

COURSE OBJECTIVES CHAPTER 9 COURSE OBJECTIVES CHAPTER 9 9. SHIP MANEUVERABILITY 1. Be qualitatively familiar with the 3 broad requirements for ship maneuverability: a. Controls fixed straightline stability b. Response c. Slow speed

More information

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer: Anemometry Anemometry Function of an anemometer: Measure some or all of the components of the wind vector In homogeneous terrain, vertical component is small express wind as -D horizontal vector For some

More information

National Maritime Center

National Maritime Center National Maritime Center Providing Credentials to Mariners (Sample Examination) Page 1 of 16 Choose the best answer to the following Multiple Choice Questions. 1. Which term applies to the angle between

More information

4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0) Fax: +44 (0)

4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0) Fax: +44 (0) E 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)0 7735 7611 Fax: +44 (0)0 7587 310 MEPC.1/Circ.850/Rev.1 15 July 015 013 INTERIM GUIDELINES FOR DETERMINING MINIMUM PROPULSION POWER TO MAINTAIN THE

More information

ATTACHMENT O WIPP MINE VENTILATION RATE MONITORING PLAN

ATTACHMENT O WIPP MINE VENTILATION RATE MONITORING PLAN ATTACHMENT O WIPP MINE VENTILATION RATE MONITORING PLAN (This page intentionally blank) ATTACHMENT O WIPP MINE VENTILATION RATE MONITORING PLAN TABLE OF CONTENTS O- Definitions... O- Objective... O- Design

More information

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 INTRODUCTION Sontek/YSI has introduced new firmware and software for their RiverSurveyor product line. Firmware changes

More information

Challenges in Ship Design to Maintain Thrusters inside Ship

Challenges in Ship Design to Maintain Thrusters inside Ship DYNAMIC POSITIONING CONFERENCE October 9-10, 2012 Thrusters Challenges in Ship Design to Maintain Thrusters inside Ship Tom Nylund and Timo Rintala Beacon Finland 1 DP Conference - Challenges in Ship Design

More information

Item 404 Driving Piling

Item 404 Driving Piling Item Driving Piling 1. DESCRIPTION Drive piling. 2. EQUIPMENT 2.1. Driving Equipment. Use power hammers for driving piling with specified bearing resistance. Use power hammers that comply with Table 1.

More information

Testing Procedures of Watertight Compartments

Testing Procedures of Watertight Compartments (1996) (Rev.1 Feb 2001) (Rev.2 May 2001) (Rev.3 May 2010) (Rev.4 Aug 2012) Testing Procedures of Watertight Compartments.1 Application Revision 4 of this UR is to be complied with in respect of the testing

More information

Rules for Classification and Construction Ship Technology

Rules for Classification and Construction Ship Technology I Rules for Classification and Construction Ship Technology 1 Seagoing Ships 14 Redundant Propulsion and Steering Systems Edition 2000 The following Rules come into force on 1 st August 2000 They are translated

More information

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES TABLE OF CONTENTS 1 INTRODUCTION 3 2 SYSTEM COMPONENTS 3 3 PITCH AND ROLL ANGLES 4 4 AUTOMATIC

More information

Cornish Crabbers Shrimper 19 Curlew

Cornish Crabbers Shrimper 19 Curlew Cornish Crabbers Shrimper 19 Curlew Make: Cornish Crabbers Model: Shrimper 19 Length: 5.87 m Price: EUR 15,900 Year: 1989 Condition: Used Boat Name: Hull Material: Draft: Number of Engines: 1 Fuel Type:

More information

RULES FOR CLASSIFICATION OF MOBILE OFFSHORE UNITS

RULES FOR CLASSIFICATION OF MOBILE OFFSHORE UNITS CHINA CLASSIFICATION SOCIETYY Rule Change Notice For: RULES FOR CLASSIFICATION OF MOBILE OFFSHORE UNIT S 2012 Version: December, 2015,RCN No.1 Effective date: 1 January, 20162 Beijing Contents PART ONE

More information

New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options

New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options By Dag Friis Christian Knapp Bob McGrath Ocean Engineering Research Centre MUN Engineering Overview : Introduction

More information

ANNEX 2 RESOLUTION MEPC.124(53) Adopted on 22 July 2005 GUIDELINES FOR BALLAST WATER EXCHANGE (G6) THE MARINE ENVIRONMENT PROTECTION COMMITTEE,

ANNEX 2 RESOLUTION MEPC.124(53) Adopted on 22 July 2005 GUIDELINES FOR BALLAST WATER EXCHANGE (G6) THE MARINE ENVIRONMENT PROTECTION COMMITTEE, Page 1 RESOLUTION MEPC.124(53) Adopted on 22 July 2005 GUIDELINES FOR BALLAST WATER EXCHANGE (G6) THE MARINE ENVIRONMENT PROTECTION COMMITTEE, RECALLING Article 38(a) of the Convention on the International

More information

Application of Simulation Technology to Mitsubishi Air Lubrication System

Application of Simulation Technology to Mitsubishi Air Lubrication System 50 Application of Simulation Technology to Mitsubishi Air Lubrication System CHIHARU KAWAKITA *1 SHINSUKE SATO *2 TAKAHIRO OKIMOTO *2 For the development and design of the Mitsubishi Air Lubrication System

More information

Guidelines on Surveys for Dynamic Positioning System

Guidelines on Surveys for Dynamic Positioning System Guidelines on Surveys for Dynamic Positioning System (2002) BEIJING 1 CONTENTS Chapter 1 GENERAL 1.1 General requirements 1.2 Class notation 1.3 Definitions 1.4 Plans and documents 1.5 Failure mode and

More information

API MPMS Chapter 17.6 Guidelines for Determining the Fullness of Pipelines between Vessels and Shore Tanks

API MPMS Chapter 17.6 Guidelines for Determining the Fullness of Pipelines between Vessels and Shore Tanks API MPMS Chapter 17.6 Guidelines for Determining the Fullness of Pipelines between Vessels and Shore Tanks 1. Scope This document describes procedures for determining or confirming the fill condition of

More information

MIL-STD-883G METHOD

MIL-STD-883G METHOD STEADY-STATE LIFE 1. PURPOSE. The steady-state life test is performed for the purpose of demonstrating the quality or reliability of devices subjected to the specified conditions over an extended time

More information

MANAGEMENT SYSTEM MANUAL

MANAGEMENT SYSTEM MANUAL 1. Purpose The purpose of this procedure is to establish routine check-off lists to be used in preparation for arrival and departure aboard the R/V Oceanus. 2. Responsibility The Master is responsible

More information

LOWER MISSISSIPPI RIVER PRE-ENTRY INFORMATION

LOWER MISSISSIPPI RIVER PRE-ENTRY INFORMATION LOWER MISSISSIPPI RIVER PRE-ENTRY INFORMATION Notice of Arrivals Prior to Arrival at any U.S. port, the vessel master should ensure a complete and accurate Notice of Arrival has been submitted to National

More information

Cargo and hull damage while at anchor in heavy weather

Cargo and hull damage while at anchor in heavy weather October 2017 Cargo and hull damage while at anchor in heavy weather A small general cargo vessel loaded steel cargo at several different ports. At the first port the vessel loaded steel plates and at the

More information

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE LIST OF TOPICS A B C D E F G H I J Hydrostatics Simpson's Rule Ship Stability Ship Resistance Admiralty Coefficients Fuel Consumption Ship Terminology Ship

More information

SHIP FORM DEFINITION The Shape of a Ship

SHIP FORM DEFINITION The Shape of a Ship SHIP FORM DEFINITION The Shape of a Ship The Traditional Way to Represent the Hull Form A ship's hull is a very complicated three dimensional shape. With few exceptions an equation cannot be written that

More information

Guideline No.M-05(201510) M-05 AIR COMPRESSOR. Issued date: 20 October China Classification Society

Guideline No.M-05(201510) M-05 AIR COMPRESSOR. Issued date: 20 October China Classification Society Guideline No.M-05(201510) M-05 AIR COMPRESSOR Issued date: 20 October 2015 China Classification Society Foreword This Guideline constitutes the CCS rules, and establishes the applicable technical requirements

More information

OFFICIAL MESSAGE CIRCULAR

OFFICIAL MESSAGE CIRCULAR OFFICIAL MESSAGE CIRCULAR From: NI/ DP Department Number: 010/2012 Date: 20.12.2012 Number of pages: 7 To: Dynamic Positioning Accredited Training Centres Cc: DPTEG members Referent to: Aims and Objectives

More information

Real-Time Smoothness Measurements on Concrete Pavements During Construction

Real-Time Smoothness Measurements on Concrete Pavements During Construction Recommended Practice for Real-Time Smoothness Measurements on Concrete Pavements During Construction XX-## (2017) 1. SCOPE 1.1. This document provides language that can be used by an Owner-Agency to develop

More information

M-06 Nitrogen Generator (Nitrogen Making Machine)

M-06 Nitrogen Generator (Nitrogen Making Machine) Guideline No.M-06 (201510) M-06 Nitrogen Generator (Nitrogen Making Machine) Issued date: 20 th October, 2015 China Classification Society Foreword This Guideline is a part of CCS Rules, which contains

More information

SHIP DESIGN AND EQUIPMENT

SHIP DESIGN AND EQUIPMENT E MARITIME SAFETY COMMITTEE 92nd session Agenda item 13 MSC 92/INF.7 5 April 2013 ENGLISH ONLY SHIP DESIGN AND EQUIPMENT Sample form for ship-specific plans and procedures for recovery of persons from

More information

Seventeenth Coast Guard District Auxiliary Policy Directive 01-07

Seventeenth Coast Guard District Auxiliary Policy Directive 01-07 Commander Seventeenth Coast Guard District Director of Auxiliary PO Box 25517 Juneau, AK 99802-5517 Staff Symbol: dpa Phone: 907-463-2252 Fax: 907-463-2256 Email: Robert.C.Gross@uscg.mil Seventeenth Coast

More information

SIMULATED PROPELLER WALK ON A TEU CONTAINER SHIP

SIMULATED PROPELLER WALK ON A TEU CONTAINER SHIP SIMULATED PROPELLER WALK ON A 13.300 TEU CONTAINER SHIP Andrei POCORA 1 Sergiu LUPU 2 Cosmin KATONA 3 1 Assistant Professor eng. PhD student, Mircea cel Batran Naval Academy, Constanta, Romania 2 Lecturer

More information

PROPERTY INSURANCE ASSOCIATION OF LOUISIANA

PROPERTY INSURANCE ASSOCIATION OF LOUISIANA PROPERTY INSURANCE ASSOCIATION OF LOUISIANA WATER HAULING GUIDELINES NOTE: Effective immediately, Fire Departments in Louisiana who receive credit for water hauling will receive their credit through a

More information

DP Ice Model Test of Arctic Drillship

DP Ice Model Test of Arctic Drillship Author s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 11-12, 211 ICE TESTING SESSION DP Ice Model Test of Arctic Drillship Torbjørn Hals Kongsberg Maritime, Kongsberg, Norway Fredrik

More information

Record of Assessment OFFICER IN CHARGE OF AN ENGINEERING WATCH

Record of Assessment OFFICER IN CHARGE OF AN ENGINEERING WATCH Record of Assessment for OFFICER IN CHARGE OF AN ENGINEERING WATCH Candidate s Name Candidate s Signature Candidate s Mariner Reference NOTE TO QUALIFIED ASSESSOR(S): In performing your function as a Qualified,

More information

OBJECTIVE 6: FIELD RADIOLOGICAL MONITORING - AMBIENT RADIATION MONITORING

OBJECTIVE 6: FIELD RADIOLOGICAL MONITORING - AMBIENT RADIATION MONITORING OBJECTIVE 6: FIELD RADIOLOGICAL MONITORING - AMBIENT RADIATION MONITORING OBJECTIVE Demonstrate the appropriate use of equipment and procedures for determining field radiation measurements. INTENT This

More information

1. Outline of the newly developed control technologies

1. Outline of the newly developed control technologies This paper describes a vertical lifting control and level luffing control design for newly developed, fully hydraulicdriven floating cranes. Unlike lattice boom crawler cranes for land use, the floating

More information

SHAFTING VIBRATION PRIMER

SHAFTING VIBRATION PRIMER CADEA The ultimate stop for solving marine propulsion shafting vibration or design problems Trg M. Pavlinovica 6 HR-21000 Split, Croatia Tel./Fax +385 21 490 154 http://www.cadea.hr SHAFTING VIBRATION

More information

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh Lecture Note of Naval Architectural Calculation Ship Stability Ch. 8 Curves of Stability and Stability Criteria Spring 2016 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National

More information

Investigation of Scale Effects on Ships with a Wake Equalizing Duct or with Vortex Generator Fins

Investigation of Scale Effects on Ships with a Wake Equalizing Duct or with Vortex Generator Fins Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Investigation of Scale Effects on Ships with a Wake Equalizing Duct or with Vortex Generator Fins Hans-Jürgen Heinke,

More information

OIL & GAS. MTS DP Committee. Workshop in Singapore Session 4 Day 2. Unwanted Thrust

OIL & GAS. MTS DP Committee. Workshop in Singapore Session 4 Day 2. Unwanted Thrust OIL & GAS MTS DP Committee Workshop in Singapore 2018 Session 4 Day 2 Unwanted Thrust Unwanted Thrust - Definition Unwanted Thrust Thrust magnitude not what has been ordered by DP (Particularly too high

More information

MSC Guidelines for the Review of Oil Spill Response Vessels (OSRV), Lightship and Stability

MSC Guidelines for the Review of Oil Spill Response Vessels (OSRV), Lightship and Stability R. J. LECHNER, CDR, Chief, Tank Vessel and Offshore Division Purpose This Plan Review Guidance (PRG) explains the requirements for seeking plan approval for stability plans and calculations from the Marine

More information

PASSENGER SHIPS Guidelines for preparation of Hull Structural Surveys

PASSENGER SHIPS Guidelines for preparation of Hull Structural Surveys (Feb 2010) PASSENGER SHIPS Guidelines for preparation of Hull Structural Surveys Contents 1 Introduction 2 Preparations for Survey 2.1 General 2.2 Conditions for survey 2.3 Access to structures 2.4 Survey

More information

Anchor and Anchor Cable Losses. Athens, Greece, 2 nd February 2018 Capt. Simon Rapley

Anchor and Anchor Cable Losses. Athens, Greece, 2 nd February 2018 Capt. Simon Rapley Anchor and Anchor Cable Losses Athens, Greece, 2 nd February 2018 Capt. Simon Rapley Anchor Loses Items lost: Whole anchors Anchor crowns Anchor and shackles of cable Anchor and entire anchor cable Shank

More information

Règlement pour la navigation pour la zone arctique. Alexey DUDAL Marine Division Bureau VERITAS

Règlement pour la navigation pour la zone arctique. Alexey DUDAL Marine Division Bureau VERITAS Règlement pour la navigation pour la zone arctique Alexey DUDAL Marine Division Bureau VERITAS 1 Contents 1. Introduction 2. BV Rules and Guidelines for Ice-Going Vessels 3. Direct Calculation Tool 4.

More information

ITTC - Recommended Procedures and Guidelines

ITTC - Recommended Procedures and Guidelines 7.5 Page 1 of 5 Table of Contents 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 4. DOCUMENTATION... 4 5. REFERENCES... 4 3. PARAMETERS... 4 Updated by Approved Manoeuvring Committee of

More information