ENSO IMPACT ON SST AND SLA VARIABILITY IN INDONESIA

Size: px
Start display at page:

Download "ENSO IMPACT ON SST AND SLA VARIABILITY IN INDONESIA"

Transcription

1 ENSO IMPACT ON SST AND SLA VARIABILITY IN INDONESIA Bambang Sukresno 1 1 Institute for Marine Research and Observation Bambang_sukresno@yahoo.com ABSTRACT The observation of El Nino Southern Oscillation (ENSO) impact on Sea Surface Temperature (SST) and Sea Level Anomaly (SLA) reveals some impacts on Indonesian water. The data used is SST of NOAA-Pathfinder satellite dataset while SLA derived from Jason-1 and Topex/POSEIDON satellite dataset. Correlation coefficient of ENSO impact is calculating from Pearson Equation using Multivariat ENSO Index. The SST and SLA in Indonesian water such as Arafura sea, Banda sea, Maluku sea, Java sea, Natuna sea and Makasar strait is mostly correlated to ENSO phenomenon. Keywords : ENSO, SST, SLA 1. Introduction El Nino is an oscillation of the oceanatmosphere system in the tropical Pacific, having important influence to the global weather. Normally, the sea surface height in Indonesia is about 0.5 meter higher rather than in Ecuador. While, the sea surface temperature is averagely 8 C higher in the west, with cool temperatures off South America, due to an upwelling of cold water from deeper levels, (NOAA,2009). NOAA CIRES Climate Diagnostics Center, Boulder CO, developed a Multivariate ENSO Index (MEI) based on six observed variables over the tropical Pacific: sea-level pressure, zonal wind, meridional wind, sea surface temperature, surface air temperature and total cloudiness, (Wolter, 2009). During the period of El Niño or La Niña, the changes of Pacific Ocean temperatures, influence the patterns of tropical rainfall from Indonesia to the west coast of South America, a distance covering approximately one-half way around the world. These changes in tropical rainfall correlate to weather patterns throughout the world, (NOAA, 2009).

2 During El Nino observation, SST is a main indicator, measured by time series satellite dataset. El Nino, a unique surface phenomenon of Pacific Ocean, give direct influence on Indonesian water characteristic, including SST, (Sukresno, 2008) Satellite technology offer the best platform to monitor the dynamic of ocean currents and heat storage by providing continuous and precise measurement of sea surface height. It s used to calculate the speed and direction of ocean currents and temperature-related changes in ocean volume. The overall shape of the oceans' "hills and valleys" is called ocean surface topography (OST). Precise knowledge of OST is essential to predict and mitigate the effects of catastrophic events such as El Niño, La Niña, and hurricanes, (NASA, 2008) The 1997/1998 El Niño s event was probably one of the most important ever observed. The whole planet recorded abnormal events that might be related to El Niño effects, (Cardon, 1999) The relationship between the tropical central Eastern Pacific SST and Asian monsoon is the most popular topic in SST monsoon studies because of the long history and nature of ocean atmosphere coupling associated with ENSO. (Wang, 2006) Suryachandra (2002), observed that significant interannual variability in the subsurface tropical Indian Ocean is associated with the Indian Ocean Dipole rather than with the most dominant interannual signal in the tropics, ENSO Rao et al. (2002) demonstrated that the subsurface interannual variability in the tropical Indian Ocean (TIO) is associated with the Indian Ocean Dipole (IOD) rather than El Niño and Southern Oscillation (ENSO). Their results are based on 17 years of model simulations and 7 years of sea level data. The strongest El Nino-Southern Oscillation (ENSO) event of the last century was accompanied by anomalous conditions in the Indian Ocean which had historic regional climatic impacts. The debate continues about whether these zonal modes in the Indian Ocean (IOZM) need an external trigger or can be initiated internally within the Indian Ocean. An ocean General Climate Model ( GCM) coupled to an advective atmospheric mixed layer model and forced with National Centers For Environmental Prediction ( NCEP) reanalyses winds for the period of is employed to analyze each IOZM event to understand their preconditioning, onset, and growth phases with respect to ENSO events. The composite analyses of the weak, strong, and aborted IOZM events clearly demonstrate that the

3 atmospheric circulation Changes associated with the onset of ENSO events in the Pacific are crucial for triggering the initial anomalous cooling off Java after which the coupled IOZM events can grow. The Madden Julian Oscillation ( MJO) activity and the Indonesian throughflow also play crucial roles, not only in preconditioning the Indian Ocean but also in the growth phase. The ENSO IOZM interactions underwent interdecadal changes centered around 1976, the well known climate shift. The details of the intercomparisons of the IOZM events and the mechanism of the ENSO trigger for each event is presented including the role of the 1976, (Murtugudde, 2002). A nonlinear aspect of the El Niño Southern Oscillation (ENSO) is described. In particular, it is shown that ENSO acts as a basin-scale heat mixer that prevents any significant increase from occurring in the timemean difference between the warm-pool SST (Tw) and the temperature of the thermocline water (Tc). When this temperature contrast is forced to increase, the amplitude of ENSO increases El Niño becomes warmer and La Niña becomes colder, (Sun, 2007). The recharge oscillator paradigm for ENSO is further investigated by using a simple coupled model, which externally includes the equatorial wave dynamics represented by the Kelvin and gravest symmetric Rossby waves. To investigate the role of eddies in the Pacific basin wide adjustment to the wind forcing, particularly at the western and eastern boundaries, the zonal mean and eddy parts are treated separately in the current model, (Soon, 2000) Using observed sea surface temperature data from , and observed wind data from , it is confirmed that the recently discovered Indian Ocean Dipole (IOD) is a physical entity. Many IOD events are shown to occur independently of the El Niño. By estimating the contribution from an appropriate El Niño index based on sea surface temperature anomaly in the eastern Pacific, it is shown that the major fraction of the IOD Mode Index is due to the regional processes within the Indian Ocean. Our circulation analysis shows that the Walker circulation during the pure IOD events over the Indian/ Pacific Ocean is distinctly different from that during the El Niño events. Our power spectrum analysis, and wavelet power spectrum analysis show that the periodicities of El Niño and IOD events are different. The results from the wavelet coherence analysis show that, during the periods when strong and frequent IOD events occurred, the Indian Ocean Dipole Mode Index is significantly coherent with the equatorial

4 zonal winds in the central Indian Ocean, suggesting that these events are well coupled, (Karumuri, 2003). NASA. (2010) revealed the changes in sea surface height were computed from TOPEX/ Poseidon altimeter data. The observation shows the influence of El Nino and La Nina from 1997 through This observation is aimed to measure the impact of ENSO on variability of SST and SLA in Indonesian water. SST = c 1 + c 2 *T 31 + c 3 * T c 4 *( sec(θ) -1)* T 3132 (1) where T 31 = brightness temperature (BT) band 31 T 3132 = BT difference (band 32 band 31) θ = satellite zenith angle COEFISIENT T30 - T31 <= 0.7 T30 - T31 > 0.7 C C C C Method This study is performed in Indonesian water by using satellite dataset as follows : SST derived from NOAA-Pathfinder satellite dataset SLA derived from Jason-1 and Topex/POSEIDON satellite dataset. ENSO represented by Multivariat ENSO Index, retrieved from URL : us.wolter/mei/table.html The SST data is calculated from NOAA pathfinder satellite data, by applying Miami Pathfinder SST algorithm as follow : While, SLA is derived from level 2 of satellite dataset. Groundtract of level 2 is then interpolated to be able to display as 2 dimension image using Inverse Distance Weighted interpolation. Influence of ENSO on variability of SST and SLA is analyzed by using Pearson equation. 3. Results and Discussion Based on result of processed NOAA- Pathfinder satellite dataset, the variability of SST in Indonesia during 1992 to 2008 display in figure 1, where SST during northwest monsoon represented by data in February, while SST during southeast monsoon represented by data in August.

5 Feb 1992 Feb 1995 Ags 2000 Feb 2000 Ags 2005 Feb 2005 Ags 2008 Feb 2008 Ags 2009 Feb C 31 C Figure 1. Average of SST in Indonesian water Ags 1992 Ags 1995 Figure 1 reveal that SST in Indonesia during northwest monsoon is warmer than SST during south east monsoon. In February SST is increase to 31 C, while in August SST is decrease to 24 C.

6 Jason-1 satellite dataset processed to derive SLA. Variability of SLA in Indonesia during 1992 to 2008 is displayed in figure 2, where SLA during northwest monsoon represented by data in February, while SLA during southeast monsoon represented by data in August. Ags 1997 Feb 1992 Ags 2002 Feb 1997 Ags 2008 Feb 2002 Feb 2008 Meter Figure 2. Average of SLA in Indonesian water Sea level anomaly in Indonesia varies between -0.4 meter to 0.4 meter as seen in figure 2. Generally SLA in February (northwest monsoon) relativelly high compare to SLA in August (southeast monsoon). Ags 1992

7 Multivariat ENSO Index (MEI) during 1992 to 2008 shows in Table 1.Strongest El Nino occurs in 1997 represent by MEI magnitude in August, than followed by La Nina event in 1998 represent by MEI magnitude 1.11 in February. La nina also occurs during 2008 as seen in february with magnitude Average of SST in Indonesia can be seen in Figure 3 and Figure 4, represent region in Indonesia based on map of Fisheries Management of Indonesia. While average of SLA in Indonesia can be seen in Figure 5 and Figure 6. Table 1. Multivariat ENSO Index YEAR February August wolter/mei/table.html

8 Average of SST in Indonesian water during February Arafuru sea Banda sea Maluku sea Sulawesi sea SST 'C Makasar strait Java sea Natuna sea Indian Ocean (Sumatera) Indian Ocean (Java) Figure. 3 Average of SST in Indonesian water during February SST 'C Average of SST in Indonesian water during August Arafuru sea Banda sea Maluku sea Sulawesi sea Makasar strait Java sea Natuna sea Indian Ocean (Sumatra) Indian Ocean (Java) Figure. 4 Average of SST in Indonesian water during August

9 Average of SLA in Indonesian water during February SLA (meter) Figure. 5 Average of SLA in Indonesian water during February Arafuru sea Banda sea Maluku sea Sulawesi sea Makasar strait Java sea Natuna sea Indian Ocean (Sumatera) Indian Ocean (Java) Figure. 5 Average of SLA in Indonesian water during February SLA (meter) Average of SLA in Indonesian water during August Arafuru sea Banda sea Maluku sea Sulawesi sea Makasar strait Java sea Natuna sea Indian Ocean (Sumatra) Indian Ocean (Java) Figure. 6 Average of SLA in Indonesian water during August

10 Table 2. Correlation Coefficient of SST with ENSO No Region Correlation 1 Arafura sea Banda sea Maluku sea Sulawesi sea Makasar strait Java sea Natuna sea Indian ocean (west of Sumatera) Indian ocean (south of Java) Table 3. Correlation Coefficient of SLA with ENSO No Region Correlation 1 Arafura sea Banda sea Maluku sea Sulawesi sea Makasar strait Java sea Natuna sea Indian ocean (west of Sumatera) Indian ocean (south of Java) ENSO influences variability of SST in most of Indonesian region as displayed in table 2. Highest correlation coefficient of SST with MEI observed in Maluku sea with coefficient about -0.67, it is mean that during ENSO event ( positive value of MEI ) SST in Maluku sea will decrease. High correlation also observed in Arafura sea, Banda sea and Java sea. During ENSO event 1997, Indonesian SST in August drop down under average of SST each region. Java sea during that event was C under the average of SST C. Maluku was C under the average of SST C. while Sulawesi sea and Makasar strait didn t much different with SST average of those region. As shown in table 3, SLA in Indonesia affected by ENSO. Indian ocean (west of Sumatera) is the most correlated with ENSO represented by coefficient about correlation with ENSO also observed in Arafura sea, Maluku sea, Makasar strait, Natuna sea and Indian ocean (south of Java). 4. Conclusion ENSO influences variability of SST in most of Indonesian region. During ENSO period, SST in Indonesia is decrease. with highest coefficient about in Maluku sea. SLA in Indonesia is affected by ENSO. During ENSO period, SLA in Indonesia is decrease. Indian ocean (west of Sumatera) was the most correlated with ENSO represented by coefficient about Acknowledgement

11 SST dataset was produced by National Oceanographic Data Center (NODC), while SLA data was produced by Radar Altimeter Database System (RADS) Author wish to tank to Hadi Prayitno, Masita DM Mannesa and Aditya D Cahyani (Institute for Marrine Research and Observation) for their data support and discussion. Reference Baquero., Bernal, A,. Latif, M,. Legutke, S.(2002). On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J Clim, 15: Cardon, K., Goryl, P., Scharroo, R., Benveniste, J. (1999). 1997/98 El Niño observed by ERS. Proceeding. European Symposium on Atmospheric Measurements from Space. ESTEC, Noordwijk, The Netherlands, January 1999 Karumuri, Ashok,. Zhaoyong, Guan,. and Toshio, Yamagata,.(2003). A Look at the Relationship between the ENSO and the Indian Ocean Dipole. JMSJ, Vol. 81, Klein, S, A,. Soden, B, J,. Lau, N, C. (1999). Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J Clim, 12: Li, C, Y,. Mu, M, Q,. Pan, J,. (2002). Indian Ocean temperature dipole and SSTA in the equatorial Pacific Ocean. Chin Sci Bull, 47: Murtugudde, R., Annamalai, H., Enso Influence on the Preconditioning, Onset, Growth,Mature and Decay Phases of the Indian Ocean Events. Proceedings. PORSEC BALI NASA. (2010) Sea Surface Height Anomalies during El Nino/La Nina Event of , Retrieved June 9, Website : d=15310 NASA. (2009) Ocean Surface Topography From Space, Retrieved August 28, Website : NOAA. (2009). What Is an El Nino. Retrieved August 28, Website : NOAA. (2009) What Happens During El Nino or La Nina. Retrieved August 28, Website : _monitoring/ensostuff/ensofaq.shtml#happ ENS Rao, S, A., Behera, S, K., Masumoto, Y., and Yamagata, T., (2002) Interannual variability in the Tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Research-II (in Press). Saji, N, H,. Yamagata, T,.(2003). Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res, 25: Saji, N, H,. Goswami, B, N,. Vinayachandran P, N,. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401: Shinoda, T,. Alexander, M, A,. Hendon, H, H. (2004). Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J Clim, 17(2):

12 Sukresno, B. (2008). Dynamical Analysis Of Banda Sea Concerning With El Nino, Indonesian Through Flow And Monsoon By Using Satellite Data And Numerical Model. Master Thesis, Post Graduate Program, Udayana University, Indonesia, Sun, De, Zeng. (2007). The Role of El Niño Southern Oscillation in Regulating its Background State. Springer. New York Suryachandra, A, Rao., Swadhin, K, Behera., Toshio, Yamagata,. (2002). On the Relative Influence of Iod and Enso on the Tropical Indian Ocean. Proceedings. PORSEC BALI Wang, Bin,. (2006). The Asian Monsoon. Praxis Publishing Ltd. Chichester. UK Wang, D, X,. Liu, Q, Y,. Liu, Y. (2004). Connection between interannual variability of the western Pacific and eastern Indian Oceans in the El Nino event. Prog Nat Sci, 14(5): Wolter, K. (2009). El Nino and California California application program. Retrieved August 28, Website : 02.html Xie, S, P,. Annamalai, H,. Schott, F, A. (2002). Structure and mechanisms of south Indian Ocean climate variability. J Clim, 15: Yamagata, T,. Behera, S, K,. Rao, S, A,. (2002) The Indian Ocean dipole: a physical entity. CLIVAR Exch, 24: 15 18

Analysis of 2012 Indian Ocean Dipole Behavior

Analysis of 2012 Indian Ocean Dipole Behavior Analysis of 2012 Indian Ocean Dipole Behavior Mo Lan National University of Singapore Supervisor: Tomoki TOZUKA Department of Earth and Planetary Science, University of Tokyo Abstract The Indian Ocean

More information

Lecture 33. Indian Ocean Dipole: part 2

Lecture 33. Indian Ocean Dipole: part 2 Lecture 33 Indian Ocean Dipole: part 2 Understanding the processes I continue the discussion of the present understanding of the processes involved in the evolution of the mean monthly SST, and convection

More information

Ocean dynamic processes responsible for the interannual. variability of the tropical Indian Ocean SST. associated with ENSO

Ocean dynamic processes responsible for the interannual. variability of the tropical Indian Ocean SST. associated with ENSO Ocean dynamic processes responsible for the interannual variability of the tropical Indian Ocean SST associated with ENSO Jong Seong Kug 1 and Soon Il An 2, Korea Ocean Research and Development Institute

More information

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon 4.1 Introduction The main contributors to the interannual variability of Indian summer

More information

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE By William S. Kessler and Richard Kleeman Journal of Climate Vol.13, 1999 SWAP, May 2009, Split, Croatia Maristella Berta What does give

More information

Climatic and marine environmental variations associated with fishing conditions of tuna species in the Indian Ocean

Climatic and marine environmental variations associated with fishing conditions of tuna species in the Indian Ocean Climatic and marine environmental variations associated with fishing conditions of tuna species in the Indian Ocean Kuo-Wei Lan and Ming-An Lee Department of Environmental Biology and Fisheries Science,

More information

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia Water Cycle between Ocean and Land and Its Influence on Climate Variability over the South American-Atlantic Regions as Determined by SeaWinds Scatterometers Rong Fu Hui Wang, Mike Young, and Liming Zhou

More information

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability Tim Li IPRC and Dept. of Meteorology, Univ. of Hawaii Acknowledgement. B. Wang, C.-P. Chang, P. Liu, X. Fu, Y. Zhang, Kug

More information

Trade winds How do they affect the tropical oceans? 10/9/13. Take away concepts and ideas. El Niño - Southern Oscillation (ENSO)

Trade winds How do they affect the tropical oceans? 10/9/13. Take away concepts and ideas. El Niño - Southern Oscillation (ENSO) El Niño - Southern Oscillation (ENSO) Ocean-atmosphere interactions Take away concepts and ideas What is El Niño, La Niña? Trade wind and Walker circulation. What is the Southern Oscillation? Tropical

More information

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO Effect of late 97 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO 7. Introduction Biennial variability has been identified as one of the major modes of interannual

More information

The Asian Monsoon, the Tropospheric Biennial Oscillation and the Indian Ocean Zonal Mode in the NCAR CSM

The Asian Monsoon, the Tropospheric Biennial Oscillation and the Indian Ocean Zonal Mode in the NCAR CSM The Asian Monsoon, the Tropospheric Biennial Oscillation and the Indian Ocean Zonal Mode in the NCAR CSM Johannes Loschnigg International Pacific Research Center y School of Ocean and Earth Science and

More information

El Niño / Southern Oscillation (ENSO) and inter-annual climate variability

El Niño / Southern Oscillation (ENSO) and inter-annual climate variability El Niño / Southern Oscillation (ENSO) and inter-annual climate variability seasonal cycle what is normal? monthly average conditions through a calendar year sea level pressure and surface winds surface

More information

Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors

Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors Hilary Spencer, Rowan Sutton and Julia Slingo CGAM, Reading University h.spencer@reading.ac.uk Monsoon -

More information

Climatic and marine environmental variations associated with fishing conditions of tuna species in the Indian Ocean

Climatic and marine environmental variations associated with fishing conditions of tuna species in the Indian Ocean Climatic and marine environmental variations associated with fishing conditions of tuna species in the Indian Ocean Kuo-Wei Lan and Ming-An Lee Department of Environmental Biology and Fisheries Science,

More information

Surface chlorophyll bloom in the Southeastern Tropical Indian Ocean during boreal summer-fall as reveal in the MODIS dataset

Surface chlorophyll bloom in the Southeastern Tropical Indian Ocean during boreal summer-fall as reveal in the MODIS dataset Surface chlorophyll bloom in the Southeastern Tropical Indian Ocean during boreal summer-fall as reveal in the MODIS dataset Iskhaq Iskandar 1 and Bruce Monger 2 1 Jurusan Fisika, Fakultas MIPA, Universitas

More information

Climate-Ocean Variability, Fisheries and Coastal Response in Indonesian waters

Climate-Ocean Variability, Fisheries and Coastal Response in Indonesian waters Climate-Ocean Variability, Fisheries and Coastal Response in Indonesian waters Jonson Lumban-Gaol 1, Stefano Vignudelli 2 and Takahiro Osawa 3 1 Department of Marine Science and Technology Bogor Agriculture

More information

Understanding El Nino-Monsoon teleconnections

Understanding El Nino-Monsoon teleconnections Understanding El Nino-Monsoon teleconnections Dr Neena Joseph Mani Earth & Climate Science INSA Anniversary General meeting, Session: Science in IISER Pune 27 th December 2017 Mean State of the equatorial

More information

OCN 201 Lab Fall 2009 OCN 201. Lab 9 - El Niño

OCN 201 Lab Fall 2009 OCN 201. Lab 9 - El Niño OCN 201 Lab Fall 2009 OCN 201 Lab 9 - El Niño El Niño is probably one of the most widely publicized oceanic phenomena. If there s one single reason for that it s probably the fact that El Niño s presence

More information

Exploring relationships between regional climate and Atlantic Hurricanes Mark R. Jury

Exploring relationships between regional climate and Atlantic Hurricanes Mark R. Jury Exploring relationships between regional climate and Atlantic Hurricanes Mark R. Jury Physics Department University of Puerto Rico - Mayagüez Mayaguez, PR, 00681 Data employed: hurricane index: 1850-2004

More information

Module 3, Investigation 1: Briefing 1 What are the effects of ENSO?

Module 3, Investigation 1: Briefing 1 What are the effects of ENSO? Background The changing temperatures of the tropical Pacific Ocean affect climate variability all over Earth. Ocean warming and cooling dramatically affect human activities by changing weather patterns

More information

Global Impacts of El Niño on Agriculture

Global Impacts of El Niño on Agriculture Global Impacts of El Niño on Agriculture Presented to the University of Arkansas Division of Agriculture s Food and Agribusiness Series Webinar Series Presented by: Mark Brusberg and Brian Morris USDA

More information

LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS

LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS Vol.22 No.2 JOURNAL OF TROPICAL METEOROLOGY June 2016 Article ID: 1006-8775(2016) 02-0172-10 LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS DONG Di ( ) 1, 2,

More information

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation 5. Introduction The Asian summer monsoon is one of the most vigorous and energetic

More information

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models Iulia-Mădălina Ștreangă University of Edinburgh University of Tokyo Research Internship Program

More information

Modification of the Stratification and Velocity Profile within the Straits and Seas of the Indonesian Archipelago

Modification of the Stratification and Velocity Profile within the Straits and Seas of the Indonesian Archipelago DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Modification of the Stratification and Velocity Profile within the Straits and Seas of the Indonesian Archipelago Amy Ffield

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 4 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

The Child. Mean Annual SST Cycle 11/19/12

The Child. Mean Annual SST Cycle 11/19/12 Introduction to Climatology GEOGRAPHY 300 El Niño-Southern Oscillation Tom Giambelluca University of Hawai i at Mānoa and Pacific Decadal Oscillation ENSO: El Niño-Southern Oscillation PDO: Pacific Decadal

More information

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture!

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture! Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction Previous Lecture! Global Winds General Circulation of winds at the surface and aloft Polar Jet Stream Subtropical Jet Stream Monsoons 1 2 Radiation

More information

ENSO: El Niño Southern Oscillation

ENSO: El Niño Southern Oscillation ENSO: El Niño Southern Oscillation La Niña the little girl El Niño the little boy, the child LO: explain a complete ENSO cycle and assess the net affects on fish recruitment John K. Horne University of

More information

The Local Characteristics of Indonesian Seas and Its Possible Connection with ENSO and IOD: Ten Years Analysis of Satellite Remote Sensing Data

The Local Characteristics of Indonesian Seas and Its Possible Connection with ENSO and IOD: Ten Years Analysis of Satellite Remote Sensing Data Earth Science Research; Vol. 2, No. 2; 2013 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education The Local Characteristics of Indonesian Seas and Its Possible Connection

More information

Overview. Learning Goals. Prior Knowledge. UWHS Climate Science. Grade Level Time Required Part I 30 minutes Part II 2+ hours Part III

Overview. Learning Goals. Prior Knowledge. UWHS Climate Science. Grade Level Time Required Part I 30 minutes Part II 2+ hours Part III Draft 2/2014 UWHS Climate Science Unit 3: Natural Variability Chapter 5 in Kump et al Nancy Flowers Overview This module provides a hands-on learning experience where students will analyze sea surface

More information

Observational Studies on Association between Eastward Equatorial Jet and Indian Ocean Dipole

Observational Studies on Association between Eastward Equatorial Jet and Indian Ocean Dipole Journal of Oceanography, Vol. 66, pp. 429 to 434, 2 Short Contribution Observational Studies on Association between Eastward Equatorial Jet and Indian Ocean Dipole PETER C. CHU* Department of Oceanography,

More information

ENSO Wrap-Up. Current state of the Pacific and Indian Ocean

ENSO Wrap-Up. Current state of the Pacific and Indian Ocean 18-11-2014 ENSO Wrap-Up Current state of the Pacific and Indian Ocean Tropical Pacific Ocean moves closer to El Niño The Pacific Ocean has shown some renewed signs of El Niño development in recent weeks.

More information

Tropical Pacific Ocean remains on track for El Niño in 2014

Tropical Pacific Ocean remains on track for El Niño in 2014 1 of 10 3/06/2014 3:33 PM ENSO Wrap-Up Current state of the Pacific and Indian Ocean Tropical Pacific Ocean remains on track for El Niño in 2014 Issued on Tuesday 3 June 2014 Product Code IDCKGEWWOO The

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 8 March 2010 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Increasing intensity of El Niño in the central equatorial Pacific

Increasing intensity of El Niño in the central equatorial Pacific Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044007, 2010 Increasing intensity of El Niño in the central equatorial Pacific Tong Lee 1 and Michael J. McPhaden 2

More information

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1 Discerning Patterns: Does the North Atlantic oscillate? Climate variability, or short term climate change, can wreak havoc around the world. Dramatic year to year shifts in weather can have unanticipated

More information

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events Vijay Pottapinjara 1*, Roxy Mathew Koll2, Raghu Murtugudde3, Girish Kumar M

More information

Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO)

Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO) Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO) Gerald Meehl National Center for Atmospheric Research Julie Arblaster, Johannes Loschnigg,

More information

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon 2.1 Introduction The Indian summer monsoon displays substantial interannual variability, which can have profound

More information

Wind-Driven Response of the Northern Indian Ocean to Climate Extremes*

Wind-Driven Response of the Northern Indian Ocean to Climate Extremes* 2978 J O U R N A L O F C L I M A T E VOLUME 20 Wind-Driven Response of the Northern Indian Ocean to Climate Extremes* TOMMY G. JENSEN International Pacific Research Center, University of Hawaii at Manoa,

More information

How rare are the positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective

How rare are the positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L08702, doi:10.1029/2009gl037982, 2009 How rare are the 2006 2008 positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective W. Cai, 1 A. Sullivan,

More information

Tropical Cyclone Climate in the Asia- Pacific Region and the Indian Oceans

Tropical Cyclone Climate in the Asia- Pacific Region and the Indian Oceans Tropical Cyclone Climate in the Asia- Pacific Region and the Indian Oceans Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong Annual

More information

A dynamic link between the basin-scale and zonal modes in the Tropical Indian Ocean

A dynamic link between the basin-scale and zonal modes in the Tropical Indian Ocean Theor. Appl. Climatol. 78, 203 215 (2004) DOI 10.1007/s00704-003-0027-2 International Pacific Research Center, SOEST, University of Hawaii at Manoa, Honolulu, HI, USA A dynamic link between the basin-scale

More information

Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies

Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L13703, doi:10.1029/2009gl038774, 2009 Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies Michael J. McPhaden

More information

How fast will be the phase-transition of 15/16 El Nino?

How fast will be the phase-transition of 15/16 El Nino? How fast will be the phase-transition of 15/16 El Nino? YOO-GEUN HAM D E P A R T M E N T O F O C E A N O G R A P H Y, C H O N N A M N A T I O N A L U N I V E R S I T Y 2015/16 El Nino outlook One of strongest

More information

Decadal changes in the relationship between Indian and Australian summer monsoons

Decadal changes in the relationship between Indian and Australian summer monsoons Decadal changes in the relationship between Indian and Australian summer monsoons By C. Nagaraju 1, K. Ashok 2, A. Sen Gupta 3 and D.S. Pai 4 1 CES, C-DAC Pune, India 2 CCCR, IITM, Pune, India 3 Universities

More information

General Introduction to Climate Drivers and BoM Climate Services Products

General Introduction to Climate Drivers and BoM Climate Services Products General Introduction to Climate Drivers and BoM Climate Services Products Climate Information Services Australian Bureau of Meteorology Yuriy Kuleshov El Niño Southern Oscillation (ENSO) El Niño Southern

More information

Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

Decadal amplitude modulation of two types of ENSO and its relationship with the mean state Clim Dyn DOI 10.1007/s00382-011-1186-y Decadal amplitude modulation of two types of ENSO and its relationship with the mean state Jung Choi Soon-Il An Sang-Wook Yeh Received: 14 February 2011 / Accepted:

More information

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP October 29, 2007 Outline Overview Recent

More information

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events Jin-Yi Yu 1*, Hsun-Ying Kao 2, Tong Lee 3, and Seon Tae Kim 1 1 Department of Earth System

More information

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter 5th Session of the East Asia winter Climate Outlook Forum (EASCOF-5), 8-10 November 2017, Tokyo, Japan Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high

More information

El Nino-Southern Oscillation (ENSO)

El Nino-Southern Oscillation (ENSO) Modes Indian of Indo-Pacific Ocean Capacitor: variability and predictability History, Dynamics, of East Asian and Impact climate Shang-Ping Xie 1,2 Yan Du 3,Gang Huang 4,J. Chowdary 1, Kaiming Hu 4, Jan

More information

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO Jin-Yi Yu 1*, Hsun-Ying Kao 1, and Tong Lee 2 1. Department of Earth System Science, University of California, Irvine, Irvine,

More information

Ocean Inter-annual Variability: El Niño and La Niña. How does El Niño influence the oceans and climate patterns?

Ocean Inter-annual Variability: El Niño and La Niña. How does El Niño influence the oceans and climate patterns? Name: Date: Guiding Question: Ocean Inter-annual Variability: El Niño and La Niña How does El Niño influence the oceans and climate patterns? Introduction What is El Niño/La Niña? The El Niño/La Niña cycle

More information

Outline. 1 Background Introduction. 3 SST Amphidrome 4 Niño Pipe 5. SST in China Seas. Seasonality Spiral. Eddy Tracking. Concluding Remarks

Outline. 1 Background Introduction. 3 SST Amphidrome 4 Niño Pipe 5. SST in China Seas. Seasonality Spiral. Eddy Tracking. Concluding Remarks GHRSST XVIII Outline 1 Background Introduction 2 SST in China Seas 3 SST Amphidrome 4 Niño Pipe 5 Seasonality Spiral 5 stories in S(S)T oceanography 6 7 Eddy Tracking Concluding Remarks 2 Welcome to a

More information

Indian Ocean warming its extent, and impact on the monsoon and marine productivity

Indian Ocean warming its extent, and impact on the monsoon and marine productivity Indian Ocean warming its extent, and impact on the monsoon and marine productivity RIO WIO Indian Ocean warming: o Western Indian Ocean experienced strong, monotonous warming during the last century o

More information

Currents. History. Pressure Cells 3/13/17. El Nino Southern Oscillation ENSO. Teleconnections and Oscillations. Neutral Conditions

Currents. History. Pressure Cells 3/13/17. El Nino Southern Oscillation ENSO. Teleconnections and Oscillations. Neutral Conditions Teleconnections and Oscillations Teleconnection climate anomalies being related to each other over a large scale Oscillations: Macroscale movement of atmospheric systems that can influence weather, climate,

More information

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Jun ichi HIROSAWA Climate Prediction Division Japan Meteorological Agency SST anomaly in Nov. 1997 1 ( ) Outline

More information

Interannual variation of northeast monsoon rainfall over southern peninsular India

Interannual variation of northeast monsoon rainfall over southern peninsular India Indian Journal of Geo-Marine Science Vol. 40(1), February 2011, pp 98-104 Interannual variation of northeast monsoon rainfall over southern peninsular India * Gibies George 1, Charlotte B. V 2 & Ruchith

More information

Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability

Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability 2017 US AMOC Science Team Meeting May 24 th, 2017 Presenter: Hosmay Lopez 1,2 Collaborators:

More information

Ocean color data for Sardinella lemuru management in Bali Strait

Ocean color data for Sardinella lemuru management in Bali Strait Ocean color data for Sardinella lemuru management in Bali Strait Jonson Lumban Gaol 1, B. P. Pasaribu 1, K. Mahapatra 2, Y. Okada and T. Osawa 3 1 Department of Marine Science and Technology Bogor Agriculture

More information

Changes of The Hadley Circulation Since 1950

Changes of The Hadley Circulation Since 1950 Changes of The Hadley Circulation Since 1950 Xiao-Wei Quan, Henry F. Diaz, Martin P. Hoerling (NOAA-CIRES CDC, 325 Broadway, Boulder, CO 80305) Abstract The Hadley circulation is changing in response to

More information

5. El Niño Southern Oscillation

5. El Niño Southern Oscillation 5. El Niño Southern Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 5/1 Ocean-Atmosphere Coupling Tropical atmosphere/ocean,

More information

Long-term warming trend over the Indian Ocean

Long-term warming trend over the Indian Ocean Long-term warming trend over the Indian Ocean RIO WIO 1. Western Indian Ocean experienced strong, monotonous warming during the last century 2. Links to asymmetry and skewness in ENSO forcing 3. Strong

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS LARGE-SCALE CIRCULATION VARIABILITY AND IMPACTS ON NORTH INDIAN OCEAN TROPICAL CYCLONES by Adrian S. Christensen March 2012 Thesis Advisor: Second

More information

Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 150 years

Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 150 years Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 5 years Renato Salvatteci, David Field, Dimitri Gutierrez, Tim Baumgartner, Vicente Ferreira, Luc Ortlieb, Abdel

More information

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves Georges (1998) 3. Climatic Variability El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves ENVIRONMENTAL CONDITIONS FOR TROPICAL CYCLONES TO FORM AND GROW Ocean surface waters

More information

ESCI 485 Air/sea Interaction Lesson 9 Equatorial Adjustment and El Nino Dr. DeCaria

ESCI 485 Air/sea Interaction Lesson 9 Equatorial Adjustment and El Nino Dr. DeCaria ESCI 485 Air/sea Interaction Lesson 9 Equatorial Adjustment and El Nino Dr. DeCaria Reference: El Nino, La Nina, and the Southern Oscillation, Philander THE TWO-LAYER SHALLOW WATER MODEL The ocean can

More information

Impact of Atmospheric Intraseasonal Oscillations on the Indian Ocean Dipole during the 1990s*

Impact of Atmospheric Intraseasonal Oscillations on the Indian Ocean Dipole during the 1990s* 670 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36 Impact of Atmospheric Intraseasonal Oscillations on the Indian Ocean Dipole during the 1990s* WEIQING HAN Program in Atmospheric

More information

Impact of different El Niño types on the El Niño/IOD relationship

Impact of different El Niño types on the El Niño/IOD relationship Impact of different El Niño types on the El Niño/IOD relationship Article Accepted Version Zhang, W., Wang, Y., Jin, F. F., Stuecker, M. F. and Turner, A. G. (2015) Impact of different El Niño types on

More information

Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO

Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jd009151, 2008 Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO Chi-Cherng Hong, 1 Mong-Ming

More information

PROC. ITB Eng. Science Vol. 36 B, No. 2, 2004,

PROC. ITB Eng. Science Vol. 36 B, No. 2, 2004, PROC. ITB Eng. Science Vol. 36 B, No. 2, 2004, 133-139 133 Semiannual Kelvin Waves Propagation along the South Coast of Sumatra-Jawa-Bali and the Lesser Sunda Islands Observed by TOPEX/POSEIDON and ERS-1/2

More information

Observed Intraseasonal Oceanic Variations in the Eastern Equatorial Indian Ocean and in the Outflow Straits of the Indonesian Throughflow

Observed Intraseasonal Oceanic Variations in the Eastern Equatorial Indian Ocean and in the Outflow Straits of the Indonesian Throughflow ITB J. Sci. Vol. 42 A, No. 2, 2010, 107-126 107 Observed Intraseasonal Oceanic Variations in the Eastern Equatorial Indian Ocean and in the Outflow Straits of the Indonesian Throughflow Iskhaq Iskandar

More information

Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño?

Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño? ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 2, 70 74 Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño? LI Gen, REN Bao-Hua,

More information

El Niño climate disturbance in northern Madagascar and in the Comoros

El Niño climate disturbance in northern Madagascar and in the Comoros El Niño climate disturbance in northern Madagascar and in the Comoros Rabeharisoa J. M.¹, Ratiarison A.¹, Rakotovao N.¹, Salim Ahmed Ali¹ ² (*) ¹ Laboratoire de Dynamique de l Atmosphère, du Climat et

More information

Large-Scale Overview of YOTC Period (ENSO, MJO, CCEWs,.)

Large-Scale Overview of YOTC Period (ENSO, MJO, CCEWs,.) WCRP /WWRP-THORPEX YOTC Implementation Planning Meeting East-West Center, University of Hawaii July 13-15, 2009 Large-Scale Overview of YOTC Period (ENSO, MJO, CCEWs,.) Matthew Wheeler Centre for Australian

More information

Factors controlling January April rainfall over southern India and Sri Lanka

Factors controlling January April rainfall over southern India and Sri Lanka Clim Dyn (2011) 37:493 507 DOI 10.1007/s00382-010-0970-4 Factors controlling January April rainfall over southern India and Sri Lanka J. Vialard P. Terray J.-P. Duvel R. S. Nanjundiah S. S. C. Shenoi D.

More information

Role of Equatorial Oceanic Waves on the Activation of the 2006 Indian Ocean Dipole

Role of Equatorial Oceanic Waves on the Activation of the 2006 Indian Ocean Dipole ITB J. Sci., Vol. 44 A, No. 2, 2012, 113-128 113 Role of Equatorial Oceanic Waves on the Activation of the 2006 Indian Ocean Dipole Iskhaq Iskandar 1,2 1 Jurusan Fisika, Fakultas MIPA, Universitas Sriwijaya

More information

March 4 th, 2019 Sample Current Affairs

March 4 th, 2019 Sample Current Affairs March 4 th, 2019 Sample Current Affairs 1. A weak El Niño is developing in the equatorial Pacific Ocean, which is expected to continue for a few months at least. What is El Nino? What causes El Nino? What

More information

El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies

El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D19, 4372, doi:10.1029/2001jd000393, 2002 El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress

More information

Lecture 13. Global Wind Patterns and the Oceans EOM

Lecture 13. Global Wind Patterns and the Oceans EOM Lecture 13. Global Wind Patterns and the Oceans EOM Global Wind Patterns and the Oceans Drag from wind exerts a force called wind stress on the ocean surface in the direction of the wind. The currents

More information

The General Circulation and El Niño. Dr. Christopher M. Godfrey University of North Carolina at Asheville

The General Circulation and El Niño. Dr. Christopher M. Godfrey University of North Carolina at Asheville The General Circulation and El Niño Dr. Christopher M. Godfrey University of North Carolina at Asheville Global Circulation Model Air flow broken up into 3 cells Easterlies in the tropics (trade winds)

More information

Periodic Forcing and ENSO Suppression in the Cane- Zebiak Model

Periodic Forcing and ENSO Suppression in the Cane- Zebiak Model Journal of Oceanography, Vol. 61, pp. 109 to 113, 2005 Periodic Forcing and ENSO Suppression in the Cane- Zebiak Model AIJUN PAN 1 *, QINYU LIU 1 and ZHENGYU LIU 2,1 1 Physical Oceanography Laboratory,

More information

ENSO and monsoon induced sea level changes and their impacts along the Indian coastline

ENSO and monsoon induced sea level changes and their impacts along the Indian coastline Indian Journal of Marine Sciences Vol. 35(2), June 2006, pp. 87-92 ENSO and monsoon induced sea level changes and their impacts along the Indian coastline O.P.Singh* Monsoon Activity Centre, India Meteorological

More information

Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean

Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L14704, doi:10.1029/2006gl026525, 2006 Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean

More information

Lecture 29. The El-Niño Southern Oscillation (ENSO) La Niña = the girl; corresponds to the opposite climate situation

Lecture 29. The El-Niño Southern Oscillation (ENSO) La Niña = the girl; corresponds to the opposite climate situation Lecture 29 The El-Niño Southern Oscillation (ENSO) El Niño is Spanish for Christ child, the name given by fishermen to a warm ocean current off the coast of Peru/Ecuador that in some years occurs near

More information

Equatorial upwelling. Example of regional winds of small scale

Equatorial upwelling. Example of regional winds of small scale Example of regional winds of small scale Sea and land breezes Note on Fig. 8.11. Shows the case for southern hemisphere! Coastal upwelling and downwelling. Upwelling is caused by along shore winds, that

More information

& La Niña Southern Oscillation Index

& La Niña Southern Oscillation Index El Niño & La Niña Southern Oscillation Index Today: first of the natural changes Lectures 1) El Nino/La Nina: year- decadal changes in climate system 2) Next: Short term natural changes (centuries to millenia)

More information

The Setting - Climatology of the Hawaiian Archipelago. Link to Video of Maui Waves

The Setting - Climatology of the Hawaiian Archipelago. Link to Video of Maui Waves The Setting - Climatology of the Hawaiian Archipelago Link to Video of Maui Waves What caused this week s weather? What caused this weekend s weather? Today s Objective: Provide overview and description

More information

EL NIÑO AND ITS IMPACT ON CORAL REEF ECOSYSTEM IN THE EASTERN INDIAN OCEAN

EL NIÑO AND ITS IMPACT ON CORAL REEF ECOSYSTEM IN THE EASTERN INDIAN OCEAN CHAPTER C H A P T E R 0334 EL NIÑO AND ITS IMPACT ON CORAL REEF ECOSYSTEM IN THE EASTERN INDIAN OCEAN Lix J. K. 1, Sajeev R. 1, Grinson George 2, Santosh K. M. 1 and Phiros Shah 2 1 Cochin University of

More information

The Air-Sea Interaction. Masanori Konda Kyoto University

The Air-Sea Interaction. Masanori Konda Kyoto University 2 The Air-Sea Interaction Masanori Konda Kyoto University 2.1 Feedback between Ocean and Atmosphere Heat and momentum exchange between the ocean and atmosphere Atmospheric circulation Condensation heat

More information

REMINDERS: UPCOMING REVIEW SESSIONS: - Thursday, Feb 27, 6:30-8:00pm in HSS 1330

REMINDERS: UPCOMING REVIEW SESSIONS: - Thursday, Feb 27, 6:30-8:00pm in HSS 1330 REMINDERS: Midterm 2: Friday, February 28 - lecture material covering chapters 6, 7, and 15 (since first midterm and through Wed lecture) - same Format as first midterm UPCOMING REVIEW SESSIONS: - Thursday,

More information

The slab ocean El Niño

The slab ocean El Niño GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044888, 2010 The slab ocean El Niño Dietmar Dommenget 1 Received 28 July 2010; revised 2 September 2010; accepted 3 September 2010; published 16

More information

Lecture 18: El Niño. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B

Lecture 18: El Niño. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B Lecture 18: El Niño Atmosphere, Ocean, Climate Dynamics EESS 146B/246B El Niño Transient equatorial motions: Kelvin and Rossby waves. Positive feedback mechanism associated with air-sea coupling. Atmospheric

More information

The Amplitude-Duration Relation of Observed El Niño Events

The Amplitude-Duration Relation of Observed El Niño Events ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2012, VOL. 5, NO. 5, 367 372 The Amplitude-Duration Relation of Observed El Niño Events Wu Yu-Jie 1,2 and DUAN Wan-Suo 1 1 State Key Laboratory of Numerical Modeling

More information

Effect of sea surface temperature on monsoon rainfall in a coastal region of India

Effect of sea surface temperature on monsoon rainfall in a coastal region of India Loughborough University Institutional Repository Effect of sea surface temperature on monsoon rainfall in a coastal region of India This item was submitted to Loughborough University's Institutional Repository

More information

Global Circulations. GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10

Global Circulations. GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10 Global Circulations GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10 Last lecture Microscale (turbulence) Mesoscale (land/sea breeze) Synoptic scale (monsoon) Global scale (3 cell circulation) Three Cell Model

More information

Long period waves in the coastal regions of north Indian Ocean

Long period waves in the coastal regions of north Indian Ocean Indian Journal of Marine Sciences Vol. 33(2), June 2004, pp 150-154 Long period waves in the coastal regions of north Indian Ocean *P V Hareesh Kumar & K V Sanilkumar Naval Physical & Oceanographic Laboratory,

More information

El Nino and Global Warming

El Nino and Global Warming El Nino and Global Warming El Niño and Global Warming El Niño Climate Trade winds Barometric pressure Southern oscillation WHAT YOU WILL LEARN 1. You will identify the cause of El Niño events. 2. You will

More information