INVESTIGATION INTO THE CAPSIZING OF DAMAGED RO-RO PASSENGER SHIPS IN WAVES

Size: px
Start display at page:

Download "INVESTIGATION INTO THE CAPSIZING OF DAMAGED RO-RO PASSENGER SHIPS IN WAVES"

Transcription

1 INVESTIGATION INTO THE CAPSIZING OF DAMAGED RO-RO PASSENGER SHIPS IN WAVES D. Papanikolaou 1, G. Zaraphonitis 2, D. Spanos 3, E. Boulougouris 4, E. Eliopoulou 5 ABSTRACT The paper derives from current research of the Ship Design Laboratory of NTUA on the hydrodynamic behaviour of Ro-Ro passenger ships in seaways in view of recent regulatory developments of IMO (SOLAS 95, Regional agreement, Res. 14) to allow the physical modelling of the damage stability of Ro-Ro passenger ships in waves as an alternative to the so-called water on deck regulatory concept. Based on these developments, it becomes evident that the availability of properly validated computer algorithms, allowing the mathematical modelling of the capsize of a damaged ship in waves is of great importance, providing the designer with flexibility and efficiency to address systematically alternative design measures, to so improve the survivability of the ship under question in waves and to allow a pass through the required SOLAS regulations. The paper outlines the essence of the employed theoretical-numerical model and includes typical numerical and experimental results for a sample Ro-Ro ship in damage condition. Special emphasis has been devoted to the consideration of sloshing effects on the ship dynamics by use of a simplified lump mass concept. 1. INTRODUCTION In recent years, following significant developments of international research on the survivability of damaged passenger ships in waves [1], parallel work has been launched at the Ship Design Laboratory of NTUA on the development of analytical-numerical methods for assessing the damage stability of ships in waves, suitable for implementation into the Ro-Ro ship design process ( Design for Safety concept [2]). In this context, a six degrees of freedom nonlinear mathematical model for simulating the ship motions in waves has been formulated and solved numerically in the time domain, allowing the simulation of ship motions at zero forward speed and the prediction of capsizing under specific environmental conditions. The above studies have been recently extended with the experimental investigation of the behaviour of a typical Greek Ro-Ro ferry and the systematic validation of the developed computer code [3]. The present paper provides a brief description of the employed mathematical-numerical model, followed by some typical numerical and experimental results referring to the survivability of the studied Ro-Ro vessel. More details for the derivation of the mathematical model and the numerical integration procedure can be found in earlier publications of the present authors ([4], [5]). 2. MATHEMATICAL MODEL We consider a coupled dynamic system, consisting of the ship and the flood-water, freely oscillating in six degrees of freedom excited by an external seaway, at zero speed of advance. In order to simplify the formulation and solution of the relevant equations of motions of the above dynamic system, the mass of the flood-water is assumed to be concentrated at its centre ( lump mass concept ), moving in space under constraints imposed by the surrounding boundaries. In order to describe the water-on-deck motion relevant to the peculiarities of Ro- Ro ship design with large open deck arrangements, a simple and yet efficient way commonly adopted is to assume that its free surface remains continuously horizontal. In this way, the development of internal flood-water waves and their influence on the ship motions ( sloshing effects ) is neglected. This simplified assumption seems to be adequate, when simulating the capsizing process of a Ro-Ro ship after flooding, which is dominated by quasi-hydrostatic phenomena. It appears however essential to study the internal water motion and the limitations of the above assumption regarding the flood-water surface movement. In particular, it proves that, although in general the ship motions are predicted 1 Professor, Head of Ship Design Laboratory, NTUA 2 Assistant Professor, NTUA 3 Dr.-Eng. Cand., Ship Design Laboratory, NTUA 4 Dr.-Eng. Cand., Ship Design Laboratory, NTUA 5 Dr.-Eng. Cand., Ship Design Laboratory, NTUA

2 fairly well, there are several cases where roll motion predictions are less satisfactory. The general conclusion is that the inaccuracy of the numerical predictions increases in those damage cases where the flood-water accumulated on the car deck remains relatively shallow. An improved and more comprehensive model for the internal water motion dynamics has been formulated at NTUA-SDL (Spanos [6]), considering the internal flood water as a lump mass moving freely over a specific path surface. This path surface Sw (see sketch) corresponds to the trace of the centre of volume of a given amount of floodwater in the damaged compartment, for all the possible ship motion as well as the free surface elevation due to the incident wave. Radiation forces and moments are derived from the added mass and damping coefficients of the ship, calculated by the 3D panel code NEWDRIFT [7], by use of appropriate convolution integrals to account for the transformation from frequency- to time-domain and memory effects. A quadratic roll-damping model is used to account for viscous effects. Diffraction forces and moments are approximated by the linear superposition of the elementary diffraction forces, calculated again by use of the 3D code NEWDRIFT, associated with each of the elementary waves composing the encountering wave train. mw z y G Sw θw φw The rate of inflow or outflow of flood-water &m W is calculated using an appropriate empirical water-ingress model introduced by Hutchinson ([8]). The incident wave spectrum is simulated by a finite number of harmonic waves, with properly selected frequencies and amplitudes, to account for the seaway characteristics of the assumed wave spectrum. θ inclinations θw of the internal free surface against the car deck. According to this formulation, the lump mass motion is an additional unknown variable, to be determined by an additional equation, namely: n r r &r n r w Sw = where Sw is the normal vector to surface S w, while w denotes the position vector of m w with respect to the body-fixed coordinate system (Gx y z ). The development of the present mathematical model and the related numerical simulation algorithm has been presented elsewhere ([4], [5]) and will be only briefly commented herein for the sake of completeness. Applying Newton s second law, and after a series of tedious algebraic operations, the equations of motion for the dynamic system consisting of the intact ship and the flood water are derived in a form suitable for the numerical integration by standard software tools. Froude-Krylov and hydrostatic forces and moments are calculated by direct numerical integration of the incident wave pressure and hydrostatic pressure respectively over the instantaneous wetted surface, taking into account the r v The resulting overall system of differential equations is integrated numerically in the time domain, using computer program CAPSIMO [6], that is based on an advanced integration method. 3. EXPERIMENTAL STUDY Systematic experimental investigations are considered necessary to gain more insight into the behaviour of vessels in the damaged condition, the mechanisms of capsizing and for validating developed simulation software tools. For this purpose, a moderate size SOLAS74 Greek Ro-Ro vessel of open car deck type (with aft & fwd casings), currently operating in the Aegean Sea, has been selected for systematic investigation within a state-funded research project of NTUA-SDL [3]. The main particulars of the vessel are presented in table 1. In figures 1 and 2 the shape of the hull and the compartmentation of the vessel are shown. A Plexiglas model of the above vessel (scale 1:3) has been constructed and tested at the towing tank of Ship Hydrodynamics Laboratory of NTUA, following the specifications of Res. 14 of SOLAS95 (Figure 3). The floating position and the principal hydrostatic characteristics of the vessel in the intact condition and after a two-compartment damage (Engine Room and Auxiliary Engine Room flooded, perm..95) are summarised in tables 2 and 3 respectively. In figure 4, the righting arm vs. heel is plotted for the vessel in the intact and damage condition. Experiments have been

3 conducted for various combinations of initial displacement and vertical centre of gravity, with the model both in intact and damaged condition. In the latter case, the Engine Room and the Auxiliary Engine Room were open to the sea, through an opening at the starboard side, of SOLAS95-Res. 14 specifications. During the experiments, the wave elevation in the vicinity of the wave-maker and near the model was continuously measured and recorded by wave probes of capacitance type. Seven accelerometers were installed at appropriate points, measuring vertical and horizontal accelerations, from which the motions of the model in 6DOF where calculated. Additionally, the roll motion was measured by a digital inclinometer. More details on the experimental procedures and used measuring apparatus can be found in [3]. 4. DISCUSSION OF RESULTS Experimental measurements and numerical results by use of NTUA-SDL 3D nonlinear time simulation program for the motions of the previously described vessel are presented in figures 5 to 12 (full-scale values). Figure 5 and 6 present roll-motion time histories (experimental measurements and numerical simulation results) for the vessel in damaged condition (characteristic two compartment flooding), subject to an incident seaway characterised by a JONSWAP wave spectrum with Hs=2.5m, γ=3.3 and Tp=6.325sec. As can be seen from these figures, the theory agrees fairly well with the experiments, both regarding the absolute amplitude of roll motion as well as to the observed mean values of inclination. On the other hand, considerable difference can be observed between the calculated and measured number of peaks. This difference is attributed to the finite number of elementary harmonic waves (namely 41 harmonics) used to simulate the incident wave spectrum. In figures 7 and 8, the time history of the inclination of the flood-water surface on the car deck is plotted, namely against the car deck level, respectively against the still water free surface. These particular graphs are of importance for checking the fundamental assumption, adopted in many related numerical studies, to assume the internal flood water surface being always parallel to the external still water free surface. The same type of results are shown respectively in figures 9 to 12, for the vessel in the damaged condition (two compartment flooding), subject to an incident JONSWAP wave spectrum with Hs=2.5m, γ=1 and Tp=9.487sec. The quality of comparative results between theory and experiments is like before, namely acceptable for practical applications. In this second studied case, that was considered following the specifications of IMO Resolution 14 requirements, the peak period of the incident wave spectrum is equal to the roll eigen-period of the intact ship. As can be seen both from the experimental and the numerical results, the responses of the damaged vessel is considerably smaller in this case, compared with the responses for the first wave spectrum, with Tp=6.235sec. This seems to be due to the considerable increase of the ship s rolling eigen-period of the ship in the damaged condition and the fact, that the second studied wave spectrum is very narrow, therefore there is not considerable amount of wave energy in the vicinity of the new roll eigen-period. Note that both studied spectra correspond to Mediterranean Sea conditions, with typical significant wave heights in the range of 2.5m. 5. CONCLUSIONS An improved mathematical model and the corresponding numerical solution procedure for the simulation of large amplitude motions and of capsize of damaged ships has been briefly presented, followed by numerical results from the application of the method to a typical Greek Ro- Ro vessel. Comparison with experimental results obtained from model tests at NTUA s towing tank shows reasonable agreement. In the near future, a series of more systematic experiments are planned at NTUA, in order to gain some more insight into the mechanism of ship capsizing in damaged condition and at the same time to fully validate the accuracy of the developed numerical method and computer simulation code. At the end of these studies, it is the opinion of the authors that the presented simulation model will be a valuable tool in the process of designing a Ro-Ro vessel by first principles approach, enabling the designer to analyse the impact on damage stability of different design solutions and to maximise the survivability of the vessel, before proceeding to a final experimental investigation, for validating the initial design assumptions. 6. ACKNOWLEDGEMENTS The authors wish to acknowledge the support to the present research by the Greek Secretariat General for Research and Technology (code PENED 1995). They like also to thank the staff of the Ship and Marine Hydrodynamics Laboratory, particularly Ass. Prof. G. Grigoropoulos, for their support at the model experiments, and Strintzis Lines for the provision of technical information relevant to this project.

4 7. REFERENCES 1. Vassalos, D., A realistic approach to assessing the damage survivability of passenger ships, Trans. SNAME, vol. 12, pp , Vassalos, D, The European Thematic Network SAFER-EURORO Design for Safety, Proc. of Annual Workshop held at MARIN, Wageningen, Papanikolaou, A., et al., Analysis of the Dynamic Stability of Ro-Ro vessels and Investigation into the Probability of Capsizing in High Seas Final Report to the Greek Secretariat General for Research and Technology (code ΠΕΝΕ 1995), Athens, 1998 (in Greek). 4. Zaraphonitis, G., Papanikolaou, A. D., Spanos, D., On a 3-D mathematical model of the damage stability of ships in waves, Proc. 6th Int. Conference Stability of Ships and Ocean Structures (STAB 97), Varna, September Spanos, D., Papanikolaou, A. D., Zaraphonitis, G., On a 6DOF mathematical model for the simulation of ship capsize in waves, Proc. 8th IMAM Congress on Marine Technology, Istanbul, November Spanos, D., Theoretical-numerical modelling of large amplitude ship motions and of capsizing in heavy seas, Dr. Eng. Thesis, Dep. of Naval Architecture, NTUA, in progress. 7. Papanikolaou, A., Zaraphonitis, G, NEWDRIFT: The six DOF 3D diffraction theory program of NTUA-SDL for the calculation of motions and loads of arbitrarily shaped bodies in waves, NTUA-SDL Rep., Athens, Hutchinson, L., Water on-deck accumulation studies by the SNAME ad hoc Ro-Ro safety panel, Workshop on Numerical & Physical Simulation of Ship Capsize in Heavy Seas, University of Strathclyde, Figure 1. Hull shape of studied ship ENGINE ROOM AUX. ENGINE GENERATOR ROOM ROOM Figure 2. Vessel s compartmentation below car deck and studied damage case

5 Table 1. Ship s Main Particulars Main Dimensions Length Btw Perpendiculars 11. m Breadth Moulded Depth Moulded (BHD deck) m m Draught Displacement Number of WT BHDs m t Intact Condition Draught 5.15 m Trim GM (solid) Even Keel m Damage Condition Engine & Auxiliary Rooms flooded Figure 3. Photo of ship model tested at NTUA s Towing Tank, scale 1:3 Table 2. Ship in Intact Condition Floating Status Draft FP Draft MS Draft AP Trim LCG 4.674m 4.781m 4.866m.192m AFT Heel Equil Wind Wave KG Zero Yes. kn No m GM(Solid) F/S Corr GM(Fluid) KMT TPcm 2.68m.11m 1.958m m 14.7 Displacer Status Item HULL.C SubTotals: Status Intact Spgr 1.25 Displ (MT) LCB TCB.. VCB Eff /Perm 1.

6 Table 3. Ship in Damage Condition Floating Status Draft FP 5.768m Heel port.9 deg. GM(Solid) 2.252m Draft MS 6.86m Equil Yes F/S Corr.m Draft AP 6.44m Wind. kn GM(Fluid) 2.252m Trim aft.32 deg. Wave No KMT m LCG 51.88f KG m TPcm 12.5 Displacer Status (compliance with SOLAS 9 regulations) Item Status Spgr Displ (MT) LCB TCB VCB Eff /Perm HULL.C Intact , f.8p ENGINEROOM.C Flooded , f.8p AUXENGROOM.C Flooded f.27p SubTotals: 4, f.5p Intact Condition GZ Damage Condition Heel (degrees) Figure 4. Righting Arm Curves vs. Heel in Intact and Damage Condition

7 ROLL TIME HISTORY (DS 36) DAMAGED SHIP IN SHORT SPECTRUM Figure 5. Roll motion time history Experimental results. Hs=2.5 m, T=6.325 s. Roll (deg) 1-1 Water : 12% of Displ. Wave : 41 harm onics Grid: 978 panels Figure 6. Roll motion time history Calculated results. Hs=2.5 m, T=6.325 s. Water R Figure 7. Calculated internal water free surface inclination against car deck. Water R Figure 8. Calculated internal water free surface inclination against still water free surface.

8 ROLL TIME HISTORY (DS 38) DAMAGED SHIP IN LONG SPECTRUM Figure 9. Roll motion time history Experimental results. Hs=2.5 m, T=9.487 s. Roll (deg) 1-1 Water : 12% of Displ. W ave : 41 harmonics Grid: 978 panels T im e (sec) Figure 1. Roll motion time history Calculated results. Hs=2.5 m, T=9.487 s. Water R Figure 11. Calculated internal water free surface inclination against car deck. Water R

9 Figure 12. Calculated internal water free surface inclination against still water free surface.

Investigation into the Sinking of the Ro-Ro Passenger Ferry EXPRESS SAMINA

Investigation into the Sinking of the Ro-Ro Passenger Ferry EXPRESS SAMINA Safety and Energy Efficient Marine Operations 19 th November 2015 Investigation into the Sinking of the Ro-Ro Passenger Ferry EXPRESS SAMINA Reference: A. Papanikolaou, D. Spanos, E. Boulougouris, E. Eliopoulou,

More information

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Monika Warmowska, Jan Jankowski, Polski Rejestr Statków S.A., al. gen. Józefa Hallera 126, Poland, Gdańsk, 80-416 MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Summary Green water moving on deck of small

More information

RESOLUTION MSC.141(76) (adopted on 5 December 2002) REVISED MODEL TEST METHOD UNDER RESOLUTION 14 OF THE 1995 SOLAS CONFERENCE

RESOLUTION MSC.141(76) (adopted on 5 December 2002) REVISED MODEL TEST METHOD UNDER RESOLUTION 14 OF THE 1995 SOLAS CONFERENCE MSC 76/23/Add.1 RESOLUTION MSC.141(76) THE MARITIME SAFETY COMMITTEE, RECALLING Article 38(c) of the Convention on the International Maritime Organization concerning the functions of the Committee, RECALLING

More information

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Minggui Zhou 1, Dano Roelvink 2,4, Henk Verheij 3,4 and Han Ligteringen 2,3 1 School of Naval Architecture, Ocean and Civil Engineering,

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 7 Table of Contents 2 1. PURPOSE... 2 2. PARAMETERS... 2 2.2. General Considerations... 2 2.3. Special Requirements for Ro-Ro Ferries... 3 3.3. Instrumentation... 4 3.4. Preparation... 5 3.5.

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations

Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations International Journal on Marine Navigation and Safety of Sea Transportation Volume 4 Number 3 September 2010 Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations P.

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas

Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas Chang Seop Kwon *, Dong Jin Yeo **, Key Pyo Rhee *** and Sang Woong Yun *** Samsung Heavy Industries Co., td. * Maritime

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 10 Table of Contents 1. PURPOSE... 2 2. NUMERICAL METHODS... 2 3. PREPARATION, SIMULATIONS AND ANALYSIS... 4 3.1 Geometry... 4 3.2 Preparations... 5 3.3 Wave conditions... 6 3.4 Wind conditions...

More information

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON STABILITY AND LOAD LINES AND ON FISHING VESSELS SAFETY 49th session Agenda item 5 SLF 49/5/5 19 May 2006 Original: ENGLISH REVISION OF THE INTACT

More information

DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED AT DMI

DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED AT DMI TECHNISCHE UNIVERSITET laboratoriurn vow Scheepshydromechareba slechlef Meketweg 2, 2628 CD. Delft Tel.: 015-788873 - Fax 015-781838 DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section International Ship Stability Workshop 2013 1 A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section Tatsuya Miyake and Yoshiho Ikeda Department of Marine System Engineering,

More information

Wave Forces on a Moored Vessel from Numerical Wave Model Results

Wave Forces on a Moored Vessel from Numerical Wave Model Results Wave Forces on a Moored Vessel from Numerical Wave Model Results ABSTRACT P W O BRIEN OMC International Pty Ltd, Melbourne, Australia O WEILER WL Delft Hydraulics, Delft, The Netherlands M BORSBOOM WL

More information

MASTER THESIS PRESENTATION. Comparison Of Seakeeping Performance Of The Two Super Yachts Of 53 And 46 m In Length

MASTER THESIS PRESENTATION. Comparison Of Seakeeping Performance Of The Two Super Yachts Of 53 And 46 m In Length MASTER THESIS PRESENTATION Comparison Of Seakeeping Performance Of The Two Super Yachts Of 53 And 46 m In Length Muhammad Asim Saleem Supervisor : Prof. Dario Boote, Universita degli studi di Genova, Italy

More information

Lab test 4 Seakeeping test with a model of an oil tanker

Lab test 4 Seakeeping test with a model of an oil tanker Lab test 4 Seakeeping test with a model of an oil tanker The response amplitude operators (RAO) in head seas of a 1:100 scale model of a 257 m long oil tanker shall be determined by model testing in the

More information

Dynamic Stability of Ships in Waves

Dynamic Stability of Ships in Waves Gourlay, T.P. & Lilienthal, T. 2002 Dynamic stability of ships in waves. Proc. Pacific 2002 International Maritime Conference, Sydney, Jan 2002. ABSTRACT Dynamic Stability of Ships in Waves Tim Gourlay

More information

Review of regulatory framework of Damage Stability of Dry Cargo and Passenger Ships

Review of regulatory framework of Damage Stability of Dry Cargo and Passenger Ships Review of regulatory framework of Damage Stability of Dry Cargo and Passenger Ships Two main categories of regulatory concepts and methodologies for the assessment of ship s damage stability are nowadays

More information

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 3D CDF ODELING OF SHIP S HEELING OENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Przemysaw Krata, Jacek Jachowski Gdynia aritime University,

More information

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh Lecture Note of Naval Architectural Calculation Ship Stability Ch. 8 Curves of Stability and Stability Criteria Spring 2016 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National

More information

SOFTWARE. Sesam user course. 12 May 2016 HydroD Hydrostatics & Stability. Ungraded SAFER, SMARTER, GREENER DNV GL 2016

SOFTWARE. Sesam user course. 12 May 2016 HydroD Hydrostatics & Stability. Ungraded SAFER, SMARTER, GREENER DNV GL 2016 SOFTWARE Sesam user course DNV GL 1 SAFER, SMARTER, GREENER Scope of presentation Describe features & commands for performing a hydrostatic analysis, and their concepts Analysis setup Code-checking Reporting

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

Abstract. 1 Introduction

Abstract. 1 Introduction A computational method for calculatingthe instantaneous restoring coefficients for a ship moving in waves N. El-Simillawy College of Engineering and Technology, Arab Academyfor Science and Technology,

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 12 Table of Contents 1. PURPOSE... 2 2. NUMERICAL METHODS... 2 2.1 Accounting for the Inertia of Flood Water... 2 2.2 Additional Considerations... 4 3. PREPARATION, SIMULATIONS AND ANALYSIS...

More information

Investigation of the Intact Stability Accident of the Multipurpose Vessel MS ROSEBURG

Investigation of the Intact Stability Accident of the Multipurpose Vessel MS ROSEBURG Proceedings of the 12th International Conference on the Stability of Investigation of the Intact Stability Accident of the Multipurpose Vessel MS ROSEBURG Adele Lübcke, Institute of Ship Design and Ship

More information

ANNEX 5 IMO MARINE CASULATY AND INCIDENT REPORT DAMAGE CARDS* AND INTACT STABILITY CASUALTY RECORDS

ANNEX 5 IMO MARINE CASULATY AND INCIDENT REPORT DAMAGE CARDS* AND INTACT STABILITY CASUALTY RECORDS ANNEX 5 IMO MARINE CASUATY AND INCIDENT REPORT DAMAGE CARDS* AND INTACT STABIITY CASUATY RECORDS Statistics of damaged ships and of intact stability casualties are important to the work of the Organization

More information

THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING

THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING 8 th International Conference on 521 THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING Leigh S. McCue and Armin W. Troesch Department of Naval Architecture

More information

Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria

Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria Richard B Luhulima 1, D Setyawan 2, and I K A P Utama 3 1. PhD Student Dept. of Naval

More information

The OTSS System for Drift and Response Prediction of Damaged Ships

The OTSS System for Drift and Response Prediction of Damaged Ships The OTSS System for Drift and Response Prediction of Damaged Ships Shoichi Hara 1, Kunihiro Hoshino 1,Kazuhiro Yukawa 1, Jun Hasegawa 1 Katsuji Tanizawa 1, Michio Ueno 1, Kenji Yamakawa 1 1 National Maritime

More information

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN Bridget M. Wadzuk 1 (Member, ASCE) and Ben R. Hodges 2 (Member, ASCE) ABSTRACT Modeling of dynamic pressure appears necessary to achieve a more robust

More information

INVESTIGATION INTO THE SINKING OF THE RO-RO PASSENGER FERRY EXPRESS SAMINA

INVESTIGATION INTO THE SINKING OF THE RO-RO PASSENGER FERRY EXPRESS SAMINA 8 th International Conference on 31 INVESTIGATION INTO THE SINKING OF THE RO-RO PASSENGER FERRY EXPRESS SAMINA A. Papanikolaou, D. Spanos, E. Boulougouris, E. Eliopoulou, A. Alissafaki National Technical

More information

A STUDY ON FACTORS RELATED TO THE CAPSIZING ACCIDENT OF A FISHING VESSEL RYUHO MARU No.5

A STUDY ON FACTORS RELATED TO THE CAPSIZING ACCIDENT OF A FISHING VESSEL RYUHO MARU No.5 8 th International Conference on 49 A STUDY ON FACTORS RELATED TO THE CAPSIZING ACCIDENT OF A FISHING VESSEL RYUHO MARU No.5 Harukuni Taguchi, Shigesuke Ishida, Iwao Watanabe, Hiroshi Sawada, Masaru Tsujimoto,

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events Loads and Responses, Seakeeping Page 1 of 5 CONTENTS 1. PURPOSE OF PROCEDURE 2. STANDARDS FOR EXPERIMENTS ON RARELY OCCURRING EVENTS 2.1 Previous Recommendations of ITTC 2.2 Model Design and Construction

More information

Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves

Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves Sun Young Kim, Nam Sun Son, Hyeon Kyu Yoon Maritime & Ocean Engineering Research Institute, KORDI ABSTRACT

More information

S0300-A6-MAN-010 CHAPTER 2 STABILITY

S0300-A6-MAN-010 CHAPTER 2 STABILITY CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

More information

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK The 9 th International Conference on Coasts, Ports and Marine Structures (ICOPMAS 2010) 29 Nov.-1 Dec. 2010 (Tehran) DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK sayed mohammad

More information

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE LIST OF TOPICS A B C D E F G H I J Hydrostatics Simpson's Rule Ship Stability Ship Resistance Admiralty Coefficients Fuel Consumption Ship Terminology Ship

More information

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,

More information

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves ABSTRACT Emre Kahramano lu, Technical University, emrek@yildiz.edu.tr Hüseyin Y lmaz,, hyilmaz@yildiz.edu.tr Burak

More information

A Note on the Capsizing of Vessels in Following and Quartering Seas

A Note on the Capsizing of Vessels in Following and Quartering Seas Oceanic Engineenng International, Vol. 1, No. 1, 1997, pp. 25-32 A Note on the Capsizing of Vessels in Following and Quartering Seas MARTIN RENILSON' * 'Australian Maritime Engineering CRC Ltd, c/o Australian

More information

Numerical modeling of refraction and diffraction

Numerical modeling of refraction and diffraction Numerical modeling of refraction and diffraction L. Balas, A. inan Civil Engineering Department, Gazi University, Turkey Abstract A numerical model which simulates the propagation of waves over a complex

More information

Numerical Simulation of Wave Loads on Static Offshore Structures

Numerical Simulation of Wave Loads on Static Offshore Structures Numerical Simulation of Wave Loads on Static Offshore Structures Hrvoje Jasak, Inno Gatin, Vuko Vukčević Wikki Ltd, United Kingdom Faculty of Mechanical Engineering and Naval Architecture University of

More information

CLASS 1E 8 SMOOTH WATERS OPERATIONS 8

CLASS 1E 8 SMOOTH WATERS OPERATIONS 8 Table of Contents INSTRUCTION TO MASTERS SAFETY INFORMATION 3 STABILITY BOOK TO BE KEPT ON VESSEL 3 LOADING CONDITIONS 3 ASPECTS OF LOADING 3 PASSENGER PARTICULARS 3 HYDROSTATIC AND KN VALUES 4 EXCESS

More information

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS CHAPTERS SCOPE

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS CHAPTERS SCOPE PART II RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS TITLE 12 CONTAINER SHIPS SECTION 1 NAVAL ARCHITECTURE CHAPTERS A SCOPE B DOCUMENTS, REGULATIONS AND STANDARDS

More information

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING TECHNOLOGY (IJDMT) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6995 (Print) ISSN

More information

Split-time Algorithm Implementation in Advanced Hydrodynamic Codes

Split-time Algorithm Implementation in Advanced Hydrodynamic Codes Proceedings of the 15 th International Ship Stability Workshop, 13-15 June 2016, Stockholm, Sweden 1 Split-time Algorithm Implementation in Advanced Hydrodynamic Codes Kenneth Weems, Naval Surface Warfare

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

GUIDELINES ON OPERATIONAL INFORMATION FOR MASTERS IN CASE OF FLOODING FOR PASSENGER SHIPS CONSTRUCTED BEFORE 1 JANUARY 2014 *

GUIDELINES ON OPERATIONAL INFORMATION FOR MASTERS IN CASE OF FLOODING FOR PASSENGER SHIPS CONSTRUCTED BEFORE 1 JANUARY 2014 * E 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210 MSC.1/Circ.1589 24 May 2018 GUIDELINES ON OPERATIONAL INFORMATION FOR MASTERS IN CASE OF FLOODING FOR PASSENGER

More information

An Investigation into the Capsizing Accident of a Pusher Tug Boat

An Investigation into the Capsizing Accident of a Pusher Tug Boat An Investigation into the Capsizing Accident of a Pusher Tug Boat Harukuni Taguchi, National Maritime Research Institute (NMRI) taguchi@nmri.go.jp Tomihiro Haraguchi, National Maritime Research Institute

More information

Specialist Committee on Stability in Waves

Specialist Committee on Stability in Waves Specialist Committee on Stability in Waves Membership: M Renilson (Chairman), A Peters (Secretary), W Y Duan, P Gualeni, T Katayama, G J Lee, J Falzarano, A M Reed, F van Walree, AMC, Australia QinetiQ,

More information

A New Approach to the Derivation of V-Line Criteria for a Range of Naval Vessels

A New Approach to the Derivation of V-Line Criteria for a Range of Naval Vessels A New Approach to the Derivation of V-Line Criteria for a Range of Naval Vessels Andrew Peters 1, Rick Goddard 2 and Nick Dawson 1 1. QinetiQ, Haslar Marine Technology Park (UK) 2. Steller Systems Ltd.,

More information

Subj: Explanation of Upper Level Capacity and Stability Characteristics for Rolling Boat, Inc. Vessels.

Subj: Explanation of Upper Level Capacity and Stability Characteristics for Rolling Boat, Inc. Vessels. 23 Apr, 2009 From: Tullio Celano III P.E. To: Underwriters of Rolling Boat, Inc. Via: Phil Kazmierowicz, President, Rolling Boat, Inc. Subj: Explanation of Upper Level Capacity and Stability Characteristics

More information

A PROCEDURE FOR DETERMINING A GM LIMIT CURVE BASED ON AN ALTERNATIVE MODEL TEST AND NUMERICAL SIMULATIONS

A PROCEDURE FOR DETERMINING A GM LIMIT CURVE BASED ON AN ALTERNATIVE MODEL TEST AND NUMERICAL SIMULATIONS 10 th International Conference 181 A PROCEDURE FOR DETERMINING A GM LIMIT CURVE BASED ON AN ALTERNATIVE MODEL TEST AND NUMERICAL SIMULATIONS Adam Larsson, Det Norske Veritas Adam.Larsson@dnv.com Gustavo

More information

NUMERICAL SIMULATION OF THE PROGRESSIVE FLOODING OF A BOX-SHAPED BARGE

NUMERICAL SIMULATION OF THE PROGRESSIVE FLOODING OF A BOX-SHAPED BARGE 10 th International Conference 281 NUMERICAL SIMULATION OF THE PROGRESSIVE FLOODING OF A BOX-SHAPED BARGE Santos, T.A., Dupla, P., Guedes Soares, C. Centre for Marine Technology and Engineering (CENTEC)

More information

Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method

Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method Heinrich Söding, TU Hamburg-Harburg, Hamburg/Germany, h.soeding@tu-harburg.de Vladimir Shigunov, Germanischer Lloyd SE, Hamburg/Germany,

More information

ITTC - Recommended Procedures and Guidelines

ITTC - Recommended Procedures and Guidelines 7.5 Page 1 of 5 Table of Contents 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 4. DOCUMENTATION... 4 5. REFERENCES... 4 3. PARAMETERS... 4 Updated by Approved Manoeuvring Committee of

More information

High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields

High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields Dick K.P. Yue Center for Ocean Engineering

More information

Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55

Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55 1 Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55 Clève Wandji, Bureau Veritas Philippe Corrignan, Bureau Veritas ABSTRACT A second generation

More information

The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts

The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts THE 17 th CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 25 The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts Jonathan R. Binns, Researcher, Australian

More information

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Tor Anders Nygaard and Jacobus de Vaal, IFE Morten Hviid Madsen and Håkon Andersen, Dr.techn Olav Olsen AS Jorge Altuzarra, Vicinay Marine

More information

SOFTWARE. Sesam user course. 02 May 2016 HydroD Input. Ungraded SAFER, SMARTER, GREENER DNV GL 2016

SOFTWARE. Sesam user course. 02 May 2016 HydroD Input. Ungraded SAFER, SMARTER, GREENER DNV GL 2016 SOFTWARE Sesam user course DNV GL 1 SAFER, SMARTER, GREENER About the presenter Name: Torgeir Kirkhorn Vada Position: Product Manager for floating structures Background: PhD in Applied mathematics/hydrodynamics

More information

AN INVESTIGATION INTO THE INFLUENCE OF TANK FILLING LEVEL ON LIQUID SLOSHING EFFECTS ONBOARD SHIPS - STATIC AND DYNAMIC APPROACH

AN INVESTIGATION INTO THE INFLUENCE OF TANK FILLING LEVEL ON LIQUID SLOSHING EFFECTS ONBOARD SHIPS - STATIC AND DYNAMIC APPROACH Journal of KONES Powertrain and Transport, Vol. 9, No. AN INVESTIGATION INTO THE INFLUENCE OF TANK FILLING LEVEL ON LIQUID SLOSHING EFFECTS ONBOARD SHIPS - STATIC AND DYNAMIC APPROACH Przemys aw Krata,

More information

CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS

CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS By J. de Bont 1, W. van der Molen 2, J. van der Lem 3, H. Ligteringen 4, D. Mühlestein 5 and M. Howie 6 ABSTRACT Container ships should

More information

Sensitivity analysis of the probabilistic damage stability regulations for RoPax vessels

Sensitivity analysis of the probabilistic damage stability regulations for RoPax vessels Sensitivity analysis of the probabilistic damage stability regulations for RoPax vessels George Simopoulos Dimitris Konovessis Dracos Vassalos Abstract In the light of the newly developed harmonised probabilistic

More information

Offshore Oil and Gas Platforms for Deep Waters

Offshore Oil and Gas Platforms for Deep Waters Offshore Oil and Gas Platforms for Deep Waters Atilla Incecik Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow, UK (atilla.incecik@strath.ac.uk) Summary

More information

Ship Stability September 2013 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National University

Ship Stability September 2013 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National University Planning Procedure of Naval Architecture and Ocean Engineering Ship Stability September 2013 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National University 1 Ship Stability

More information

Sample Applications of the Second Generation Intact Stability Criteria Robustness and Consistency Analysis

Sample Applications of the Second Generation Intact Stability Criteria Robustness and Consistency Analysis Proceedings of the 16 th International Ship Stability Workshop, 5-7 June 2017, Belgrade, Serbia 1 Sample Applications of the Second Generation Intact Stability Criteria Robustness and Consistency Analysis

More information

MSC Guidelines for the Submission of Stability Test (Deadweight Survey or Inclining Experiment) Results

MSC Guidelines for the Submission of Stability Test (Deadweight Survey or Inclining Experiment) Results S. E. HEMANN, CDR, Chief, Hull Division References a. 46 CFR 170, Subpart F Determination of Lightweight Displacement and Centers of Gravity b. NVIC 17-91 Guidelines for Conducting Stability Tests c. ASTM

More information

Comparison of two practical methods for seakeeping assessment of damaged ships

Comparison of two practical methods for seakeeping assessment of damaged ships Analysis and Design of Marine Structures Guedes Soares & Shenoi (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02789-3 Comparison of two practical methods for seakeeping assessment of damaged

More information

Effect of Wave Steepness on Yaw Motions of a Weathervaning Floating Platform

Effect of Wave Steepness on Yaw Motions of a Weathervaning Floating Platform 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 Effect of Wave Steepness on Yaw Motions of a Weathervaning Floating Platform Jayanth Munipalli, and Krish

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 95 CHIEF

More information

PREDICTING THE ABILITY OF SURVIVAL AFTER DAMAGE IN TANKERS. José Poblet Martínez - SENER, (Spain) José Javier Díaz Yraola - SENER, (Spain)

PREDICTING THE ABILITY OF SURVIVAL AFTER DAMAGE IN TANKERS. José Poblet Martínez - SENER, (Spain) José Javier Díaz Yraola - SENER, (Spain) 8 th International Conference on 477 PREDICTING THE ABILITY OF SURVIVAL AFTER DAMAGE IN TANKERS Abstract José Poblet Martínez - SENER, (Spain) José Javier Díaz Yraola - SENER, (Spain) To meet the demand

More information

RESOLUTION MSC.429(98) (adopted on 9 June 2017) REVISED EXPLANATORY NOTES TO THE SOLAS CHAPTER II-1 SUBDIVISION AND DAMAGE STABILITY REGULATIONS

RESOLUTION MSC.429(98) (adopted on 9 June 2017) REVISED EXPLANATORY NOTES TO THE SOLAS CHAPTER II-1 SUBDIVISION AND DAMAGE STABILITY REGULATIONS Annex 12, page 1 ANNEX 12 RESOLUTION MSC.429(98) (adopted on 9 June 2017) THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) of the Convention on the International Maritime Organization concerning

More information

FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR AND NON-REGULAR WAVE

FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR AND NON-REGULAR WAVE Tomasz Hinz, Polish Registry of Shipping;Tomasz.Hinz@prs.pl Jerzy Matusiak, Aalto University School of Science and Technology FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR

More information

PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA)

PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA) PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA) DALIBOR CAREVIĆ (1), GORAN LONČAR (1), VLADIMIR ANDROČEC (1) & MARIN PALADIN (1) 1.

More information

The Impact of the Inflow Momentum on the Transient Roll Response of a Damaged Ship

The Impact of the Inflow Momentum on the Transient Roll Response of a Damaged Ship The Impact of the Inflow Momentum on the Transient Roll Response of a Damaged Ship Teemu Manderbacka, Aalto University, School of Engineering, Department of Applied Mechanics teemu.manderbacka@aalto.fi

More information

A Planing Boat's Thrust and Resistanc

A Planing Boat's Thrust and Resistanc A Planing Boat's Thrust and Resistanc Y Yoshida International Boat Research, Japan concurring Tokyo industrial Technical College of Tsuzuln Integrated Educational Institute,,Japan Abstract This paper is

More information

SAMPLE MAT Proceedings of the 10th International Conference on Stability of Ships

SAMPLE MAT Proceedings of the 10th International Conference on Stability of Ships and Ocean Vehicles 1 Application of Dynamic V-Lines to Naval Vessels Matthew Heywood, BMT Defence Services Ltd, mheywood@bm tdsl.co.uk David Smith, UK Ministry of Defence, DESSESea-ShipStab1@mod.uk ABSTRACT

More information

The Specialist Committee on Prediction of Extreme Ship Motions and Capsizing

The Specialist Committee on Prediction of Extreme Ship Motions and Capsizing 3rd International Proceedings of the 3rd ITTC Volume II 619 The Specialist Committee on Prediction of Extreme Ship Motions and Capsizing Final Report and Recommendations to the 3rd ITTC 1. INTRODUCTION

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

Development of Design Support System for Safety Assessment of Ship under Damage Conditions

Development of Design Support System for Safety Assessment of Ship under Damage Conditions Development of Design Support System for Safety Assessment of Ship under Damage Conditions Soon-Sup Lee, Dongkon Lee, Ki-Sup Kim and Beom-Jin, Park, Hee-Jin Kang, Jin Choi Maritime & Ocean Engineering

More information

Sesam HydroD Tutorial

Sesam HydroD Tutorial Stability and Hydrostatic analysis SESAM User Course in Stability and Hydrostatic Analysis HydroD Workshop: Perform the analysis in HydroD The text in this workshop describes the necessary steps to do

More information

EVALUATION OF TIMBER CARRIER DECK CARGO JETTISON DYNAMICS

EVALUATION OF TIMBER CARRIER DECK CARGO JETTISON DYNAMICS 1 th International Conference 621 EVALUATION OF TIMBER CARRIER DECK CARGO JETTISON DYNAMICS Sergey V. Antonenko, D. Sc, professor, Far-Eastern National Technical Univ. (FENTU), Vladivostok, Russia, e-mail:

More information

SOME EXPERIMENTAL RESULTS ON THE STABILITY OF FISHING VESSELS

SOME EXPERIMENTAL RESULTS ON THE STABILITY OF FISHING VESSELS 8 th International Conference on 643 SOME EXPERIMENTAL RESULTS ON THE STABILITY OF FISHING VESSELS Pérez Rojas, L., Abad, R., Pérez Arribas, F., Arias, C. Model Basin.. U.P.M. (Spain) Abstract Three representative

More information

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS Proceedings of International Conference in Ocean Engineering, ICOE Proceedings 2009 of ICOE 2009 Coupled Dynamic Analysis IIT Madras, of Chennai, Mooring India. Lines for Deep Water Floating Systems 1-5

More information

Flat Water Racing Kayak Resistance Study 1

Flat Water Racing Kayak Resistance Study 1 Flat Water Racing Kayak Resistance Study 1 Article Type: Research Article Article Category: Sports Coaching Tittle: Experimental and Numerical Study of the Flow past Olympic Class K 1 Flat Water Racing

More information

SHIP FORM DEFINITION The Shape of a Ship

SHIP FORM DEFINITION The Shape of a Ship SHIP FORM DEFINITION The Shape of a Ship The Traditional Way to Represent the Hull Form A ship's hull is a very complicated three dimensional shape. With few exceptions an equation cannot be written that

More information

Study on Added Resistance Using Unsteady Waves Analysis

Study on Added Resistance Using Unsteady Waves Analysis Study on Added Resistance Using Unsteady Waves Analysis Kenta Yamamoto, Tomoki Wakabayashi and Masashi Kashiwagi Department of Naval Architecture and Ocean Engineering, Osaka University Background The

More information

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Presentation for Defense of Master Thesis Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Speaker: Bin Wang Supervisor: Prof. Robert Bronsart 23 rd Feb, 2015 Nantes

More information

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE 1 MR. G.VIJAYA KUMAR, 2 DR. R. PANNEER SELVAM 1 M.S. Research Scholar, Department of Ocean Engineering, IIT Madras, Chennai,

More information

STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT

STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT INTRODUCTION Sundar. V 1, Sannasiraj. S. A 2 and John Ashlin. S 3 Gopalpur port is an artificial harbor located in Odisha state. The geographical location

More information

IMO DEVELOPMENT OF EXPLANATORY NOTES FOR HARMONIZED SOLAS CHAPTER II-1

IMO DEVELOPMENT OF EXPLANATORY NOTES FOR HARMONIZED SOLAS CHAPTER II-1 INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON STABILITY AND LOAD LINES AND ON FISHING VESSELS SAFETY 51st session Agenda item 3 SLF 51/3/2 10 April 2008 Original: ENGLISH DEVELOPMENT OF EXPLANATORY

More information

RULES PUBLICATION NO. 86/P EXPLANATORY NOTES TO SOLAS CONVENTION AND DIRECTIVE 2003/25/EC STABILITY AND SUBDIVISION REQUIREMENTS

RULES PUBLICATION NO. 86/P EXPLANATORY NOTES TO SOLAS CONVENTION AND DIRECTIVE 2003/25/EC STABILITY AND SUBDIVISION REQUIREMENTS RULES PUBLICATION NO. 86/P EXPLANATORY NOTES TO SOLAS CONVENTION AND DIRECTIVE 2003/25/EC STABILITY AND SUBDIVISION REQUIREMENTS 2011 Publications P (Additional Rule Requirements) issued by Polski Rejestr

More information

Finding the hull form for given seakeeping characteristics

Finding the hull form for given seakeeping characteristics Finding the hull form for given seakeeping characteristics G.K. Kapsenberg MARIN, Wageningen, the Netherlands ABSTRACT: This paper presents a method to find a hull form that satisfies as good as possible

More information

U S F O S B u o y a n c y And Hydrodynamic M a s s

U S F O S B u o y a n c y And Hydrodynamic M a s s 1 U S F O S B u o y a n c y And Hydrodynamic M a s s 2 CONTENTS: 1 INTRODUCTION... 3 2 ACCURACY LEVELS... 3 2.1 LEVEL-0... 3 2.2 LEVEL-1... 3 2.3 PANEL MODEL... 3 3 EX 1. SINGLE PIPE. NON FLOODED... 4

More information

Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena. Minho Ha and *Cheolung Cheong 1)

Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena. Minho Ha and *Cheolung Cheong 1) Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena Minho Ha and *Cheolung Cheong 1) School of Mechanical Engineering, PNU, Busan 609-735, Korea 1) ccheong@pusan.ac.kr

More information

Rules for Classification and Construction Additional Rules and Guidelines

Rules for Classification and Construction Additional Rules and Guidelines VI Rules for Classification and Construction Additional Rules and Guidelines 11 Other Operations and Systems 6 Guidelines for the Preparation of Damage Stability Calculations and Damage Control Documentation

More information

Ship Stability: Theory and Practical Application (SCQF level 8)

Ship Stability: Theory and Practical Application (SCQF level 8) Higher National Unit Specification General information Unit code: HR0L 35 Superclass: XQ Publication date: September 2017 Source: Scottish Qualifications Authority Version: 2 Unit purpose This unit is

More information

EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER

EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER A.F. Molland, P.A. Wilson and D.J. Taunton Ship Science Report No. 124 University of Southampton December

More information