THE INFLUENCE OF HEEL ON THE BARE HULL RESISTANCE OF A SAILING YACHT

Size: px
Start display at page:

Download "THE INFLUENCE OF HEEL ON THE BARE HULL RESISTANCE OF A SAILING YACHT"

Transcription

1 THE INFLUENCE OF HEEL ON THE BARE HULL RESISTANCE OF A SAILING YACHT J. A. Keuning, and M. Katgert. Delft University of Technology NOMENCLATURE Lwl Bwl Tc LCB Cm Sc c φ Ri FH Cv Cf k ρ g Rn Waterline length Beam on waterline Draft of canoe body Longitudinal center of buoyancy Midship section coefficient Wetted area canoe body Volume of displacement canoe body Heel angle Residuary resistance Induced resistance Sideforce Coefficient of viscous drag Coefficient of frictional drag Form factor Specific gravity Gravitational acceleration Reynolds number 1. INTRODUCTION For the useful prediction of the performance of a sailing yacht using a generic Velocity Prediction Program (VPP) an accurate assessment of the hydrodynamic and aerodynamic forces and moments involved is essential. In a so called generic VPP, which yields an easy to run and rapid performance prediction of an arbitrary sailing yacht using its main dimensions only, this assessment is even more complicated due to the limited data of the yacht available in that case. Extensive research has been carried out over the last decades by numerous parties to find general applicable expressions for sail forces, upright resistance, appendage resistance, side force, induced resistance, added resistance in waves etcetera etcetera. With the transition from expressions yielding the forces and moments on the complete yacht, as was the case in the beginning of the DSYHS, to generic expressions for hull, keel and rudder separately all contributions of the various parts of the yacht on the overall forces and moments had to be formulated. One of the more difficult components in this assessment scheme turned out to be the change in resistance due to the stationary heel of the sailing yacht. Various attempts to capture this change have been made but they seem to lack either general applicability or accuracy. Yet this heeled resistance and more in particular the change in residuary resistance due to heel, has formed an important item for a long time on the research agenda of, amongst others, the International Technical Committee of the ORC. And in some respect it certainly has been a driver for the hull shapes of new designs. In the present paper an attempt will be made to present an overview of what has been done in this respect over the last decade using the data of the Delft Systematic Yacht Hull Series (DSYHS) and, using the same data, try to gain some insight on the absolute contribution of the heeled resistance on the overall performance and the physical effects driving it.. WHAT CHANGES UNDER HEEL? If we consider the difference between an upright sailing yacht hull and the same hull under degrees of heel, which are the obvious differences? From a geometric point of view the shape of the underwater body changes considerably. The waterlines become highly asymmetric and the section shape changes accordingly. The amount to which these changes take place appears to be dependent on a number of the shape parameters of the hull under consideration. This change of geometry of the hull under heel is to some extent demonstrated in the next figures, in which for a small, but illustrative, number of models of the DSYHS both the waterlines upright and under degrees of heel are compared. The differences between the various models that are shown are: Figure 1.1: Waterlines Sysser 1 1) Sysser 1, being the parent model of the Series 1 of the DSYHS has a typical wine glass shaped cross section as customary in the 197 s with a modest Beam to Draft (B/T) ratio. In addition the fore and aft body are rather identical leading to a symmetrical hull and rather steep buttocks aft. Under heel the windward waterlines

2 become quite narrow and stretched and the leeward lines bulk-out with increasing waterline entrance angle fore and a blunt aft body. There is a decrease in waterline length under heel, which appears to be symptomatic for all models in Series 1. 3) These effects become smaller with decreasing B/T ratio as is shown with the lines of Sysser 7, which is a very low B/T ratio hull derived from the same lines as Sysser 5, and they increase with increasing B/T ratio, as shown with the lines from Sysser 9, which is a very high B/T ratio hull again also derived from Sysser 5 as a parent. Also the waterline separation at the leeward side decreases strongly with increasing B/T ratio as becomes obvious from comparison between #7, #5 and #9 with increasing B/T ratio. Also a trend for increasing curvature in the shifted centreline becomes apparent. Figure 1.: Waterlines Sysser 5 ) Sysser 5, being the parent model of Series of the DSYHS, has the more customary shape of the yachts of the 19 s. The cross sections are much more U shaped with a higher Cm value when compared with Sysser 1. The L/B ratio is smaller than Sysser 1, the B/T ratio is almost similar however there is a considerable asymmetry in the fore and aft lines leading to a much fuller shape of the waterlines and smaller buttock angles aft. Under heel the most striking feature of this type of hull shape is the apparent change in centreline of the hull: aft it shifts to leeward or it rotates. The asymmetry between windward and leeward is less than with Sysser 1 and compared with the shifted centreline the leeward side now becomes slightly more stretched and the windward side more bulky. The length of the shifted or rotated water-(centre-) line increases considerably when under heel and this shows to be consistent for all models derived from this parent. Figure 1.5: Waterlines Sysser 44 4) With the lines of Sysser 44, which is the parent of Series 4 of the DSYHS, the largest difference with the earlier effects appears to be in the more rounded end of the waterlines aft and the smaller difference in shape between the windward and the leeward waterlines. The parent of Series 4 has again a somewhat higher Cm than the parent of Series and a lower Length to Beam ratio. Figure 1.3: Waterlines Sysser 7 Figure 1.6: Waterlines Sysser 47 5) The lines of Sysser 47, which is a high B/T derivative of Sysser 44, show a larger rotation of the centre line and an even larger increase in length under heel. The effect of more rounded waterlines aft under heel disappears however completely with this Sysser 47, due to the high B/T. Figure 1.4: Waterlines Sysser 9

3 parameters upright and under degrees of heel are presented. A second dependency was found with the change in the B/T ratio of the hull when heeled yielding a larger increase in length when the change in the B/T ratio is larger when Cm is the unchanged. Only the more illustrative examples within the DSYHS are presented in the Table 1. Figure 1.7: Waterlines Sysser 81 6) Finally Sysser 81. This is a modern and recent hull designed for gaining extra length under heel, appropriately nicknamed the Boxy. It has a very high Cm and almost vertical sides. The change of shape is obvious from the plot above. Sys Cm Bwl/Tc Sys Lwl Table 1: Hull parameters upright and heeled These changes of hull geometry under heel provoke a number of changes in the hydrodynamics involved: A) First of all the waterline length under heel is changed. It is interesting to note that all the models of Series 1 experience a reduction in waterline length under heel while in the other Series the waterline length increases. When the changes in waterline length were calculated for a typical heeling angle of degrees it became obvious that those hulls that have the biggest decrease ( i.e. change) of the mid ship sectional coefficient Cm when heeled do have the largest increase in waterline length. This also holds true the other way around. This dependency is derived from the results as presented in Table 1 in which the principal hull This result was used to formulate the parameters of importance for the change in waterline length when heeled and by means of regression the following relation has been found for the waterline length change as function of the change in mid ship sectional coefficient Cm and the Beam to Draft ratio: with: Lwlϕ Bwl = a + a1 Δ Cm + a Δ Lwl Tc Δ Cm = Cmϕ Cm Bwl Bwlϕ Bwl Δ = Tc Tcϕ Tc With the following coefficients: φ a a 1 a Table : Coefficients heeled waterline length regression The goodness of fit of this polynomial with the data is shown in the next figure: Lwlφ calculated [m] Lwlφ measured [m] Figure : Waterline length under heel measured and calculated How this change in waterline length may be incorporated in dealing with the resistance under heel will be discussed later. B) Secondly the magnitude of the wetted area of the hull when she heels over is changed. Since the frictional resistance is assumed to be directly proportional to the wetted area, every change in wetted

4 area leads to a proportional change in the frictional resistance. To visualize this in Figure 3 the change in wetted area is depicted of some representative models of the DSYHS. Sc [m ] Heel angle φ [deg] Figure 3: wetted area canoe body under heel Calc. From these results it may be concluded that there is a strong relationship between the change in wetted area and the beam to draft ratio B/T of the hull and Cm. In 1998 Keuning and Sonnenberg Ref [1] presented a polynomial expression for the wetted area of the hull under heel, which is found to be still rather accurate also when applied on the new designs. It reads: Sc Bwl = + Tc Cm ( c Lwl) Bwl Bwl 1 s + s1 + s Scϕ = Sc( ϕ = ) 1 + Tc Tc + s3 Cm C) When considered appropriate a form factor k can be applied to get from the frictional resistance to the viscous resistance. The general applied formulation of the ITTC can be applied in this respect. According to: Cv = (1 + k) Cf.75 Cf = (log(rn) ) The usual procedure from either Prohaska or ITTC can be applied to obtain the form factor k from the experimental results at the lower speeds. Because the shape of the underwater part of the hull changes considerably when the hull is heeled it may be expected that this form factor k will change also under heel. It has been proven to be however quite difficult to derive a reliable form factor k from the measurements with the heeled bare hull. This is due to the fact that the heeled hull through its asymmetry delivers also some side force. In addition due to the rotation of the centre line when heeled as demonstrated in the lines plans also an effective leeway angle is introduced even with zero geometrical leeway for the model, which was demonstrated by Keuning and Verwerft in Ref [3]. Although the overall side force on the heeled hull may be small there is a considerable yaw moment, due to the positive side force on the fore part and the negative side force on the aft part of the heeled hull. This particular side force distribution over the length of the heeled hull with relative small leeway angles is generally known as the Munk moment and results in a small total side force but introduces a large yaw moment. This has been shown by Keuning and Vermeulen in Ref []. This side force generation causes vorticity, which will be considerable because the hull is a highly inefficient wing, and so there will be an induced resistance component. This should not be included in the determination of the form factor k but is difficult if not impossible to separate. So generally the form factor obtained in the upright condition will be used instead. However the often quite large change in wetted area when heeled will generally dominate the small change in viscous resistance and therefore possible errors in the changes of the form factor of the heeled hull will have less influence. So the change in viscous resistance can reasonably accurate be predicted and therefore the emphasis in the following parts will be on the determination of the change in residuary resistance under heel. To establish some insight in the absolute and relative magnitude of the change in residuary resistance of a heeled hull for a limited number of the models of the DSYHS for some speeds in the speed range from Fn =.5 to Fn =.45 in the next figure the following quantities are presented: the frictional resistance under heel, the residuary resistance upright and the change in residuary resistance due to heel. Sys δφ

5 Sys 5 Sys 47 δφ δφ Sys Sys 81 δφ δφ Sys Sys δφ δφ Figure 4: Relative contribution of resistance components to heeled bare hull resistance The data presented here is representative for the entire series of models in the DSYHS database. From these plots it is obvious that the change in residuary resistance due to heel is a small quantity when compared to the other components. In addition it should be noted that the change in the residuary resistance due to heel has to be determined from the measurements by subtracting two rather large quantities, i.e. the resistance upright and the resistance under heel, to find the (small) difference. Small errors in either of these two large quantities will inevitably lead to large errors in their delta : the change in residuary resistance due to heel. This may lead to all kind of irregularities in the measured change of residuary resistance due to heel. In Ref [] and [3] it is also shown that depending on the B/T ratio of the hull there is also a considerable side force production of the sailing yacht at zero leeway angle which generates an even larger induced resistance component on the actual sailing yacht. This is shown in Figure 4 in which for two different B/T ratios the induced resistance due to heel and side force is depicted. This effect will make the importance of the change of residuary resistance of the bare hull due to heel on the overall resistance of the actual sailing yacht even smaller.

6 Ri [N] Sys 4 (B/T=11) Fn.36 Sys 7 (B/T=.5) Fn.36 specific change in residuary resistance due to degrees of heel: Δhϕ = Lwl Bwl Bwl u u1 u u3 = c ρ g Bwl Tc Tc + u LCB+ u LCB 4 5 With a dependency on the heeling angle to yield a similar result for any arbitrary heeling angle between zero and 3 degrees of heel according to: FH [kn ] Figure 5: Induced resistance Ri due to sideforce for various B/T 3. VARIOUS APPROACHES FOR THE CHANGE IN RESIDUARY RESISTANCE UNDER HEEL In 1998 Keuning and Sonnenberg Ref [1] formulated an expression for the change in resistance due to heel based on the results of about 5 models out of the total of 5 models of the DSYHS tested at that time. These tests were carried out using the unappended models of the DSYHS. The heel angle tested was restricted to one heel angle only, i.e. degrees of heel. The database where they based their regression on was the raw database from the DSYHS available at that moment. This database contained 5 models of which only 5 had been tested as bare hulls at degrees of heel. Using the raw database results means that no fairing or smoothing has been performed on any of the resistance data, not upright nor under heel. This implied that, as explained before, quite some humps and hollows appear in the small differential of these two large quantities that is the change in resistance due to heel. A typical example of this is depicted in Figure 6. dhphi [N] - Delta Resist. Bare Hull due heel Measured & Calculated m Lwl Fn meas: 1 Figure 6: Change in residuary resistance under heel measured and calculated from Ref [1] Based on these results in the database available at that time they formulated the following expression for the calc: Δ h =Δ ϕ hϕ= ϕ This is a speed independent polynomial expression with coefficients presented for a fixed series of Froude numbers. This is similar to the approach followed with the upright residuary polynomial expression derived from the DSYHS. The coefficients of this polynomial expression, i.e. u till u 5, are presented in Table 3. Coefficients multiplied by Fn u u u u u u Table 3: coefficients regression delta residual resistance under heel Keuning & Sonnenberg Ref [1] These formulations, when checked against the DSYHS database, showed reasonable results. When validated against models not belonging to the database the results still showed satisfactory agreement at least when care is taken not to be outside the parameters space spanned by the DSYHS. Quite another approach is followed by the ORC in their VPP used for handicapping purposes. Here a multiplier on the upright residuary resistance is formulated depending on the principal hull parameters such as length to beam, beam to draft and change of waterplane area upright and under heel. Their approach is explained in the ORC VPP documentation 9 Ref [4]. This formulation obviously has some flaws also because the ITC is seriously looking for another approach. 4. THE PRESENT APPROACH In the framework of the present study two new attempts have been made to improve on the assessment of the change in residuary resistance due to heel of the bare hull: First it has been investigated if fairing the results from the measurements and so reducing the abnormalities in

7 the data had any effect on the derived coefficients for the polynomial expression as presented by Keuning and Sonnenberg Ref [1] and if so if the results were improved. Two approaches regarding this fairing procedure have been followed in this respect. The first one was fairing the residuary resistance curves both upright and heeled. The change in resistance was then determined from the difference between these two faired curves at fixed Froude numbers. The other approach was that the difference as originally determined by Keuning and Sonnenberg was faired directly. It turned out that both procedures did not yield very different results, so fairing the original deltas was chosen as the method to fair the data. A typical example of this later procedure is depicted in Figure 7. Δ φ /ρ g Smooth Figure 7: measured and smoothed deltas As may be seen from this figure the overall magnitude of the delta resistance does not change much but the trend in the lines in particular over the Froude range is much more consistent. New coefficients have been determined for the same polynomial expression as formulated by Keuning and Sonnenberg Ref [1] using these new results for the delta residuary. However this did not improve the results of the assessment formulation significantly. The second attempt was focussed at gaining new insights in what or which hull shape characteristics drives this change in residuary resistance due to heel of the bare hull. If new parameters and dependencies could be found then it would be possible to formulate an appropriate expression to deal with those. the change in waterline length under heel, Cm and the B/T ratio. Once again a speed independent formulation was used with Froude number dependent coefficients. After some attempts the best formulation read: Δϕ Bwl Lwlϕ = b + b1 Δ + b Δ Cm+ b3 ρ g Tc Lwl In which: with coefficients: Bwl Bwlϕ Bwl Δ = Tc Tcϕ Tc Δ Cm = Cmϕ Cm Coefficients multiplied by Fn b b b b Table 3: coefficients regression delta residual resistance under heel Keuning & Katgert When applied on the results of the database the results as depicted in the following Figure 8 were obtained. In this Figure only a limited number of the 38 models are presented. Those models are selected which show diverging behaviour with respect to the change in residuary resistance at heel. They are representative for the general result and show the general goodness of fit. /ρ g [-] 5 3 Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys Analyzing the results obtained for the change in residuary resistance after fairing these data revealed that there was a strong dependency on the change in waterline length and on top of that on the change of the Cm and the B/T ratio again. So a new formulation was set up using

8 /ρ g [-] 5 3 Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys /ρ g [-] 5 3 Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys7 /ρ g [-] Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys18 /ρ g [-] Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys9 /ρ g [-] Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys4 /ρ g [-] Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys39 /ρ g [-] Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys5 /ρ g [-] Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys

9 /ρ g [-] 5 3 Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys47 From these plots it may be concluded that in an overall view both the trend and the absolute magnitude of the change in the residuary due to heel is quite satisfactory captured. This certainly also holds true for the sign of the added resistance, i.e. positive or negative. In comparison with the earlier assessment method there is a significant improvement which justifies the use of the new method. /ρ g [-] Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys49 5. CONCLUSIONS AND RECOMMENDATIONS Based on the results presented above it may be concluded that a more reliable method for assessing the change in residuary resistance of the bare hull under heel has been found. It seems to predict both the quantity and the trend of this change with reasonable accuracy for the range of the DSYHS. In the near future additional tests will be carried out to be able to extend the database were it is based on in those areas were we still lack information, and to be able to validate the results on models not belonging to the database of the DSYHS. /ρ g [-] /ρ g [-] Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys Calculated Δφ Measured Δφ Measured φ= Measured φ= Sys Figure 8: results present regression 6. REFERENCES 1. Keuning, J.A. and Sonnenberg, U.B. Approximation of the Hydrodynamic Forces on a Sailing Yachts based on the Delft Systematic Yacht Hull Series International HISWA Symposium on Yacht Design and Construction Amsterdam, November Keuning, J. A. and Vermeulen, K. J. The yaw balance of sailing yachts upright and heeled Chesapeake Sailing Yacht Symposium, 3 3. Keuning, J. A. and Verwerft, B. A new Method for the Prediction of the Side Force on Keel and Rudder of a Sailing Yacht based on the Results of the Delft Systematic Yacht Hull Series Chesapeake Sailing Yacht Symposium, 9 4. ORC VPP Documentation 9, Published by the Offshore Racing Congress 5. Teeters, J., Pallard, R. and Muselet, C. Analysis of Hull Shape Effects on Hydrodynamic Drag in Offshore Handicap Racing Rules Chesapeake Sailing Yacht Symposium, 3 7. AUTHORS BIOGRAPHIES Lex Keuning is associate professor at the Ship Hydromechanics Laboratory of the Delft University of Technology. He has been responsible for research on the Delft Systematic Yacht Hull Series and he is also research advisor of the ITC of the Ocean Racing Congress.

10 Michiel Katgert is member of the research staff of the Ship Hydromechanics Laboratory of the Delft University of Technology. He is responsible for carrying out towing tank research.

A BARE HULL RESISTANCE PREDICTION METHOD DERIVED FROM THE RESULTS OF THE DELFT SYSTEMATIC YACHT HULL SERIES EXTENDED TO HIGHER SPEEDS

A BARE HULL RESISTANCE PREDICTION METHOD DERIVED FROM THE RESULTS OF THE DELFT SYSTEMATIC YACHT HULL SERIES EXTENDED TO HIGHER SPEEDS A BARE HULL RESISTANCE PREDICTION METHOD DERIVED FROM THE RESULTS OF THE DELFT SYSTEMATIC YACHT HULL SERIES EXTENDED TO HIGHER SPEEDS J A Keuning and M Katgert, Delft University of Technology, Netherands

More information

Analysis of Hull Shape Effects on Hydrodynamic Drag in Offshore Handicap Racing Rules

Analysis of Hull Shape Effects on Hydrodynamic Drag in Offshore Handicap Racing Rules THE 16 th CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 2003 Analysis of Hull Shape Effects on Hydrodynamic Drag in Offshore Handicap Racing Rules Jim Teeters, Director of Research for

More information

Further Analysis of the Forces on Keel and Rudder of a Sailing Yacht

Further Analysis of the Forces on Keel and Rudder of a Sailing Yacht THE 18 th CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 7 Further Analysis of the Forces on Keel and Rudder of a Sailing Yacht by: J. A. Keuning, M. Katgert and K. J. Vermeulen Delft University

More information

An Approximation Method for the Added Resistance in Waves of a Sailing Yacht

An Approximation Method for the Added Resistance in Waves of a Sailing Yacht An Approximation Method for the Added Resistance in Waves of a Sailing Yacht J.A. Keuning 1 K.J. Vermeulen H.P. ten Have Abstract For the use in a VPP environment an easy to use calculation method for

More information

PERFORMANCE PREDICTION OF THE PLANING YACHT HULL

PERFORMANCE PREDICTION OF THE PLANING YACHT HULL PERFORMANCE PREDICTION OF THE PLANING YACHT HULL L A le Clercq and D A Hudson, University of Southampton, UK SUMMARY The performance of racing yachts has increased significantly over the past 10-15 years

More information

THE 22 ND CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 2016

THE 22 ND CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 2016 THE 22 ND CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 2016 The SYRF Wide Light Project Martyn Prince, Wolfson Unit MTIA, University of Southampton, UK Andrew Claughton, Ben Ainslie Racing,

More information

Approximation method for the loss of speed during tacking maneuver of a sailing yacht

Approximation method for the loss of speed during tacking maneuver of a sailing yacht Date March 25/26, 2004 wriitenby E.J. de Ridder, J.A. Keuning and K.J. Vermeulen Address Delft University of Tecfinology i y Sliip Hydromeclianics Laboratory I I 1"^/^^ If ^ Mekelweg 2, 2628 CD Delft L^O

More information

EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER

EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER A.F. Molland, P.A. Wilson and D.J. Taunton Ship Science Report No. 124 University of Southampton December

More information

SAILING YACHT TRANSOM STERNS A SYSTEMATIC CFD INVESTIGATION

SAILING YACHT TRANSOM STERNS A SYSTEMATIC CFD INVESTIGATION 5 th High Performance Yacht Design Conference Auckland, 10-12 March, 2015 SAILING YACHT TRANSOM STERNS A SYSTEMATIC CFD INVESTIGATION Jens Allroth 1, jens.allroth@gmail.com Ting-Hua Wu 2, ahuating@gmail.com

More information

Manual DSYHS.tudelft.nl

Manual DSYHS.tudelft.nl Manual DSYHS.tudelft.nl A User Manual for the Delft Systematic Yacht Hull Series Database website Michiel Katgert, Jasper den Ouden Contents Introduction... 3 The models... 4 The measurements - Setup...

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

ρ Fluid density (kg/m 3 ) ψ Yaw angle of yacht (degrees) ζ Wave height (m)

ρ Fluid density (kg/m 3 ) ψ Yaw angle of yacht (degrees) ζ Wave height (m) Hull-Appendage Interaction of a Sailing Yacht, Investigated with Wave-Cut Techniques Jonathan R. Binns, Australian Maritime Engineering Cooperative Research Centre (AMECRC) Kim Klaka, Australian Maritime

More information

S0300-A6-MAN-010 CHAPTER 2 STABILITY

S0300-A6-MAN-010 CHAPTER 2 STABILITY CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

More information

(0 Prof. JeromeH. Milgram

(0 Prof. JeromeH. Milgram Analysis of the IMS Velocity Prediction Program by Claudio Cairoli M.S. Mechanical and Aerospace Engineering University of Virginia, 2000 SUBMITTED TO THE DEPARTMENT OF OCEAN ENGINEERING IN PARTIAL FULFILLMENT

More information

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section International Ship Stability Workshop 2013 1 A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section Tatsuya Miyake and Yoshiho Ikeda Department of Marine System Engineering,

More information

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE LIST OF TOPICS A B C D E F G H I J Hydrostatics Simpson's Rule Ship Stability Ship Resistance Admiralty Coefficients Fuel Consumption Ship Terminology Ship

More information

A foil as dynamic ballast numerical simulation

A foil as dynamic ballast numerical simulation 1/3 Jean-françois Masset January 218 A foil as dynamic ballast numerical simulation contact : jfcmasset@outlook.fr Summary : 1. Presentation of the study 2. DB32 : the numerical boat of reference 3. The

More information

THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT

THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT J Alexander Keuning, Shiphydromechanics Department, Delft University of Technology, Netherlands Guido L Visch,

More information

The Windward Performance of Yachts in Rough Water

The Windward Performance of Yachts in Rough Water 14th Chesapeake Sailing Yacht Symposium January 3, 1999 The Windward Performance of Yachts in Rough Water Jonathan R. Binns, Australian Maritime Engineering Cooperative Research Centre Ltd. (AME CRC) Bruce

More information

Win, place or show how deep does your rudder go?

Win, place or show how deep does your rudder go? Win, place or show how deep does your rudder go? Teeters, Pallard and Muselet reveal some of the science behind the complex world of international yacht handicapping. JAMES TEETERS ROBERT PALLARD Who Should

More information

OFFSHORE RACING CONGRESS World Leader in Rating Technology

OFFSHORE RACING CONGRESS World Leader in Rating Technology OFFSHORE RACING CONGRESS World Leader in Rating Technology Secretariat: YCCS, 07020 Porto Cervo Sardinia, Italy UK Office: Five Gables, Witnesham Ipswich, IP6 9HG England Tel: +39 0789 902 202 Tel: +44

More information

The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts

The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts THE 17 th CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 25 The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts Jonathan R. Binns, Researcher, Australian

More information

STABILITY OF MULTIHULLS Author: Jean Sans

STABILITY OF MULTIHULLS Author: Jean Sans STABILITY OF MULTIHULLS Author: Jean Sans (Translation of a paper dated 10/05/2006 by Simon Forbes) Introduction: The capsize of Multihulls requires a more exhaustive analysis than monohulls, even those

More information

WINDWARD PERFORMANCE OF THE AME CRC SYSTEMATIC YACHT SERIES

WINDWARD PERFORMANCE OF THE AME CRC SYSTEMATIC YACHT SERIES RINA International Conference on The Modern Yacht, Portsmouth, UK, March 1998 WINDWARD PERFORMANCE OF THE AME CRC SYSTEMATIC YACHT SERIES Bruce McRae, Australian Maritime Engineering Cooperative Research

More information

Performance Prediction for Sailing Dinghies. Prof Alexander H Day. Department of Naval Architecture, Ocean and Marine Engineering

Performance Prediction for Sailing Dinghies. Prof Alexander H Day. Department of Naval Architecture, Ocean and Marine Engineering Performance Prediction for Sailing Dinghies Prof Alexander H Day Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde Henry Dyer Building 100 Montrose St Glasgow G4

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Free-Sailing Model Test Procedure

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Free-Sailing Model Test Procedure Testing and Extrapolation Methods Free-Sailing Model Test Procedure Page 1 of 10 22 CONTENTS 1. PURPOSE OF PROCEDURE 2. DESCRIPTION OF PROCEDURE 2.1 Preparation 2.1.1 Ship model characteristics 2.1.2 Model

More information

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance csnak, 2013 Int. J. Naval Archit. Ocean Eng. (2013) 5:161~177 http://dx.doi.org/10.2478/ijnaoe-2013-0124 Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

More information

The Physics of Water Ballast

The Physics of Water Ballast The Physics of Water Ballast Nick Newland recently wrote an informative article on water ballast for Water Craft magazine (Newland 2015). Following a discussion on the Swallow Boats Association Forum,

More information

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies. Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:

More information

Roll Stabilisation at Anchor: Hydrodynamic Aspects of the Comparison of Anti-Roll Tanks and Fins

Roll Stabilisation at Anchor: Hydrodynamic Aspects of the Comparison of Anti-Roll Tanks and Fins Roll Stabilisation at Anchor: Hydrodynamic Aspects of the Comparison of Anti-Roll Tanks and Fins R.P. Dallinga, Manager Seakeeping Department Maritime Research Institute Netherlands (MARIN) Project 2002,

More information

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves ABSTRACT Emre Kahramano lu, Technical University, emrek@yildiz.edu.tr Hüseyin Y lmaz,, hyilmaz@yildiz.edu.tr Burak

More information

Conventional Ship Testing

Conventional Ship Testing Conventional Ship Testing Experimental Methods in Marine Hydrodynamics Lecture in week 34 Chapter 6 in the lecture notes 1 Conventional Ship Testing - Topics: Resistance tests Propeller open water tests

More information

Chapter 2 Hydrostatics and Control

Chapter 2 Hydrostatics and Control Chapter 2 Hydrostatics and Control Abstract A submarine must conform to Archimedes Principle, which states that a body immersed in a fluid has an upward force on it (buoyancy) equal to the weight of the

More information

Flat Water Racing Kayak Resistance Study 1

Flat Water Racing Kayak Resistance Study 1 Flat Water Racing Kayak Resistance Study 1 Article Type: Research Article Article Category: Sports Coaching Tittle: Experimental and Numerical Study of the Flow past Olympic Class K 1 Flat Water Racing

More information

RANS BASED VPP METHOD FOR MEGA-YACHTS

RANS BASED VPP METHOD FOR MEGA-YACHTS RANS BASED VPP METHOD FOR MEGA-YACHTS Tyler Doyle 1, tyler@doylecfd.com Bradford Knight 2, bradford@doylecfd.com Abstract. Velocity prediction programs (VPPs) are valuable design tools that allow designers

More information

Laminar Flow Sections for Proa Boards and Rudders

Laminar Flow Sections for Proa Boards and Rudders Laminar Flow Sections for Proa Boards and Rudders Thomas E. Speer, Des Moines, Washington, USA ABSTRACT Hydrofoil section designs for proa sailboats which reverse direction in a shunt when changing tacks

More information

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. < Helicopters Aircraft Gliders Sails > < Keels and rudders Hydrofoils

More information

Application of Advanced Computational Fluid Dynamics in Yacht Design

Application of Advanced Computational Fluid Dynamics in Yacht Design Application of Advanced Computational Fluid Dynamics in Yacht Design M.M.D. Levadou 1, H.J. Prins, H.C. Raven MARIN, Wageningen, The Netherlands 2 ABSTRACT Nowadays, Computational Fluid Dynamics (CFD)

More information

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Lecture - 7 Air and Wind Resistance Dimensional Analysis I Coming back to the class, we

More information

Minimising The Effects of Transom Geometry on Waterjet Propelled Craft Operating In The Displacement and Pre-Planing Regime

Minimising The Effects of Transom Geometry on Waterjet Propelled Craft Operating In The Displacement and Pre-Planing Regime Minimising The Effects of Transom Geometry on Waterjet Propelled Craft Operating In The Displacement and Pre-Planing Regime SUMMARY James Roy, Nigel Gee and Associates Ltd, UK John Bonafoux, Nigel Gee

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh Lecture Note of Naval Architectural Calculation Ship Stability Ch. 8 Curves of Stability and Stability Criteria Spring 2016 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events Loads and Responses, Seakeeping Page 1 of 5 CONTENTS 1. PURPOSE OF PROCEDURE 2. STANDARDS FOR EXPERIMENTS ON RARELY OCCURRING EVENTS 2.1 Previous Recommendations of ITTC 2.2 Model Design and Construction

More information

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING ICAS 2002 CONGRESS AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING Yoshiaki NAKAMURA (nakamura@nuae.nagoya-u.ac.jp) Takafumi YAMADA (yamada@nuae.nagoya-u.ac.jp) Department of Aerospace Engineering,

More information

Results and Discussion for Steady Measurements

Results and Discussion for Steady Measurements Chapter 5 Results and Discussion for Steady Measurements 5.1 Steady Skin-Friction Measurements 5.1.1 Data Acquisition and Reduction A Labview software program was developed for the acquisition of the steady

More information

DATABASE BUILDING AND STATISTICAL METHODS TO PREDICT SAILING YACHTS HYDRODYNAMICS

DATABASE BUILDING AND STATISTICAL METHODS TO PREDICT SAILING YACHTS HYDRODYNAMICS DATABASE BUILDING AND STATISTICAL METHODS TO PREDICT SAILING YACHTS HYDRODYNAMICS Lionel Huetz, Marc Lombard Yacht Design Group, France, lionel.huetz@gmail.com Pierre Emmanuel Guillerm, Ecole Centrale

More information

Study on Resistance of Stepped Hull Fitted With Interceptor Plate

Study on Resistance of Stepped Hull Fitted With Interceptor Plate 39 Study on Resistance of Stepped Hull Fitted With Interceptor Plate Muhamad Asyraf bin Abdul Malek, a, and J.Koto, a,b,* a) Department of Aeronautic, Automotive and Ocean Engineering, Faculty of Mechanical

More information

Transactions on Engineering Sciences vol 9, 1996 WIT Press, ISSN

Transactions on Engineering Sciences vol 9, 1996 WIT Press,   ISSN Resistance characteristics of small and fast monohull vessels M. Rezaul Abid, C.C. Hsiung Department of Mechanical Engineering, Technical University of Nova Scotia, Halifax, Nova Scotia, Canada B3J 2X4

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Minggui Zhou 1, Dano Roelvink 2,4, Henk Verheij 3,4 and Han Ligteringen 2,3 1 School of Naval Architecture, Ocean and Civil Engineering,

More information

SAILING SHIP PERFORMANCE - CORRELATION OF MODEL TESTS WITH FULL SCALE

SAILING SHIP PERFORMANCE - CORRELATION OF MODEL TESTS WITH FULL SCALE SAILING SHIP PERFORMANCE - CORRELATION OF MODEL TESTS WITH FULL SCALE Barry Deakin, Wolfson Unit MTIA, UK SUMMARY Correlation of model and full scale data has been addressed by many researchers, but it

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Developments in modelling ship rudder-propeller interaction A.F. Molland & S.R. Turnock Department of Ship Science, University of Southampton, Highfield, Southampton, S017 IBJ, Hampshire, UK Abstract A

More information

Keel Influence on the Added Wave Resistance

Keel Influence on the Added Wave Resistance Keel Influence on the Added Wave Resistance for Yachts by Marcos de Parahyba Campos*, Member Tsugukiyo Hirayama**, Member Summary Sailing yachts has been experienced extensively in the past years, generating

More information

Design Considerations for Canting Keel Yachts.

Design Considerations for Canting Keel Yachts. Design Considerations for Canting Keel Yachts. Andrew Claughton. Clay Oliver Wolfson Unit MTIA University of Southampton. Yacht Research International 1. Introduction. The emergence of canting keel yachts

More information

THE EFFECT OF HEEL ANGLE AND FREE-SURFACE PROXIMITY ON THE PERFORMANCE AND STRUT WAKE OF A MOTH SAILING DINGHY RUDDER T-FOIL

THE EFFECT OF HEEL ANGLE AND FREE-SURFACE PROXIMITY ON THE PERFORMANCE AND STRUT WAKE OF A MOTH SAILING DINGHY RUDDER T-FOIL 3 rd High Performance Yacht Design Conference Auckland, 2-4 December, 2008 THE EFFECT OF HEEL ANGLE AND FREE-SURFACE PROXIMITY ON THE PERFORMANCE AND STRUT WAKE OF A MOTH SAILING DINGHY RUDDER T-FOIL Jonathan

More information

Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves

Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves Sun Young Kim, Nam Sun Son, Hyeon Kyu Yoon Maritime & Ocean Engineering Research Institute, KORDI ABSTRACT

More information

The influence of the high-speed Trimaran to Flow Field. Yi-fan Wang 1, Teng Zhao 2

The influence of the high-speed Trimaran to Flow Field. Yi-fan Wang 1, Teng Zhao 2 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) The influence of the high-speed Trimaran to Flow Field Yi-fan Wang 1, Teng Zhao 2 1 Chongqing jiaotong university,400074,chongqing

More information

Downwind Performance of Yachts in Waves Dougal Harris 1, Giles Thomas 1, Martin Renilson 2

Downwind Performance of Yachts in Waves Dougal Harris 1, Giles Thomas 1, Martin Renilson 2 nd ustralian Sailing Science Conference February 1999, Hobart, Tasmania Downwind Performance of Yachts in Waves Dougal Harris 1, Giles Thomas 1, Martin Renilson SUMMRY: This paper reports on work conducted

More information

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007 Aalborg Universitet Design Loads on Platforms on Offshore wind Turbine Foundations with Respect to Vertical Wave Run-up Damsgaard, Mathilde L.; Gravesen, Helge; Andersen, Thomas Lykke Published in: Proceedings

More information

The Influence of a Keel Bulb on the Hydrodynamic Performance of a Sailing Yacht Model

The Influence of a Keel Bulb on the Hydrodynamic Performance of a Sailing Yacht Model journal of maritime research Vol. X. No. 1 (2013), pp. 51-58 ISSN: 1697-4040, www.jmr.unican.es The Influence of a Keel Bulb on the Hydrodynamic Performance of a Sailing Yacht Model K. N. Sfakianaki 1,*,

More information

A Feasibility Study on a New Trimaran PCC in Medium Speed

A Feasibility Study on a New Trimaran PCC in Medium Speed The 6 th International Workshop on Ship ydrodynamics, IWS 010 January 9-1, 010, arbin, China Feasibility Study on a ew Trimaran PCC in Medium Speed Tatsuhiro Mizobe 1*, Yasunori ihei 1 and Yoshiho Ikeda

More information

Sailing Yacht Rudder Behaviour

Sailing Yacht Rudder Behaviour Sailing Yacht Rudder Behaviour R. Zamora-Rodríguez 1, Jorge Izquierdo-Yerón 1, Elkin Botia Vera 1 1 Model Basin research Group (CEHINAV 1 ) Naval Architecture Department (ETSIN) Technical University of

More information

ITTC - Recommended Procedures and Guidelines

ITTC - Recommended Procedures and Guidelines 7.5 Page 1 of 5 Table of Contents 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 4. DOCUMENTATION... 4 5. REFERENCES... 4 3. PARAMETERS... 4 Updated by Approved Manoeuvring Committee of

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodynamics I UNIT C: 2-D Airfoils C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory AE301 Aerodynamics I : List of Subjects

More information

High Swept-back Delta Wing Flow

High Swept-back Delta Wing Flow Advanced Materials Research Submitted: 2014-06-25 ISSN: 1662-8985, Vol. 1016, pp 377-382 Accepted: 2014-06-25 doi:10.4028/www.scientific.net/amr.1016.377 Online: 2014-08-28 2014 Trans Tech Publications,

More information

TOWMASTER. User Manual. Version : 1.0.0

TOWMASTER. User Manual. Version : 1.0.0 TOWMASTER User Manual Version : 1.0.0 Date : 23-November-2014 License Information TOWMASTER TOWMASTER software and source code are property of Technomak Offshore & Marine Consultancy. The software along

More information

ADVANCED AND FUTURE HYDRODYNAMIC OPTIMISATION TOOLS IN SAIL YACHT DESIGN

ADVANCED AND FUTURE HYDRODYNAMIC OPTIMISATION TOOLS IN SAIL YACHT DESIGN ADVANCED AND FUTURE HYDRODYNAMIC OPTIMISATION TOOLS IN SAIL YACHT DESIGN EJ de Ridder [1] G Gaillarde [2] F van Walree [3] ABSTRACT Since the beginning of high level sailing events, like the America s

More information

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments By Dag Friis Christian Knapp Bob McGrath Ocean Engineering Research Centre MUN Engineering 1 Overview:

More information

THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS

THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS BY DOYOON KIM UNIVERSITY OF SOUTHAMPTON LIST OF CONTENTS AIM & OBJECTIVE HYDRODYNAMIC PHENOMENA OF PLANING HULLS TOWING TANK TEST RESULTS COMPUTATIONAL

More information

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No.# 01 Lecture No. # 01 Introduction Hello everybody.

More information

CFD PREDICTION OF THE WAVE RESISTANCE OF A CATAMARAN WITH STAGGERED DEMIHULLS

CFD PREDICTION OF THE WAVE RESISTANCE OF A CATAMARAN WITH STAGGERED DEMIHULLS MAHY 2006: International Conference on Marine Hydrodynamics 5-7January 2006, Visakhapatnam, India CFD PREDICTION OF THE WAVE RESISTANCE OF A CATAMARAN WITH STAGGERED DEMIHULLS Prasanta K. Sahoo Senior

More information

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and NAVWEPS -81-8 and high power, the dynamic pressure in the shaded area can be much greater than the free stream and this causes considerably greater lift than at zero thrust. At high power conditions the

More information

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS The sources of a graphical material used in this lecture are: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013.

More information

Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind

Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind Taizhong Xie

More information

A HYDRODYNAMIC METHODOLOGY AND CFD ANALYSIS FOR PERFORMANCE PREDICTION OF STEPPED PLANING HULLS

A HYDRODYNAMIC METHODOLOGY AND CFD ANALYSIS FOR PERFORMANCE PREDICTION OF STEPPED PLANING HULLS POLISH MARITIME RESEARCH 2(86) 2015 Vol. 22; pp. 23-31 10.1515/pomr-2015-0014 A HYDRODYNAMIC METHODOLOGY AND CFD ANALYSIS FOR PERFORMANCE PREDICTION OF STEPPED PLANING HULLS Hassan Ghassemi, Assoc. Prof.

More information

Finding the hull form for given seakeeping characteristics

Finding the hull form for given seakeeping characteristics Finding the hull form for given seakeeping characteristics G.K. Kapsenberg MARIN, Wageningen, the Netherlands ABSTRACT: This paper presents a method to find a hull form that satisfies as good as possible

More information

Developments in the IMS VPP Formulations

Developments in the IMS VPP Formulations Developments in the IMS VPP Formulations Andrew Claughton, Wolfson Unit MTIA, University of Southampton, UK ABSTRACT The paper describes the improvements made to the aerodynamic and hydrodynamic force

More information

This lesson will be confined to the special case of ships at rest in still water. Questions of motions resulting from waves are not considered at

This lesson will be confined to the special case of ships at rest in still water. Questions of motions resulting from waves are not considered at STATIC STABILITY When we say a boat is stable we mean it will (a) float upright when at rest in still water and (b) return to its initial upright position if given a slight, temporary deflection to either

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 7 Table of Contents 2 1. PURPOSE... 2 2. PARAMETERS... 2 2.2. General Considerations... 2 2.3. Special Requirements for Ro-Ro Ferries... 3 3.3. Instrumentation... 4 3.4. Preparation... 5 3.5.

More information

A Study in Slender. Text by Albert Abma, Graphics courtesy Vripack

A Study in Slender. Text by Albert Abma, Graphics courtesy Vripack Design Brief A Study in Slender The Dutch design firm Vripack applies the theory of low displacement/length (LDL) powerboat hullforms to create the seakindly, fuel-efficient (21.5m). Text by Albert Abma,

More information

Predictive Analysis of Bare-Hull Resistance of a 25,000 Dwt Tanker Vessel

Predictive Analysis of Bare-Hull Resistance of a 25,000 Dwt Tanker Vessel International Journal of Engineering and Technology Volume 5 No. 4,April, 2015 Predictive Analysis of Bare-Hull Resistance of a 25,000 Dwt Tanker Vessel Nitonye Samson and Sidum Adumene Department of Marine

More information

Lab test 4 Seakeeping test with a model of an oil tanker

Lab test 4 Seakeeping test with a model of an oil tanker Lab test 4 Seakeeping test with a model of an oil tanker The response amplitude operators (RAO) in head seas of a 1:100 scale model of a 257 m long oil tanker shall be determined by model testing in the

More information

THE PREDICTION OF WAKE WASH IN THE TOWING TANK

THE PREDICTION OF WAKE WASH IN THE TOWING TANK Jurnal Mekanikal December 2008, No. 26, 129-140 THE PREDICTION OF WAKE WASH IN THE TOWING TANK Mohamad Pauzi Abdul Ghani 1*, M.N. Abdul Rahim 2 1 Faculty of Mechanical Engineering, Universiti Teknologi

More information

EN400 LAB #2 PRELAB. ARCHIMEDES & CENTER of FLOTATION

EN400 LAB #2 PRELAB. ARCHIMEDES & CENTER of FLOTATION EN400 LAB #2 PRELAB ARCHIMEDES & CENTER of FLOTATION Instructions: 1. The prelab covers theories that will be examined experimentally in this lab. 2. The prelab is to be completed and handed in to your

More information

Interceptors in theory and practice

Interceptors in theory and practice Interceptors in theory and practice An interceptor is a small vertical plate, usually located at the trailing edge on the pressure side of a foil. The effect is a completely different pressure distribution

More information

RESCUE BOAT DESIGN UTILIZING REUSED PLASTIC BOTTLES FOR ACCIDENT PREVENTATION

RESCUE BOAT DESIGN UTILIZING REUSED PLASTIC BOTTLES FOR ACCIDENT PREVENTATION RESCUE BOAT DESIGN UTILIZING REUSED PLASTIC BOTTLES FOR ACCIDENT PREVENTATION Abstract- Fiberglass layer of rescue boat has tendency to crack when hit by a heavy wave or involves in accident. As an alternative

More information

Maneuverability characteristics of ships with a single-cpp and their control

Maneuverability characteristics of ships with a single-cpp and their control Maneuverability characteristics of ships with a single-cpp and their control during in-harbor ship-handlinghandling Hideo YABUKI Professor, Ph.D., Master Mariner Tokyo University of Marine Science and

More information

Scale effect on form drag of small waterplane area ships,withoval shape of gondola

Scale effect on form drag of small waterplane area ships,withoval shape of gondola The 14 th Marine Industries Conference (MIC2012) 26 & 27 December 2012 Tehran Scale effect on form drag of small waterplane area ships,withoval shape of gondola Mohammad rezaarabyar mohamadi 1,pouya molana

More information

WOODFIBRE LNG VESSEL WAKE ASSESSMENT

WOODFIBRE LNG VESSEL WAKE ASSESSMENT Woodfibre LNG Limited WOODFIBRE LNG VESSEL WAKE ASSESSMENT Introduction Woodfibre LNG Limited (WLNG) intends to build a new LNG export terminal at Woodfibre, Howe Sound, British Columbia. WLNG has engaged

More information

OFFSHORE RACING CONGRESS

OFFSHORE RACING CONGRESS World Leader in Rating Technology OFFSHORE RACING CONGRESS ORC Speed Guide Explanation 1. INTRODUCTION The ORC Speed Guide is a custom-calculated manual for improving performance for an individual boat.

More information

EFFECT OF STERN WEDGES AND ADVANCED SPRAY RAIL SYSTEM ON CALM WATER RESISTANCE OF HIGH-SPEED DISPLACEMENT HULL FORMS

EFFECT OF STERN WEDGES AND ADVANCED SPRAY RAIL SYSTEM ON CALM WATER RESISTANCE OF HIGH-SPEED DISPLACEMENT HULL FORMS EFFECT OF STERN WEDGES AND ADVANCED SPRAY RAIL SYSTEM ON CALM WATER RESISTANCE OF HIGHSPEED DISPLACEMENT HULL FORMS Predrag Bojovic' ABS Americas 16885 Northchase Drive Houston TX 77060, USA Pbojovicea1e.org

More information

TS 4001: Lecture Summary 4. Resistance

TS 4001: Lecture Summary 4. Resistance TS 4001: Lecture Summary 4 Resistance Ship Resistance Very complex problem: Viscous effects. Free surface effects. Can only be solved by a combination of: Theoretical methods. Phenomenological methods.

More information

U.S.N.A. --- Trident Scholar project report; no. 315 (2003)

U.S.N.A. --- Trident Scholar project report; no. 315 (2003) U.S.N.A. --- Trident Scholar project report; no. 315 (2003) Performance Prediction of the Mk II Navy 44 Sail Training Craft with respect to Tank Testing, Velocity Prediction Programs, and Computational

More information

HULL VANE VERSUS LENGTHENING A comparison between four alternatives for a 61m OPV

HULL VANE VERSUS LENGTHENING A comparison between four alternatives for a 61m OPV HULL VANE VERSUS LENGTHENING A comparison between four alternatives for a 61m OPV N. Hagemeister (van Oossanen Fluid Dynamics), n.hagemeister@oossanen.nl K. Uithof (Hull Vane B.V.), k.uithof@hullvane.com

More information

Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe

Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe Includes Basic ship Terminologies and Investigation Check list Index 1. Ship Terminology 03 2. Motions of a Floating Body...09 3. Ship Stability.10 4. Free

More information

A Scale Model Test on Hydraulic Resistance of Tunnel Elements during Floating Transportation

A Scale Model Test on Hydraulic Resistance of Tunnel Elements during Floating Transportation Advanced Materials Research Online: 2014-04-17 ISSN: 1662-8985, Vols. 919-921, pp 841-845 doi:10.4028/www.scientific.net/amr.919-921.841 2014 Trans Tech Publications, Switzerland A Scale Model Test on

More information

Journal of Naval Architecture and Marine Engineering December,

Journal of Naval Architecture and Marine Engineering December, Journal of Naval Architecture and Marine Engineering December, 5 http://dx.doi.org http://dx.doi.org/.339/jname.vi.35 http://www.banglajol.info INTRODUCING A PARTICULAR MATHEMATICALMODEL FOR PREDICTING

More information