Ocean Currents Unit (4 pts)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Ocean Currents Unit (4 pts)"

Transcription

1 Name: Section: Ocean Currents Unit (Topic 9A-1) page 1 Ocean Currents Unit (4 pts) Ocean Currents An ocean current is like a river in the ocean: water is flowing traveling from place to place. Historically, ocean currents have been very important for transportation. When crossing the ocean in a ship powered by the wind (via sails), being carried by an ocean current (or avoiding a current going the opposite direction) could save a ship more than a week of travel time. Modern ships are powerful enough to go against most ocean currents, but doing so costs time and fuel (e.g., oil = money), so knowledge of ocean currents is still very important. (About 40% of all the goods imported into the United States worth $200 billion come through the ports of Los Angeles and Long Beach. Port activity contributes $39 billion in wages and taxes to the local economy, and is related to about 800,000 local jobs.) In addition, ocean currents are studied because they carry things in the water from place to place in the ocean, like ocean pollution. Knowledge of the local ocean currents, for example, can help us determine where sewage is leaking into the ocean or predict how far away the pollution from a leaking sewage pipe will affect the shoreline. Oil companies need to study ocean currents to prepare emergency plans in case an oil spill occurs. Ocean currents also carry warm and cold water from place to place, and can have a significant impact on a region s climate (e.g., the east and west coasts of the United States are quite different) Marine biologists are interested in ocean currents for several reasons. Not only do they transport organisms particularly their larvae (babies who are plankton) from place to place, but they also can bring up nutrients from deep in the ocean, fertilizing phytoplankton (who are the foundation of the food chain). 1. What is an ocean current? 2. Why do we study ocean currents? How can knowledge of ocean currents lead to practical benefits? What causes ocean currents? Ocean currents can be created in several different ways, but most ocean currents at the surface of the ocean are created by the wind pushing the surface of the water. Waves can be an important part of this process: the wind causes waves to grow and break, causing water to surge forward and become an ocean current. Tides are an important cause of ocean currents in shallow coastal

2 Ocean Currents Unit (Topic 9A-1) page 2 waters (like estuaries). Density differences can lead to convection cells in the ocean, causing thermohaline circulation. Oddly, the major ocean currents do not go in the same direction as the wind. At first, the water does go in the same direction as the wind, but the water tends to bend off to the side owing to rotation of the Earth beneath it (i.e., the Coriolis effect). This surface water pushes the water below it, but the water below it tends to bend off to the side owing to the Coriolis effect. The subsurface water pushes the water beneath it, but the deeper water tends to bend off to the side, etc. Thus, water ends up going in different directions at different depths. Oceanographers refer to this current pattern as the Ekman Spiral, named for the oceanographer who first explained what was happening. Arctic explorers were the first to point out that ocean currents go to the side of the wind (to the right of the wind in the northern hemisphere) by observing icebergs floating in this direction. (90% of an iceberg in beneath the surface like a cube of ice floating in your drink so they are mainly pushed by the water, not the wind.) 3. What causes (pushes) most ocean currents? 4. True or false? Currents go in the same direction as the wind. Wind surface water deeper water even deeper water "Ekman Spiral" Ekman Transport (Overall Water Direction) Wind even deeper water surface water deeper water 5. Why don t currents typically go in the same direction as the wind pushing them? 6. True or false? The surface current may be going in a different direction than the current below it.

3 Ocean Currents Unit (Topic 9A-1) page 3 Ekman Transport: the overall direction water is pushed by the wind Ekman showed mathematically how most of the water flows approximately 90 o to the side of the wind owing to the Coriolis effect, so oceanographers often refer to the overall motion of the water as the Ekman transport. (70 o is probably a better real-world estimate.) even deeper water deeper water Wind surface water Ekman Transport (Overall Water Direction) The figure below shows how the water (dashed blue arrows) moves in response to various winds (solid green arrows) in both northern and southern hemispheres. Notice that winds can push water together or apart, and towards land or away from land. This will have important implications later on. 7. What is Ekman transport? 8. What is the direction of Ekman transport (the overall motion of the water) for the winds in the map below? Put an arrow in each picture, and write its direction (north, northeast, east, southeast, south, southwest, west, northwest) next to it. N Northern Hemisphere Southern Hemisphere A B C D Land

4 Ocean Currents Unit (Topic 9A-1) page 4 Overall Ocean Circulation Pattern Examine the map below showing the large-scale ocean circulation. The dominant current pattern in most oceans is a gyre. A gyre is a group of ocean currents moving in a huge, horizontal loop that goes north in some places and south in other places. The ocean has 5 subtropical gyres (red arrows by the Equator), and one subpolar gyre (blue arrows by northern Europe). The only place without a gyre is the Southern (or Antarctic) Ocean. Here, the currents go all the way around the world. The Antarctic Circumpolar Current (or West Wind Drift) goes east around the continent of Antarctica, and the East Wind Drift circles to the west closer to the coast of Antarctica. Recall that winds and currents are named for the direction that they come from, not the direction that they are going to. 60 o N Subpolar Subtropical (Clockwise) Equator Equator Subtropical (Counterclockwise) 60 o S You will need to memorize these currents. Identify the pattern by answering the questions below. 9. Does the currents between Greenland and northern Europe (the northernmost gyre) go clockwise (turn to their right) or counterclockwise (turn to their left)? 10. Do the currents just north of Equator go clockwise (turn to their right) or counterclockwise (turn to their left)? 11. Do the currents just south of Equator go clockwise (turn to their right) or counterclockwise (turn to their left)? 12. What is different about the currents between Antarctica and continents north of it?

5 Ocean Currents Unit (Topic 9A-1) page 5 What causes ocean water to move in gyres? Let s examine the Northern Pacific Ocean. The trade winds push water west, away from the coast of North America. The water travels across the Pacific Ocean until it hits Asia, so it cannot go forward. It flows north along the coast Asia; it cannot stop at the coast of the Asia, because the trade winds continue to push more water west, and this incoming water pushes the water out the way and along the coast of Asia. By the time the water flowing north reaches Japan, the winds have shifted. The westerlies push the water to the east, away from the coast of Japan and towards California. (Recall that the winds and currents are named for the direction that they come from, not the direction that they are going to, so the westerlies come from the west and go to the east.) When the water reaches California, it is forced to stop or turn by the land. The winds continue pushing more and more water towards the coast of California, and this water pushes the water already along the coast out of the way and down the coast to the south. This water begins to leave the coast near the bend in the coast of California (Point Concepcion not far from Santa Barbara), and is pushed west again, away from the coast by the trade winds. B C D A Green Arrows (Arrows with Tails) = Winds Blue Arrows (Dashed Arrows) = Direction Water is Pushed by the Wind Purple Arrows (Solid Arrows, No Tails) = Actual Motion of the Water 13. What pushes ocean current A? 14. What pushes ocean current B? 15. What pushes ocean current C? 16. What pushes ocean current D?

6 Ocean Currents Unit (Topic 9A-1) page 6 Further Comments about the Causes of Gyres Overall, the trade winds and westerlies push the ocean water together in the North Pacific (the blue, dashed Ekman transport arrows). The currents cannot go north and south into one another (they are in one another s way), but they can slide west and east, respectively, at these latitudes. There are other ways to explain why the water flows along the coasts. As more and more water is pushed into the coast by the winds, sea level rises along the coast (it really does!). As we all know, water flows downhill (pulled down by gravity). It cannot flow downhill back into the ocean, because the winds are pushing water towards the coast, so it flows downhill in the only direction it can: along the coast. Just as water piles up when winds push water into the coast, winds create a hole or gap in the surface of the ocean where they push water away from the coast. Water further up the coast will flow down the coast ( downhill ) to fill in the gap. Professional oceanographers have a more detailed and complicated understanding of the causes of the gyres. Notice that the winds try to push the water together in the center of the oceans, causing sea level to rise. Gravity pulls the water downhill, away from the center of the gyre, but the water turns to the side under the influence of the Coriolis effect and ends up going around the hill in a circle instead of away from the hill. A current is said to be in geostrophic balance when the pressure to move downhill (due to gravity) is balanced by the Coriolis effect. There is yet another way to understand the cause of the gyres involving the conservation of angular momentum or more precisely, the conservation of potential vorticity but these concepts bring us well beyond the bounds of this course. Notice that the currents of the subpolar gyre flow west and east across the northern Atlantic Ocean in the directions dictated by the winds. The land forces them to turn, creating a counterclockwise gyre. The Coriolis effect is not needed to explain the motion of the subpolar gyre, and in fact would make the gyre go in the other direction, so the Coriolis effect cannot be one of the most important factors that create gyres. (The Coriolis effect does affect the currents, but it does not create the gyres.) The key factors are (i) the directions of the winds and (ii) the presence of land in the way. Where in the world are their no large gyres? In the Southern Ocean, where there are no continents in the way to force currents to turn. 17. True or false? The direction of the gyres is determined by the Coriolis effect. In other words, in the northern hemisphere all currents in gyres turn to their right (go clockwise). 18. Why isn t there a gyre in the Southern Ocean (the ocean next to Antarctica)?

7 Ocean Currents Unit (Topic 9A-1) page 7 Boundary Currents The parts of the gyre that flow along the coasts of the continents are called boundary currents. In other words, the boundary currents flow along the edges or boundaries of the ocean. There are two kinds of boundary currents: eastern boundary currents (EBCs) and western boundary currents (WBCs). Just as the west coast is on the west side of the continent and the east coast is on the east side of the continent, western boundary currents are found on the western sides of the oceans and eastern boundary currents are found on the eastern sides of the oceans. This sounds simple enough, until you realize that this means that the east coasts have western boundary currents next to them, and west coasts have eastern boundary currents next to them! As you can imagine, this can lead to some confusion. Kuroshio East Coast In this class, I focus on the boundary currents of the subtropical gyres. Their western boundary currents are faster, narrower, deeper, and warmer than the eastern boundary currents. (Or, if you prefer, their eastern boundary currents are slower, wider, shallower, and colder than their western boundary currents.) The first major ocean current to be measured and charted was the Gulf Stream, the northward-flowing, warm current off the east coast of the United States. As we noted earlier, a current is like a river (a stream) and it comes from the Gulf of Mexico, hence the name Gulf Stream. The other two boundary currents that I want you to know the properties of are the California Current and the Kuroshio. ( What is the name of the current along the coast of California? Don t you wish that I would ask this on an exam?) The California Current is a slow, cold water current that flows south along the coast of California. The Kuroshio, like the Gulf Stream, is a fast, warm water current along the east coast of Japan. Kuroi means black in Japanese, and shio means river, so Kuroshio means Black Stream. It is called the Black Stream because warm water tends to have less life than cold water; it is the lifeless river. WBC East Coast Western Boundary Current California Current EBC West Coast Eastern Boundary Current Ocean East Coast Gulf Stream WBC West Coast

8 Ocean Currents Unit (Topic 9A-1) page What is a boundary current? 20. Are western boundary currents found next to the west coasts of continents or the east coasts of continents? 21. Which is faster, a western boundary current or an eastern boundary current? 22. Which is deeper, a western boundary current or an eastern boundary current? 23. Which is wider, a western boundary current or an eastern boundary current? 24. Which is warmer, a western boundary current or an eastern boundary current? 25. What is the name of the boundary current off the east coast of the United States? 26. What is the name of the boundary current off the east coast of Asia? 27. Is the California Current a western boundary current or an eastern boundary current?

9 Ocean Currents Unit (Topic 9A-1) page 9 Western Intensification and Sea Level We say that western boundary currents are intensified, because all of their characteristics (faster, narrower, deeper, warmer) are more extreme than those of eastern boundary currents. The easiest of these characteristics to explain is temperature (think about where the currents come from). The other characteristics have to do with the Earth s rotation (the Coriolis effect). Perhaps the easiest way to explain western intensification is to think about how the Coriolis effect alters currents as they travel from one side of the ocean to the other side of the ocean. As the eastward-flowing current in the figure below travels across the North Pacific ocean towards California, it naturally bends to its right (south) since the Coriolis effect is stronger near the Poles. By the time it reaches the coast, it has already pretty much turned, so it gently flows down the coast. On the other hand, the westward-flowing current near the Equator hardly turns at all, and it runs into the land all at once. An enormous amount of water builds up along the coast (raising sea surface about 3 feet!), creating a pile of warm water that we call the Pacific Warm Pool. All this water has to flow north at the same time, so it has to speed up rush north to make room for all the water coming in behind it. Northern Australia & Indonesia South America Land Warm Land Cold 28. Where is the Coriolis effect stronger, near the Equator or near the Poles? 29. Where is sea level higher at the Equator, on the west side of the Pacific Ocean (by Asia and Australia) or on the east side of the Pacific Ocean (by South America)?

10 Ocean Currents Unit (Topic 9A-1) page 10 Meanders, Eddies, and Other Mesoscale Phenomena At this point, we will end our discussion of ocean circulation patterns. I have covered the most important large-scale, surface ocean currents. In reality, ocean currents are enormously complex: they shift with time ( meander ), grow and shrink, speed up and slow down, twist in upon themselves and spin off rotating eddies, etc. We do not have the time to go into the details of meso-scale phenomena like these, but I would like you to be aware that the subject exists. You can see these complex details in the classic picture of the Gulf Stream below. Temperature of Ocean Water Red = Warm, Blue = Cold. The Gulf Stream is the wiggly red-orange feature extending up into the green water. Courtesy of SeaWiFS / NASA / NOAA 30. True or false? Ocean currents change direction and speed over time (e.g., with the seasons), just like winds. They do not move in straight lines like arrows.

Zonal (East-West) Currents. Wind-Driven Ocean Currents. Zonal (East-West) Currents. Meridional (N-S) Currents

Zonal (East-West) Currents. Wind-Driven Ocean Currents. Zonal (East-West) Currents. Meridional (N-S) Currents Wind-Driven Ocean Currents Similarities between winds & surface currents Zonal (East-West) Currents Trade winds push currents westward north & south of the equator Equatorial currents. Up to 100 cm/sec.

More information

CHAPTER 7 Ocean Circulation

CHAPTER 7 Ocean Circulation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CHAPTER 7 Ocean Circulation Words Ocean currents Moving seawater Surface ocean currents Transfer heat from warmer to cooler areas Similar to pattern of major wind belts

More information

Lesson: Ocean Circulation

Lesson: Ocean Circulation Lesson: Ocean Circulation By Keith Meldahl Corresponding to Chapter 9: Ocean Circulation As this figure shows, there is a connection between the prevailing easterly and westerly winds (discussed in Chapter

More information

Role of the oceans in the climate system

Role of the oceans in the climate system Role of the oceans in the climate system heat exchange and transport hydrological cycle and air-sea exchange of moisture wind, currents, and upwelling gas exchange and carbon cycle Heat transport Two Primary

More information

Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres

Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres Ocean Currents What Happens at the Coast? Readings: Ch 9: 9.2-9.6, 9.8-9.13 Graphic: America's Cup sailboat race off Newport, Rhode Island. J.

More information

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS Skills Worksheet Directed Reading Section: Ocean Currents 1. A horizontal movement of water in a well-defined pattern is called a(n). 2. What are two ways that oceanographers identify ocean currents? 3.

More information

Wind and Air Pressure

Wind and Air Pressure Wind and Air Pressure When air moves above the surface of the Earth, it is called wind. Wind is caused by differences in air pressure. When a difference in pressure exists, the air will move from areas

More information

OCEANOGRAPHY 101. Map, and temperature, salinity & density profiles of the water column at X, near mouth of the Columbia River.

OCEANOGRAPHY 101. Map, and temperature, salinity & density profiles of the water column at X, near mouth of the Columbia River. OCEANOGRAPHY 101 EXAM 2 WINTER 00 NAME STUDENT NUMBER 1 Map, and temperature, salinity & density profiles of the water column at X, near mouth of the Columbia River. P a c i f i c O c e a n X WA Columbia

More information

OCN201 Spring14 1. Name: Class: Date: True/False Indicate whether the statement is true or false.

OCN201 Spring14 1. Name: Class: Date: True/False Indicate whether the statement is true or false. Name: Class: _ Date: _ OCN201 Spring14 1 True/False Indicate whether the statement is true or false. 1. Short residence time elements are uniformly distributed in the oceans 2. Thermohaline circulation

More information

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are.

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are. Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are. 1. A cool breeze is blowing toward the land from the ocean on a warm, cloudless summer day. This condition is

More information

El Niño Lecture Notes

El Niño Lecture Notes El Niño Lecture Notes There is a huge link between the atmosphere & ocean. The oceans influence the atmosphere to affect climate, but the atmosphere also influences the ocean, which can also affect climate.

More information

Global Winds AOSC 200 Tim Canty

Global Winds AOSC 200 Tim Canty Global Winds AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Global Wind Patterns Deserts Jet Stream Monsoons Ocean transport Ocean cycles Lecture 16 Oct 24

More information

OCEANOGRAPHY STUDY GUIDE

OCEANOGRAPHY STUDY GUIDE OCEANOGRAPHY STUDY GUIDE Chapter 2 Section 1 1. Most abundant salt in ocean. Sodium chloride; NaCl 2. Amount of Earth covered by Water 71% 3. Four oceans: What are they? Atlantic, Pacific, Arctic, Indian

More information

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description.

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description. Ch 15 Earth s Oceans SECTION 15.1 An Overview of Oceans 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description. (5 points) 1. German research

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 15 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used. Assessment Chapter Test B The Movement of Ocean Water USING KEY TERMS Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 6 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Global Winds and Local Winds

Global Winds and Local Winds Global Winds and Local Winds National Science Education Standards ES 1j What is the Coriolis effect? What are the major global wind systems on Earth? What Causes Wind? Wind is moving air caused by differences

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

9.3. Storing Thermal Energy. Transferring Thermal Energy

9.3. Storing Thermal Energy. Transferring Thermal Energy 9.3 If you have been to a beach on a hot summer day, you have likely cooled off by going for a dip in the water. The water, which is cooler than you are, removes thermal energy from your body, making you

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation Why do we say Earth's temperature is moderate? It may not look like it, but various processes work to moderate Earth's temperature across the latitudes. Atmospheric circulation

More information

Chapter 10 Lecture Outline. The Restless Oceans

Chapter 10 Lecture Outline. The Restless Oceans Chapter 10 Lecture Outline The Restless Oceans Focus Question 10.1 How does the Coriolis effect influence ocean currents? The Ocean s Surface Circulation Ocean currents Masses of water that flow from one

More information

Consequences of the Earth's Rotation

Consequences of the Earth's Rotation Consequences of the Earth's Rotation The earth rotates onits axis taking approximately 24hours to complete onerotation. This has important environmental consequences. 1. Rotation creates a diurnal cycle

More information

Chapter. Air Pressure and Wind

Chapter. Air Pressure and Wind Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure

More information

Ocean Motion Notes. Chapter 13 & 14

Ocean Motion Notes. Chapter 13 & 14 Ocean Motion Notes Chapter 13 & 14 What is a Wave? Wave: movement of energy through a body of water How are Waves Caused? Caused mostly by wind Wind blowing on the water transmits energy to the water Size

More information

Lesson: Atmospheric Dynamics

Lesson: Atmospheric Dynamics Lesson: Atmospheric Dynamics By Keith Meldahl Corresponding to Chapter 8: Atmospheric Circulation Our atmosphere moves (circulates) because of uneven solar heating of the earth s surface, combined with

More information

Leeuwin Current - Reading

Leeuwin Current - Reading Leeuwin Current At 5,500 kilometres, the Leeuwin is our longest ocean current! One of Australia s most influential natural features, the Leeuwin Current, has been confirmed as the longest continuous coastal

More information

Oceanography 10. Tides Study Guide (7A)

Oceanography 10. Tides Study Guide (7A) Tides Study Guide (Topic 7A) page 1 Oceanography 10 Name: Tides Study Guide (7A) Note: Do not forget to include the units of your answers. 1. Use the tide chart below to determine the height and time of

More information

Ocean water is constantly in motion, powered by many different

Ocean water is constantly in motion, powered by many different Section 16.1 16.1 Circulation 1 FOCUS Section Objectives 16.1 Explain how surface currents develop. 16.2 Describe how ocean currents affect climate. 16.3 State the importance of upwelling. 16.4 Describe

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 7 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Which of the following factors contributes to the general subsidence in the latitude zone 20 degrees

More information

COASTAL UPWELLING - MONTEREY BAY CALIFORNIA (modified from The Maury Project, AMS)

COASTAL UPWELLING - MONTEREY BAY CALIFORNIA (modified from The Maury Project, AMS) Name: Date: Per: COASTAL UPWELLING - MONTEREY BAY CALIFORNIA (modified from The Maury Project, AMS) The ocean is composed of 3 distinct layers: the shallow surface mixed zone, the transition zone, and

More information

SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.

More information

Oceanography. Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS

Oceanography. Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS Oceanography Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS أ. راي د مرعي الخالدي Circulation Patterns and Ocean Currents 7.1 Density-Driven Driven Circulation 7.2 Thermohaline Circulation 7.3 The Layered

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

The Coriolis Effect - Deflect the Arrows!

The Coriolis Effect - Deflect the Arrows! NAME: DATE: The Coriolis Effect - Deflect the Arrows Directions: The Circle below represents the Earth. The equator is present, dividing the image into the Northern and Southern hemispheres. The arrows

More information

Lecture 13. Global Wind Patterns and the Oceans EOM

Lecture 13. Global Wind Patterns and the Oceans EOM Lecture 13. Global Wind Patterns and the Oceans EOM Global Wind Patterns and the Oceans Drag from wind exerts a force called wind stress on the ocean surface in the direction of the wind. The currents

More information

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer 18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.

More information

Chapter 7: Circulation And The Atmosphere

Chapter 7: Circulation And The Atmosphere Chapter 7: Circulation And The Atmosphere Highly integrated wind system Main Circulation Currents: series of deep rivers of air encircling the planet Various perturbations or vortices (hurricanes, tornados,

More information

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 15 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Air moves towards ITCZ in tropics because of rising air - convection. Horizontal extent of Hadley cell is modified by Friction Coriolis Force

Air moves towards ITCZ in tropics because of rising air - convection. Horizontal extent of Hadley cell is modified by Friction Coriolis Force Air moves towards ITCZ in tropics because of rising air - convection Horizontal extent of Hadley cell is modified by Friction Coriolis Force Speed from rotation Objects at rest on Earth move at very different

More information

Chapter. The Dynamic Ocean

Chapter. The Dynamic Ocean Chapter The Dynamic Ocean An ocean current is the mass of ocean water that flows from one place to another. 16.1 The Composition of Seawater Surface Circulation Surface Currents Surface currents are movements

More information

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company Unit 11 Lesson 2 How Does Ocean Water Move? Catch a Wave A wave is the up-and-down movement of surface water. Catch a Wave Catch a Wave (wave effects) Surface waves are caused by wind pushing against

More information

Atmospheric and Ocean Circulation Lab

Atmospheric and Ocean Circulation Lab Atmospheric and Ocean Circulation Lab name Key Objectives: The main goal of this lab is to learn about atmospheric and oceanic circulation and how these two processes are strongly inter-dependent and strongly

More information

Atmospheric & Ocean Circulation-

Atmospheric & Ocean Circulation- Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds

More information

Equatorial upwelling. Example of regional winds of small scale

Equatorial upwelling. Example of regional winds of small scale Example of regional winds of small scale Sea and land breezes Note on Fig. 8.11. Shows the case for southern hemisphere! Coastal upwelling and downwelling. Upwelling is caused by along shore winds, that

More information

Isaac Newton ( )

Isaac Newton ( ) Introduction to Climatology GEOGRAPHY 300 Isaac Newton (1642-1727) Tom Giambelluca University of Hawai i at Mānoa Atmospheric Pressure, Wind, and The General Circulation Philosophiæ Naturalis Principia

More information

The General Circulation and El Niño. Dr. Christopher M. Godfrey University of North Carolina at Asheville

The General Circulation and El Niño. Dr. Christopher M. Godfrey University of North Carolina at Asheville The General Circulation and El Niño Dr. Christopher M. Godfrey University of North Carolina at Asheville Global Circulation Model Air flow broken up into 3 cells Easterlies in the tropics (trade winds)

More information

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks.

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks. Chapter 11 Tides A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks. Tidal range can be very large Tide - rhythmic oscillation of the ocean surface

More information

Global Wind Paerns. specific. higher. convection. rises. rotates. equator Equatorial. Subtropical High. long. lower. troposphere. sinks.

Global Wind Paerns. specific. higher. convection. rises. rotates. equator Equatorial. Subtropical High. long. lower. troposphere. sinks. Global Wind Paerns Global Winds Winds that b steadily from direcons long over distances. specific Created by the of Earth s surface. Result of Sun striking the surface at angles near the equator and at

More information

Physics 107 Ideas of Modern Physics

Physics 107 Ideas of Modern Physics Physics 107 Ideas of Modern Physics Course home page: http://uw.physics.wisc.edu/~himpsel/107/lectures/lectures.htm Syllabus: http://uw.physics.wisc.edu/~himpsel/107/lectures/syllabus.pdf Course info:

More information

Chapter 4 Global Climates and Biomes

Chapter 4 Global Climates and Biomes Chapter 4 Global Climates and Biomes Global Processes Determine Weather and Climate - the short term conditions of the atmosphere in a local area. These include temperature, humidity, clouds, precipitation,

More information

Currents. History. Pressure Cells 3/13/17. El Nino Southern Oscillation ENSO. Teleconnections and Oscillations. Neutral Conditions

Currents. History. Pressure Cells 3/13/17. El Nino Southern Oscillation ENSO. Teleconnections and Oscillations. Neutral Conditions Teleconnections and Oscillations Teleconnection climate anomalies being related to each other over a large scale Oscillations: Macroscale movement of atmospheric systems that can influence weather, climate,

More information

4th GRADE MINIMUM CONTENTS- SOCIAL SCIENCE UNIT 2: THE EARTH S WATER

4th GRADE MINIMUM CONTENTS- SOCIAL SCIENCE UNIT 2: THE EARTH S WATER THE HYDROSPHERE 4th GRADE MINIMUM CONTENTS- SOCIAL SCIENCE UNIT 2: THE EARTH S WATER All the water on Earth is called the hydrosphere. Most of the water on the Earth s surface is salt water, and only a

More information

OCEANS. Main Ideas. Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth.

OCEANS. Main Ideas. Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth. Oceans Chapter 10 OCEANS Main Ideas Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth. Lesson 3: The Ocean Shore The shore is shaped by the movement of water and sand. OCEANS SO

More information

IN THE TABLE OF CONTENTS AND ON THE NEXT CLEAN PAGE, TITLE IT: WIND NOTES WIND!

IN THE TABLE OF CONTENTS AND ON THE NEXT CLEAN PAGE, TITLE IT: WIND NOTES WIND! IN THE TABLE OF CONTENTS AND ON THE NEXT CLEAN PAGE, TITLE IT: WIND NOTES WIND! Wind 8.10A recognize that the Sun provides the energy that drives convection within the atmosphere and oceans, producing

More information

Redistribution of Solar Heat Energy

Redistribution of Solar Heat Energy Introduction to Oceanography Chris enze, NASA Ames, Public Domain, http://people.nas.nasa.gov/ ~chenze/fvgcm/frances_02.mpg Redistribution of Solar eat Energy ecture 11: 2, Atmospheric water vapor map,

More information

These are described using length, height, period/frequency, and speed.

These are described using length, height, period/frequency, and speed. These are created by combining the gravitational pull of the Moon and Sun. The energy from these moves forward and also moves up and down. The water in these moves in a circular orbital pattern downward

More information

Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT

Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT Grade Level: 9-10 Social Studies Curriculum Topic Standards: Subject Keywords:

More information

Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure

Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure Air Pressure and Wind Goal: Explain the formation of wind based on differences in air pressure What is Air Pressure? Reminder: Air pressure is thickest near Earth s surface and becomes thinner as we move

More information

Wind Energy. Definition of Wind Energy. Wind energy is energy from moving air.

Wind Energy. Definition of Wind Energy. Wind energy is energy from moving air. Wind Energy Definition of Wind Energy Wind energy is energy from moving air. Air has mass. When it moves, it has kinetic energy. Kinetic energy is the energy of motion. How does wind form? Wind forms when

More information

Traveling on a Rotating Sphere

Traveling on a Rotating Sphere Traveling on a Rotating Sphere Table of Contents Page Click the titles below to jump through the lesson 2 Spin-offs of a Rotating Sphere 3 What Do You Know? 3 Heated Fluid Circulation 4 Where Do The Trade

More information

MFE 659 Lecture 2b El Niño/La Niña Ocean-Atmosphere Interaction. El Niño La Niña Ocean-Atmosphere Interaction. Intro to Ocean Circulation

MFE 659 Lecture 2b El Niño/La Niña Ocean-Atmosphere Interaction. El Niño La Niña Ocean-Atmosphere Interaction. Intro to Ocean Circulation MFE 659 Lecture 2b El Niño/La Niña Ocean-Atmosphere Interaction El Niño La Niña Ocean-Atmosphere Interaction Outline Ocean Circulation El Niño La Niña Southern Oscillation ENSO 1 2 Intro to Ocean Circulation

More information

Exam 2 test bank with page references (Note that at the end of each question is a reference to the page where the answer can be found) Chapter 6 Water

Exam 2 test bank with page references (Note that at the end of each question is a reference to the page where the answer can be found) Chapter 6 Water Exam 2 test bank with page references (Note that at the end of each question is a reference to the page where the answer can be found) Chapter 6 Water 1. The hydrogen atoms in a water molecule tend to

More information

and the Link between Oceans, Atmosphere, and Weather

and the Link between Oceans, Atmosphere, and Weather Geography Worksheet Instructions Using a map, atlas, or any other materials your teacher suggests, label the following on the blank map provided. 1. Label East, West, North, and South. 2. Label the following

More information

Deep Water Currents Lab

Deep Water Currents Lab Deep Water Currents Lab Background: Anyone visiting the seashore is struck by the constant motion of water traveling on the surface of the ocean in the form of waves. But beneath the ocean's surface, water

More information

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces MET 200 Lecture 11 Local Winds Last Lecture: Forces Scales of Motion Eddies Sea Breeze Mountain-Valley Circulations Chinook - Snow Eater Drainage Wind - Katabatic Wind 1 2 Review of Forces 1. Pressure

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

Chapter 7 Weather and Climate

Chapter 7 Weather and Climate Chapter 7 Weather and Climate *Describe what weather is, what affects it, and where it occurs. *Explain the connection between air pressure and wind. * *Many factors affect a region s weather. * *atmosphere

More information

Where the Wind Blows. Credits: Elizabeth Gall & Laura Moribe, University of Tennessee Extension. Background. Introduction and Opening Questions

Where the Wind Blows. Credits: Elizabeth Gall & Laura Moribe, University of Tennessee Extension. Background. Introduction and Opening Questions Where the Wind Blows W 336-F Credits: Elizabeth Gall & Laura Moribe, University of Tennessee Extension Skill Level 5th & 6th grade Learner Outcomes Youth will be able to list two factors that cause ocean

More information

Atmospheric & Ocean Circulation- I

Atmospheric & Ocean Circulation- I Atmospheric & Ocean Circulation- I First: need to understand basic Earth s Energy Balance 1) Incoming radiation 2) Albedo (reflectivity) 3) Blackbody Radiation Atm/ Ocean movement ultimately derives from

More information

Circulation of the Atmosphere

Circulation of the Atmosphere Circulation of the Atmosphere World is made up of three regions: Atmosphere (air) Hydrosphere (water) Lithosphere (land) - Geosphere All regions interact to produce weather (day to day variations) and

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 6 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) A steep pressure gradient: a. produces light winds. b. produces strong winds. c. is only possible in

More information

What Causes Weather Patterns?

What Causes Weather Patterns? What Causes Weather Patterns? INVESTlGATlON: Water on the Move If you ve ever been soaked in a rainstorm or even surprised by a thundershower in the desert, you know that water is a big part of the weather.

More information

SCI-5 MES_Lamb_Oceans Exam not valid for Paper Pencil Test Sessions

SCI-5 MES_Lamb_Oceans Exam not valid for Paper Pencil Test Sessions SCI-5 MES_Lamb_Oceans Exam not valid for Paper Pencil Test Sessions [Exam ID:53S2JF 1 Two children are swimming and jumping in the waves at the beach. On which part of the ocean are they standing? A Abyssal

More information

ESCI 485 Air/sea Interaction Lesson 9 Equatorial Adjustment and El Nino Dr. DeCaria

ESCI 485 Air/sea Interaction Lesson 9 Equatorial Adjustment and El Nino Dr. DeCaria ESCI 485 Air/sea Interaction Lesson 9 Equatorial Adjustment and El Nino Dr. DeCaria Reference: El Nino, La Nina, and the Southern Oscillation, Philander THE TWO-LAYER SHALLOW WATER MODEL The ocean can

More information

SURFLINE TEAHUPOO, TAHITI SURF REPORT

SURFLINE TEAHUPOO, TAHITI SURF REPORT SURFLINE TEAHUPOO, TAHITI SURF REPORT Historical Analysis of Swell Patterns in April & May, 1997 2009 Prepared for Billabong ~ by Sean Collins, July 2009 Billabong has requested assistance to choose improved

More information

Weather & Atmosphere Study Guide

Weather & Atmosphere Study Guide Weather & Atmosphere Study Guide 1. Draw a simple water cycle diagram using the following words: Precipitation, Evaporation, Condensation, Transpiration 2. In your own words, explain the difference between

More information

Chapter 10. Adjacent seas of the Pacific Ocean

Chapter 10. Adjacent seas of the Pacific Ocean Chapter 10 Adjacent seas of the Pacific Ocean Although the adjacent seas of the Pacific Ocean do not impact much on the hydrography of the oceanic basins, they cover a substantial part of its area and

More information

Scales of Atmospheric Motion

Scales of Atmospheric Motion Lecture 12 Local Wind Systems Scales of Atmospheric Motion Small turbulent eddies (swirls) A synoptic eddy 1 Coriolis Effect The larger the scale, the longer the life time. Wind shear and turbulent eddy

More information

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1 Discerning Patterns: Does the North Atlantic oscillate? Climate variability, or short term climate change, can wreak havoc around the world. Dramatic year to year shifts in weather can have unanticipated

More information

El Niño and the Winter Weather Outlook

El Niño and the Winter Weather Outlook El Niño and the 2015-2016 Winter Weather Outlook 2015 NASEO Annual Meeting http://www.ospo.noaa.gov/products/ocean/sst/anomaly/ NWS Boston February 10, 2015 Jimmy Taeger Meteorologist National Weather

More information

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Exam 1 Review Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Location on Earth (L04) Latitude & Longitude great circles, prime meridian, time zones, cardinal points, azimuth

More information

11. WIND SYSTEMS A&B: Ch 8 (p )

11. WIND SYSTEMS A&B: Ch 8 (p ) 1 11. WIND SYSTEMS A&B: Ch 8 (p 214-238) Concepts: I. Scale II. Differential heating III. Wind direction 1. Scales: Three major divisions Space Time Micro meters seconds - minutes Meso kilometers seconds

More information

LAB: WHERE S THE BEACH

LAB: WHERE S THE BEACH Name: LAB: WHERE S THE BEACH Introduction When you build a sandcastle on the beach, you don't expect it to last forever. You spread out your towel to sunbathe, but you know you can't stay in the same spot

More information

What Causes Different Weather?

What Causes Different Weather? What Causes Different Weather? Table of Contents What causes weather?...3 What causes it to rain or snow?...4 What causes flooding?...5 What causes hail?...6 What causes the seasons?...7-8 What causes

More information

For Creative Minds. Salt Marsh Plants and Animals

For Creative Minds. Salt Marsh Plants and Animals For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities,

More information

What causes the tides in the ocean?

What causes the tides in the ocean? What causes the tides in the ocean? By NASA and NOAA on 02.09.17 Word Count 809 Level MAX Flying gulls on Morro Strand State Beach, California, at low tide. Morro Rock is seen in the background. Photo

More information

Influences on Weather and Climate Weather and Climate. Coriolis Effect

Influences on Weather and Climate Weather and Climate. Coriolis Effect Influences on Weather and limate Weather and limate oriolis Effect 1 limate is defined as the common weather conditions in one area over a long period of time. Temperature, humidity, rainfall, and wind

More information

2.4. Applications of Boundary Layer Meteorology

2.4. Applications of Boundary Layer Meteorology 2.4. Applications of Boundary Layer Meteorology 2.4.1. Temporal Evolution & Prediction of the PBL Earlier, we saw the following figure showing the diurnal evolution of PBL. With a typical diurnal cycle,

More information

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from

More information

THE RESTLESS SEA. https://pao.cnmoc.navy.mil/pao/educate/oceantalk2/indexrestless.htm

THE RESTLESS SEA. https://pao.cnmoc.navy.mil/pao/educate/oceantalk2/indexrestless.htm THE RESTLESS SEA Energy from the sun is the engine that drives the major ocean basin circulation patterns. Rising warm air, sinking cold air, and uneven heating of the Earth's surface create wind, the

More information

Atmospheric Forces and Force Balances METR Introduction

Atmospheric Forces and Force Balances METR Introduction Atmospheric Forces and Force Balances METR 2021 Introduction In this lab you will be introduced to the forces governing atmospheric motions as well as some of the common force balances. A common theme

More information

C irculation in the middle latitudes is complex and does not fit the

C irculation in the middle latitudes is complex and does not fit the 19.3 Regional Wind Systems Section 19.3 1 FOCUS Key Concepts What causes local winds? Describe the general movement of weather in the United States. What happens when unusually strong, warm ocean currents

More information

Oceans and Coastal Processes

Oceans and Coastal Processes C H A P T E R 11 Oceans and Coastal Processes WORDS TO KNOW barrier island longshore transport sandbar tidal range Coriolis effect neap tide spring tide tide El Niño ocean current surf zone This chapter

More information

Atmosphere Glencoe. Name

Atmosphere Glencoe. Name Atmosphere 2005 Glencoe Name Note-taking Worksheet Atmosphere Section 1 Earth s Atmosphere A. thin layer of air that protects the Earth s surface from extreme temperatures and harmful Sun rays B. Atmospheric

More information

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation The tmosphere Write answers on your own paper 1. What is the primary energy source that drives all weather events, including precipitation, hurricanes, and tornados?. the Sun. the Moon C. Earth s gravity

More information

SOCCOM.Act.PDS.1.1: Tracking Ocean Currents

SOCCOM.Act.PDS.1.1: Tracking Ocean Currents SOCCOM.Act.PDS.1.1 Tracking Ocean Currents SOCCOM.Act.PDS.1.1: Tracking Ocean Currents Goals In this activity you will: Use SOCCOM float data to learn about ocean currents. Learn about circulation in the

More information

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere GRADE 11 GEOGRAPHY SESSION 3: GLOBAL AIR CIRCULATION Key Concepts In this lesson we will focus on summarising what you need to know about: The mechanics present to create global wind and pressure belts

More information

RESOURCE BOOKLET M13/4/ENVSO/SP2/ENG/TZ0/XX/T ENVIRONMENTAL SYSTEMS AND SOCIETIES PAPER 2. Tuesday 7 May 2013 (afternoon) 2 hours

RESOURCE BOOKLET M13/4/ENVSO/SP2/ENG/TZ0/XX/T ENVIRONMENTAL SYSTEMS AND SOCIETIES PAPER 2. Tuesday 7 May 2013 (afternoon) 2 hours M13/4/ENVSO/SP2/ENG/TZ0/XX/T 22136303 ENVIRONMENTAL SYSTEMS AND SOCIETIES Standard level PAPER 2 Tuesday 7 May 2013 (afternoon) 2 hours RESOURCE BOOKLET INSTRUCTIONS TO CANDIDATES Do not open this booklet

More information