Exploration Series. AIRPLANE Interactive Physics Simulation Page 01

Size: px
Start display at page:

Download "Exploration Series. AIRPLANE Interactive Physics Simulation Page 01"

Transcription

1 AIRPLANE Interactive Physics Simulation Page 01

2 What makes an airplane "stall"? An airplane changes its state of motion thanks to an imbalance in the four main forces acting on it: lift, thrust, drag, and weight (the force of gravity). When one of these forces exceeds its opposite, the plane accelerates in that direction as predicted by Newton's 2nd Law.But how is the lift force generated? How does a plane fly? Can a plane climb at any angle? Is a plane always pointed in the direction it is moving? Under what conditions will a plane feel the strongest lift forces? The strongest drag forces? Why does a plane deploy slats and flaps before landing? Let's understand the science behind this. When a wing cuts through the air, we describe the angle the airfoil makes with the direction of motion as the angle of attack.in order to climb, a plane increases its angle of attack. This allows a lift force to be generated that exceeds the weight of the plane, and the plane accelerates upward. The magnitude of the lift force depends on many things: the density of the surrounding air, the speed of the plane, the area of the wing, and the angle of attack. The coefficient of lift describes how much influence the angle of attack has on the lift force. In general, the higher the angle of attack, the more lift. However, if the angle of attack gets too high, the lines of flow above the wing break, and the airplane stalls and loses lift. This is very dangerous.let's explore these ideas in the simulation. To access this physics simulation visit: Page 02

3 Wing Profile - This slider adjusts the physical shape of the wing. When a plane is moving at low speed, such as during takeoff and landing, it needs to generate enough lift to support flight. The addition of flaps and slats allows the wing to generate a lot of lift at low speed. The trade-off is that a lot of drag is created, so the plane also needs to generate a lot of thrust to overcome the drag. Thrust - This slider adjusts the amount of thrust generated by the jet engine. The thrust force acts in the direction the plane is pointed, not in the direction it is moving (unless these directions are the same). Total Mass - This slider adjusts the total mass of the plane, which includes not just the plane body itself but also the fuel and the passengers (and their luggage!). The greater the mass, the greater the weight, and also the greater the inertia, which means the plane will adjust more slowly to changes in motion. To access this physics simulation visit: Page 03

4 Angle Of Attack - This slider adjusts the angle between the direction of motion of plane and the direction the plane itself is pointed. This might seem counter-intuitive - often we think that the plane is always moving in the direction it is pointed. But a wing actually generates greater lift if the air impacts it at some angle. Wing Size - This slider adjusts the size of the wings (and therefore the size of the plane overall). The lift force is proportional to the area of the wings, so a larger wing can generate more lift. The drag force is proportional to the frontal area of the wing, so larger wings also generate more drag. To access this physics simulation visit: Page 04

5 Coefficients of Lift and Drag vs Angle of Attack - This is a plot of the coefficients of lift and drag for the airfoil as a function of angle-of-attack. The lift force acting on an airfoil can be approximated by multiplying one-half by the density of air by the square of the air speed, then multiplying by the flat area of the wing, then multiplying by this coefficient. Higher coefficients mean more lift. As you can see, the lift falls off steeply after its maximum value - this is dangerous for a pilot, as the plane is said to stall and the pilot will need to recover. The drag force is calculated in a similar way, although just the area of the leading edge of the wing is used to calculate the force. For a properly designed airfoil, drag forces are much less than lift forces, which allows for powered flight. To access this physics simulation visit: Page 05

6 Question 1.(upcoming) Question 2.(upcoming) Question 3.(upcoming) To access this physics simulation visit: Page 06

7 Challenge ME! Under what conditions will an aircraft stall? Why does a plane need to be going so fast at takeoff? Why does a plane deploy flaps and slats just before landing? Need Help? Check out the Airplane Walkthrough video at: << Link >> To access this physics simulation visit: Page 07

8 How are the lift and drag coefficients of different airfoils measured? It is too impractical to build a new airplane anytime you want to try out a different wing shape. Instead, aeronautical engineers can make use of a wind tunnel. These wind tunnels are much smaller than the airplanes we are eventually attempting to build - you might think, at first, that this would present a problem: sure it works for a small wing, but how do you know it will work for a large wing? Scientists have figured out how to "touch" the physics, making use of a quantity known as the Reynold's Number to describe the type of airflow, so that the predictions make sense. How is thrust generated? There are lots of different ways to generate the thrust force required by an airplane to maintain airspeed. Early airplanes relied on propellers, which basically acted as large fans. Then the jet engine was developed, which also uses fan-type devices to thrust air from the intake end to the output end. How does a helicopter fly? Each of the blades on the helicopter generates lift as it passes through the air. The only problem is that, thanks to conservation of angular momentum, the body of the helicopter should begin rotating in the opposite direction! A second blade set up perpendicular to the first generates a torque that prevents the helicopter from spinning. Why does a plane need to accelerate along the runway to takeoff? The lift force depends on the square of the relative speed of the air as measured by the wing. That is, the air has to appear to be moving (as seen by the wing) to generate lift. Because an airplane needs a lot of lift to take off, and because it is hard to get it going full speed along the ground, typically a plane takes off with its flaps and slats deployed to get as much lift at low speed as it can. To access this physics simulation visit: Page 08

9 Physics Concepts Click on the link below to learn more. Newton's Second Law - Types of Forces - To access this physics simulation visit: Page 09

Detailed study 3.4 Topic Test Investigations: Flight

Detailed study 3.4 Topic Test Investigations: Flight Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure

More information

What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening?

What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening? What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening? The water (or air) speeds up. Since the same amount of water/air has to travel through a

More information

The Academy of Model Aeronautics ALPHA: Potential Energy Background Information for the Teacher

The Academy of Model Aeronautics ALPHA: Potential Energy Background Information for the Teacher The Academy of Model Aeronautics ALPHA: Potential Energy Background Information for the Teacher When the rubber motor of a model plane is wound it becomes a form of stored potential energy. As the rubber

More information

The Fly Higher Tutorial IV

The Fly Higher Tutorial IV The Fly Higher Tutorial IV THE SCIENCE OF FLIGHT In order for an aircraft to fly we must have two things: 1) Thrust 2) Lift Aerodynamics The Basics Representation of the balance of forces These act against

More information

Homework Exercise to prepare for Class #2.

Homework Exercise to prepare for Class #2. Homework Exercise to prepare for Class #2. Answer these on notebook paper then correct or improve your answers (using another color) by referring to the answer sheet. 1. Identify the major components depicted

More information

Aerodynamics Principles

Aerodynamics Principles Aerodynamics Principles Stage 1 Ground Lesson 3 Chapter 3 / Pages 2-18 3:00 Hrs Harold E. Calderon AGI, CFI, CFII, and MEI Lesson Objectives Become familiar with the four forces of flight, aerodynamic

More information

First Flight Glossary

First Flight Glossary First Flight Glossary (for secondary grades) aeronautics The study of flight and the science of building and operating an aircraft. aircraft A machine used for flying. Airplanes, helicopters, blimps and

More information

Exploration Series. MODEL ROCKET Interactive Physics Simulation Page 01

Exploration Series.   MODEL ROCKET Interactive Physics Simulation Page 01 MODEL ROCKET ------- Interactive Physics Simulation ------- Page 01 How high will your model rocket fly? At liftoff, the rocket engine is ignited and a thrust force is generated. The rocket accelerates

More information

Activity Parts of an Aircraft

Activity Parts of an Aircraft Activity 4.2.7 Parts of an Aircraft Introduction The science of aeronautics really began to evolve in the late 18th and early 19th centuries. Philosophers and early scientists began to look closely at

More information

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber. Chapters 2 and 3 of the Pilot s Handbook of Aeronautical Knowledge (FAA-H-8083-25) apply to powered parachutes and are a prerequisite to reading this book. This chapter will focus on the aerodynamic fundamentals

More information

CASE STUDY FOR USE WITH SECTION B

CASE STUDY FOR USE WITH SECTION B GCE A level 135/01-B PHYSICS ASSESSMENT UNIT PH5 A.M. THURSDAY, 0 June 013 CASE STUDY FOR USE WITH SECTION B Examination copy To be given out at the start of the examination. The pre-release copy must

More information

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT CHAPTER 3 PRINCIPLES OF FLIGHT INTRODUCTION Man has always wanted to fly. Legends from the very earliest times bear witness to this wish. Perhaps the most famous of these legends is the Greek myth about

More information

DEFINITIONS. Aerofoil

DEFINITIONS. Aerofoil Aerofoil DEFINITIONS An aerofoil is a device designed to produce more lift (or thrust) than drag when air flows over it. Angle of Attack This is the angle between the chord line of the aerofoil and the

More information

V mca (and the conditions that affect it)

V mca (and the conditions that affect it) V mca (and the conditions that affect it) V mca, the minimum airspeed at which an airborne multiengine airplane is controllable with an inoperative engine under a standard set of conditions, is arguably

More information

Stability and Flight Controls

Stability and Flight Controls Stability and Flight Controls Three Axes of Flight Longitudinal (green) Nose to tail Lateral (blue) Wing tip to Wing tip Vertical (red) Top to bottom Arm Moment Force Controls The Flight Controls Pitch

More information

THE AIRCRAFT IN FLIGHT Issue /07/12

THE AIRCRAFT IN FLIGHT Issue /07/12 1 INTRODUCTION This series of tutorials for the CIX VFR Club are based on real world training. Each document focuses on a small part only of the necessary skills required to fly a light aircraft, and by

More information

XI.B. Power-On Stalls

XI.B. Power-On Stalls XI.B. Power-On Stalls References: AC 61-67; FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge

More information

POWERED FLIGHT HOVERING FLIGHT

POWERED FLIGHT HOVERING FLIGHT Once a helicopter leaves the ground, it is acted upon by the four aerodynamic forces. In this chapter, we will examine these forces as they relate to flight maneuvers. POWERED FLIGHT In powered flight

More information

Aero Club. Introduction to Flight

Aero Club. Introduction to Flight Aero Club Presents Introduction to RC Modeling Module 1 Introduction to Flight Centre For Innovation IIT Madras Page2 Table of Contents Introduction:... 3 How planes fly How is lift generated?... 3 Forces

More information

XI.C. Power-Off Stalls

XI.C. Power-Off Stalls References: FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of stalls regarding aerodynamics,

More information

Four forces on an airplane

Four forces on an airplane Four forces on an airplane By NASA.gov on 10.12.16 Word Count 824 Level MAX TOP: An airplane pictured on June 30, 2016. Courtesy of Pexels. BOTTOM: Four forces on an airplane. Courtesy of NASA. A force

More information

Uncontrolled copy not subject to amendment. Principles of Flight

Uncontrolled copy not subject to amendment. Principles of Flight Uncontrolled copy not subject to amendment Principles of Flight Principles of Flight Learning Outcome 1: Know the principles of lift, weight, thrust and drag and how a balance of forces affects an aeroplane

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

Winnipeg Headingley Aero Modellers. Things About Airplanes.

Winnipeg Headingley Aero Modellers. Things About Airplanes. Winnipeg Headingley Aero Modellers Things About Airplanes. Table of Contents Introduction...2 The Airplane...2 How the Airplane is Controlled...3 How the Airplane Flies...6 Lift...6 Weight...8 Thrust...9

More information

Related Careers: Aircraft Instrument Repairer Aircraft Designer Aircraft Engineer Aircraft Electronics Specialist Aircraft Mechanic Pilot US Military

Related Careers: Aircraft Instrument Repairer Aircraft Designer Aircraft Engineer Aircraft Electronics Specialist Aircraft Mechanic Pilot US Military Airplane Design and Flight Fascination with Flight Objective: 1. You will be able to define the basic terms related to airplane flight. 2. You will test fly your airplane and make adjustments to improve

More information

Pressure and Density Altitude

Pressure and Density Altitude Pressure and Density Altitude Reference Sources Pilot s Handbook of Aeronautical Knowledge o Pages 9-1 to 9-4, Aircraft Performance o Pages 9-20 to 9-21, Density Altitude Charts Study Questions 1. Where

More information

This IS A DRAG IS IT A LIFT!!!!! Aerodynamics

This IS A DRAG IS IT A LIFT!!!!! Aerodynamics Problems in Technology This IS A DRAG OR IS IT A LIFT!!!!! Aerodynamics Our mission is to better understand the science and study of aerodynamics. Well, simply put aerodynamics is the way air moves around

More information

LESSONS 1, 2, and 3 PRACTICE EXERCISES

LESSONS 1, 2, and 3 PRACTICE EXERCISES LESSONS 1, 2, and 3 PRACTICE EXERCISES The following items will test your grasp of the material covered in these lessons. There is only one correct answer for each item. When you complete the exercise,

More information

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 2. A car is travelling at a constant speed of 26.0 m/s down a slope which is 12.0 to the horizontal. What

More information

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. Flight Corridor The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. The subsonic Boeing 747 and supersonic Concorde have flight corridors

More information

A103 AERODYNAMIC PRINCIPLES

A103 AERODYNAMIC PRINCIPLES A103 AERODYNAMIC PRINCIPLES References: FAA-H-8083-25A, Pilot s Handbook of Aeronautical Knowledge, Chapter 3 (pgs 4-10) and Chapter 4 (pgs 1-39) OBJECTIVE: Students will understand the fundamental aerodynamic

More information

No Description Direction Source 1. Thrust

No Description Direction Source 1. Thrust AERODYNAMICS FORCES 1. WORKING TOGETHER Actually Lift Force is not the only force working on the aircraft, during aircraft moving through the air. There are several aerodynamics forces working together

More information

LAPL(A)/PPL(A) question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

LAPL(A)/PPL(A) question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080 PRINCIPLES OF FLIGHT 080 1 Density: Is unaffected by temperature change. Increases with altitude increase. Reduces with temperature reduction. Reduces with altitude increase. 2 The air pressure that acts

More information

LAPL/PPL question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

LAPL/PPL question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080 LAPL/PPL question bank FCL.215, FCL.120 Rev. 1.7 11.10.2018 PRINCIPLES OF FLIGHT 080 1 Density: Reduces with temperature reduction. Increases with altitude increase. Reduces with altitude increase. Is

More information

8d. Aquatic & Aerial Locomotion. Zoology 430: Animal Physiology

8d. Aquatic & Aerial Locomotion. Zoology 430: Animal Physiology 8d. Aquatic & Aerial Locomotion 1 Newton s Laws of Motion First Law of Motion The law of inertia: a body retains its state of rest or motion unless acted on by an external force. Second Law of Motion F

More information

Chapter 3: Aircraft Construction

Chapter 3: Aircraft Construction Chapter 3: Aircraft Construction p. 1-3 1. Aircraft Design, Certification, and Airworthiness 1.1. Replace the letters A, B, C, and D by the appropriate name of aircraft component A: B: C: D: E: A = Empennage,

More information

PRE-TEST Module 2 The Principles of Flight Units /60 points

PRE-TEST Module 2 The Principles of Flight Units /60 points PRE-TEST Module 2 The Principles of Flight Units 1-2-3.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four

More information

Lesson: Airspeed Control

Lesson: Airspeed Control 11/20/2018 Airspeed Control Page 1 Lesson: Airspeed Control Objectives: o Knowledge o An understanding of the aerodynamics related to airspeed control o Skill o The ability to establish and maintain a

More information

Aerodynamics Technology 10 Hour - Part 1 Student Workbook Issue: US180/10/2a-IQ-0201a. Lesson Module: 71.18/3 Written by: LJ Technical Dept

Aerodynamics Technology 10 Hour - Part 1 Student Workbook Issue: US180/10/2a-IQ-0201a. Lesson Module: 71.18/3 Written by: LJ Technical Dept Aerodynamics Technology 1 Hour - Part 1 Issue: US18/1/2a-IQ-21a Copyright 24,. No part of this Publication may be adapted or reproduced in any material form, without the prior written permission of. Lesson

More information

Post-Show FLIGHT. After the Show. Traveling Science Shows

Post-Show FLIGHT. After the Show. Traveling Science Shows Traveling Science Shows Post-Show FLIGHT After the Show We recently presented a flight show at your school, and thought you and your students might like to continue investigating this topic. The following

More information

NORMAL TAKEOFF AND CLIMB

NORMAL TAKEOFF AND CLIMB NORMAL TAKEOFF AND CLIMB CROSSWIND TAKEOFF AND CLIMB The normal takeoff is one in which the airplane is headed directly into the wind or the wind is very light, and the takeoff surface is firm with no

More information

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings The C-130 experiences a marked reduction of directional stability at low dynamic pressures, high power settings,

More information

Exploration Series. HOT AIR BALLOON Interactive Physics Simulation Page 01

Exploration Series.   HOT AIR BALLOON Interactive Physics Simulation Page 01 HOT AIR BALLOON ------- Interactive Physics Simulation ------- Page 01 How do you control a hot air balloon? A hot air balloon floats because atmospheric pressure is greatest closer to the ground. The

More information

Beechcraft Duchess 76 Maneuver Notes

Beechcraft Duchess 76 Maneuver Notes Beechcraft Duchess 76 Maneuver Notes I. Maneuver notes for Performance (AOA V), Slow Flight and Stalls (AOA VIII), Emergency Operations (AOA X), and Multiengine Operations (AOA XI) a. Maneuvers addressed:

More information

Forces in Flight. to the drag force. Direction of Forces in Straight and Level Flight. Weight

Forces in Flight. to the drag force. Direction of Forces in Straight and Level Flight. Weight Forces in Flight The flight of an airplane, a bird, or any other object involves four forces that may be measured and compared: lift, drag, thrust, and weight. As can be seen in the figure below for straight

More information

Aircraft Performance Calculations: Descent Analysis. Dr. Antonio A. Trani Professor

Aircraft Performance Calculations: Descent Analysis. Dr. Antonio A. Trani Professor Aircraft Performance Calculations: Descent Analysis CEE 5614 Analysis of Air Transportation Systems Dr. Antonio A. Trani Professor Aircraft Descent Performance The top of descent point typically starts

More information

BUILD AND TEST A WIND TUNNEL

BUILD AND TEST A WIND TUNNEL LAUNCHING INTO AVIATION 9 2018 Aircraft Owners and Pilots Association. All Rights Reserved. UNIT 2 SECTION D LESSON 2 PRESENTATION BUILD AND TEST A WIND TUNNEL LEARNING OBJECTIVES By the end of this lesson,

More information

Learn About. Quick Write

Learn About. Quick Write LESSON 2 The Physics of Flight Y Quick Write Octave Chanute s expertise in designing bridges gave him the know-how to tackle some big questions in aviation, such as the structure of biplane wings. What

More information

Principles of Flight. Chapter 4. From the Library at Introduction. Structure of the Atmosphere

Principles of Flight. Chapter 4. From the Library at  Introduction. Structure of the Atmosphere From the Library at www.uavgroundschool.com Chapter 4 Principles of Flight Introduction This chapter examines the fundamental physical laws governing the forces acting on an aircraft in flight, and what

More information

To learn how to recognize and recover from a loss of directional control caused by an asymmetrical thrust condition at low airspeed.

To learn how to recognize and recover from a loss of directional control caused by an asymmetrical thrust condition at low airspeed. V MC Demonstration Area XIV, Task E Revised 2015-08-13 Objective To learn how to recognize and recover from a loss of directional control caused by an asymmetrical thrust condition at low airspeed. Elements

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS CHAPTER 18 How do heavy things fly? Contents Flight the beginning Forces acting on an aircraft Moving through fluids The Equation of Continuity Fluid speed and pressure Aerofoil characteristics Newton

More information

Ottawa Remote Control Club Wings Program

Ottawa Remote Control Club Wings Program + Ottawa Remote Control Club Wings Program Guide line By Shahram Ghorashi Chief Flying Instructor Table of Contents Rule and regulation Quiz 3 Purpose of the program 4 Theory of flight Thrust 4 Drag 4

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

Climbs, descents, turns, and stalls These are some of the maneuvers you'll practice, and practice, and practice By David Montoya

Climbs, descents, turns, and stalls These are some of the maneuvers you'll practice, and practice, and practice By David Montoya Climbs, descents, turns, and stalls These are some of the maneuvers you'll practice, and practice, and practice By David Montoya Air work stalls, steep turns, climbs, descents, slow flight is the one element

More information

Aerodynamics. A study guide on aerodynamics for the Piper Archer

Aerodynamics. A study guide on aerodynamics for the Piper Archer Aerodynamics A study guide on aerodynamics for the Piper Archer Aerodynamics The purpose of this pilot briefing is to discuss the simple and complex aerodynamics of the Piper Archer. Please use the following

More information

Transcript for the BLOSSMS Lesson. An Introduction to the Physics of Sailing

Transcript for the BLOSSMS Lesson. An Introduction to the Physics of Sailing [MUSIC PLAYING] Transcript for the BLOSSMS Lesson An Introduction to the Physics of Sailing Do you ever wonder how people manage to sail all the way around the world without a motor? How did they get where

More information

A Different Approach to Teaching Engine-Out Glides

A Different Approach to Teaching Engine-Out Glides A ifferent Approach to Teaching Engine-Out Glides es Glatt, Ph., ATP/CFI-AI, AGI/IGI When student pilots begin to learn about emergency procedures, the concept of the engine-out glide is introduced. The

More information

The Physics of Flying! Lecture 27.

The Physics of Flying! Lecture 27. The Physics of Flying! Lecture 27. Views of New York State from 9000. Course Information Optional homework set # 11 is due at noon totday. The results of Exam # 3 were distributed via email on Monday.

More information

CHAPTER 1 - PRINCIPLES OF FLIGHT

CHAPTER 1 - PRINCIPLES OF FLIGHT CHAPTER 1 - PRINCIPLES OF FLIGHT Reilly Burke 2005 INTRODUCTION There are certain laws of nature or physics that apply to any object that is lifted from the Earth and moved through the air. To analyze

More information

CHAPTER 1 PRINCIPLES OF HELICOPTER FLIGHT FM 1-514

CHAPTER 1 PRINCIPLES OF HELICOPTER FLIGHT FM 1-514 CHAPTER 1 PRINCIPLES OF HELICOPTER FLIGHT Basic flight theory and aerodynamics are considered in full detail when an aircraft is designed. The rotor repairer must understand these principles in order to

More information

WATER ROCK. Lawndart The rocket goes straight up and comes down nose first at high speed. Disadvantages

WATER ROCK. Lawndart The rocket goes straight up and comes down nose first at high speed. Disadvantages Water Rocket Recovery Index What is a recovery system? A recovery system is a feature of a rocket that allows it to come back to Earth with minimal damage. Introduction This guide is intended to serve

More information

Flying High. HHJS Science Week Background Information. Forces and Flight

Flying High. HHJS Science Week Background Information. Forces and Flight Flying High HHJS Science Week 2013 Background Information Forces and Flight Flight Background Information Flying is defined as controlled movement through the air. Many things can become airborne but this

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) Unit D-1: Aerodynamics of 3-D Wings Page 1 of 5 AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics of 3-D Wings D-: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics

More information

NASA Engineering Design Challenge The Great Boomerang Challenge Teacher Guide Overview your students excited about this lesson

NASA Engineering Design Challenge The Great Boomerang Challenge Teacher Guide Overview your students excited about this lesson NASA Engineering Design Challenge The Great Boomerang Challenge Teacher Guide Overview Students think and act like engineers and scientists as they follow the eight steps of the engineering design process

More information

XI.D. Crossed-Control Stalls

XI.D. Crossed-Control Stalls References: FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should understand the dynamics of a crossed-control stall

More information

In parallel with steady gains in battery energy and power density, the coming generation of uninhabited aerial vehicles (UAVs) will enjoy increased

In parallel with steady gains in battery energy and power density, the coming generation of uninhabited aerial vehicles (UAVs) will enjoy increased In parallel with steady gains in battery energy and power density, the coming generation of uninhabited aerial vehicles (UAVs) will enjoy increased range, endurance, and operational capability by exploiting

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

Aviation Merit Badge Knowledge Check

Aviation Merit Badge Knowledge Check Aviation Merit Badge Knowledge Check Name: Troop: Location: Test Score: Total: Each question is worth 2.5 points. 70% is passing Dan Beard Council Aviation Knowledge Check 1 Question 1: The upward acting

More information

Created by Glenn Gibson Air and Aerodynamics Flight Note Pack

Created by Glenn Gibson Air and Aerodynamics Flight Note Pack Air and Aerodynamics Flight Note Pack Essential Questions of Aerodynamics The students should be able to answer the following questions: 1. Why does air exert pressure on objects in our atmosphere? 2.

More information

Aerodynamics: The Wing Is the Thing

Aerodynamics: The Wing Is the Thing Page B1 Chapter Two Chapter Two Aerodynamics: The Wing Is the Thing The Wing Is the Thing May the Four Forces Be With You 1. [B1/3/2] The four forces acting on an airplane in flight are A. lift, weight,

More information

Table of Contents. Career Overview... 4

Table of Contents. Career Overview... 4 Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Hot-Air Balloons Activity 1 Your First Hot-Air Balloon.... 5 Activity 2 Surface Area and Volume...

More information

Flow Over Bodies: Drag and Lift

Flow Over Bodies: Drag and Lift Fluid Mechanics (0905241) Flow Over Bodies: Drag and Lift Dr.-Eng. Zayed dal-hamamre 1 Content Overview Drag and Lift Flow Past Objects Boundary Layers Laminar Boundary Layers Transitional and Turbulent

More information

Flight Control Systems Introduction

Flight Control Systems Introduction Flight Control Systems Introduction Dr Slide 1 Flight Control System A Flight Control System (FCS) consists of the flight control surfaces, the respective cockpit controls, connecting linkage, and necessary

More information

Understanding Flight: Newton Reigns in Aerodynamics! General Aviation. Scott Eberhardt March 26, What you will learn today. Descriptions of Lift

Understanding Flight: Newton Reigns in Aerodynamics! General Aviation. Scott Eberhardt March 26, What you will learn today. Descriptions of Lift Understanding Flight: Newton Reigns in Aerodynamics! General Aviation Scott Eberhardt March 26, 2007 Military Aviation Commercial Aviation What you will learn today Some of the things you learned might

More information

Engineering Design: Forces and Motion -- The Great Boomerang Challenge

Engineering Design: Forces and Motion -- The Great Boomerang Challenge LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Engineering Design: Forces and Motion -- The Great Boomerang Challenge Presented by: Rudo Kashiri October 11, 2012 6:30 p.m. 8:00 p.m. Eastern time Introducing

More information

INTRODUCTION TO FLIGHT (REVIEW, AEROSPACE DIMENSIONS, MODULE 1)

INTRODUCTION TO FLIGHT (REVIEW, AEROSPACE DIMENSIONS, MODULE 1) INTRODUCTION TO FLIGHT (REVIEW, AEROSPACE DIMENSIONS, MODULE 1) CAPTAIN. JERRY PAINTER AEROSPACE EDUCATION OFFICER COMPOSITE SQUADRON 316, (CIVIL AIR PATROL) CASA GRANDE, ARIZONA IMPORTANT TERMS-THE LANGUAGE

More information

LEVEL FOUR AVIATION EVALUATION PRACTICE TEST

LEVEL FOUR AVIATION EVALUATION PRACTICE TEST Below you will find a practice test for the Level 4 Aviation Evaluation that covers PO431, PO432, PO436, and PO437. It is recommended that you focus on the material covered in the practice test as you

More information

The canard. Why such a configuration? Credit : Jean-François Edange

The canard. Why such a configuration? Credit : Jean-François Edange The canard Why such a configuration? Credit : Jean-François Edange N obody doubtless knows that a great majority of light or heavy planes share a common design. Schematically, we find a fuselage, wings

More information

Compiled by Matt Zagoren

Compiled by Matt Zagoren The information provided in this document is to be used during simulated flight only and is not intended to be used in real life. Attention VA's - you may post this file on your site for download. Please

More information

Welcome to Aerospace Engineering

Welcome to Aerospace Engineering Welcome to Aerospace Engineering DESIGN-CENTERED INTRODUCTION TO AEROSPACE ENGINEERING Notes 4 Topics 1. Course Organization 2. Today's Dreams in Various Speed Ranges 3. Designing a Flight Vehicle: Route

More information

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

More information

Figure 1. Curtis 1911 model D type IV pusher

Figure 1. Curtis 1911 model D type IV pusher This material can be found in more detail in Understanding Flight 1 st and 2 nd editions by David Anderson and Scott Eberhardt, McGraw-Hill, 2001, and 2009 A Physical Description of Flight; Revisited David

More information

Commercial Maneuvers for PA28RT-201

Commercial Maneuvers for PA28RT-201 Commercial Maneuvers for PA28RT-201 Cruise checklist: Power 23'', 2400 RPM (23, 24) Lean mixture Fuel Pump Off (Check positive fuel pressure) Landing light Off Pre-Maneuver Checklist in the Takeoff configuration

More information

Building Instructions ME 163 B 1a M 1:5 Turbine

Building Instructions ME 163 B 1a M 1:5 Turbine Building Instructions ME 163 B 1a M 1:5 Turbine Thank you for choosing our kit of the Me-163B. We ask you to read the instruction once in advance before building this kit in order to avoid mistakes. Make

More information

USING SIMULATION TO TEACH YOUR STEM CLASS

USING SIMULATION TO TEACH YOUR STEM CLASS KC SD AVIATION SCIENCE USING SIMULATION TO TEACH YOUR STEM CLASS DAVID PURSER, PHYSICS INSTRUCTOR, KARNES CITY HIGH SCHOOL BRUCE WEBBER, INSTRUCTOR, CFI, CFII, CFIMEI, CAPTAIN JET BLUE AIRLINES USE OF

More information

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati Lecture-17 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lift: is used to support the weight of

More information

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics Indian Journal of Science and Technology, Vol 9(45), DOI :10.17485/ijst/2016/v9i45/104585, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 CFD Study of Solid Wind Tunnel Wall Effects on

More information

WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult.

WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult. GLIDER BASICS WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult. 2 PARTS OF GLIDER A glider can be divided into three main parts: a)fuselage

More information

Student Pilot s Guide

Student Pilot s Guide Student Pilot s Guide The Cirrus SR22 is a remarkably simple, safe and easy aircraft to fly. Angelina Jolie flying her own Cirrus. Key Words 1. My Airplane or I ve got it - means to let go of all controls

More information

SUBPART C - STRUCTURE

SUBPART C - STRUCTURE SUBPART C - STRUCTURE GENERAL CS 23.301 Loads (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 7B: Forces on Submerged Bodies 7/26/2018 C7B: Forces on Submerged Bodies 1 Forces on Submerged Bodies Lift and Drag are forces exerted on an immersed body by the surrounding

More information

PILOT S HANDBOOK of Aeronautical Knowledge AC61-23C

PILOT S HANDBOOK of Aeronautical Knowledge AC61-23C PILOT S HANDBOOK of Aeronautical Knowledge AC61-23C Revised 1997 Chapter 1 Excerpt Compliments of... www.alphatrainer.com Toll Free: (877) 542-1112 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

More information

CFD ANALYSIS AND COMPARISON USING ANSYS AND STAR-CCM+ OF MODEL AEROFOIL SELIG 1223

CFD ANALYSIS AND COMPARISON USING ANSYS AND STAR-CCM+ OF MODEL AEROFOIL SELIG 1223 International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 2017, pp. 312 318, Article ID: IJMET_08_11_034 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11

More information

LEVEL 4 COMBINED AVIATION REVIEW

LEVEL 4 COMBINED AVIATION REVIEW LEVEL 4 COMBINED AVIATION REVIEW LEVEL 4 COMBINED AVIATION REVIEW PO 431 EXPLAIN PRINCIPLES OF FLIGHT M431.01 EXPLAIN FEATURES OF WING DESIGN M431.02 DESCRIBE FLIGHT INSTRUMENTS PO 432 DESCRIBE AERO ENGINE

More information

JFAT. How autogyros fly, are flown and were flown

JFAT. How autogyros fly, are flown and were flown Thomas Pinnegar (S) JFAT How autogyros fly, are flown and were flown 4764 words Autogyros were pioneered by Juan de la Cierva following the crash in 1919 of his aircraft which, after performing well in

More information

Aerodynamic Analysis of a Symmetric Aerofoil

Aerodynamic Analysis of a Symmetric Aerofoil 214 IJEDR Volume 2, Issue 4 ISSN: 2321-9939 Aerodynamic Analysis of a Symmetric Aerofoil Narayan U Rathod Department of Mechanical Engineering, BMS college of Engineering, Bangalore, India Abstract - The

More information

Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design

Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design Aircraft Geometry (highlight any significant revisions since Aerodynamics PDR #1) Airfoil section for wing, vertical and horizontal

More information

The Metric Glider. By Steven A. Bachmeyer. Aerospace Technology Education Series

The Metric Glider. By Steven A. Bachmeyer. Aerospace Technology Education Series The Metric Glider By Steven A. Bachmeyer Aerospace Technology Education Series 10002 Photographs and Illustrations The author wishes to acknowledge the following individuals and organizations for the photographs

More information

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and NAVWEPS -81-8 and high power, the dynamic pressure in the shaded area can be much greater than the free stream and this causes considerably greater lift than at zero thrust. At high power conditions the

More information

1. GENERAL AERODYNAMICS

1. GENERAL AERODYNAMICS Chapter 1. GENERAL AERODYNAMICS Unless otherwise indicated, this handbook is based on a helicopter that has the following characteristics: 1 - An unsupercharged (normally aspirated) reciprocating engine.

More information