APPLICATION OF COMPUTATIONAL FLUID DYNAMICS (CFD) IN WIND ANALYSIS OF TALL BUILDINGS. Damith Mohotti, Priyan Mendis, Tuan Ngo

Size: px
Start display at page:

Download "APPLICATION OF COMPUTATIONAL FLUID DYNAMICS (CFD) IN WIND ANALYSIS OF TALL BUILDINGS. Damith Mohotti, Priyan Mendis, Tuan Ngo"

Transcription

1 APPLICATION OF COMPUTATIONAL FLUID DYNAMICS (CFD) IN WIND ANALYSIS OF TALL BUILDINGS Damith Mohotti, Priyan Mendis, Tuan Ngo Department of Infrastructures Engineering, The University of Melbourne, Victoria, Australia Abstract Computational Fluid Dynamics (CFD) has wide range of applications in modern engineering community. Use of CFD in wind engineering has significantly increased over the last few decades. However, very limited work has been done on the application of CFD in simulating the wind behaviour around tall structures. With the development of high speed supercomputers, the possibility of performing such analysis within reasonable time period has become a reality. This paper presents an outline of such study performed using an advanced finite element (FE) code. An isolated rectangular building model has been considered as the based model in the analysis. A constant velocity profile has been used with k-ε turbulent model. An atmospheric boundary layer based wind profile has been adopted using a user defined function in the simulations. The effect of neighbouring buildings onto the nearby tall building has also been discussed. Wind pressure development, velocity profile in the close vicinity of the building was studied and presented. Keywords: Computational Fluid Dynamics, wind loading, tall buildings. 1.0 Introduction There is a high demand for tall buildings in the central business districts (CBD s) of major cities all over the world. With the recent trend of building structures over 500 m with different complex geometries, it has created a great challenge for practicing engineers to design such flexible structures to withstand wind and other similar lateral loadings. As the geometry of a typical floor depends on many different constraints such as land area and optimum viewing angle for occupants, most of these structures have considerably high aspect ratios. The major concerns in designing of tall buildings are not limited to the resistance of the structural system to the lateral loads, but also the comfort of the building s occupants in relation to the wind-induced motion of the buildings. The current practice wind codes and standards are limited to the prediction of wind induced responses of tall buildings with square or rectangular cross sections and aspect ratios of not more than 6. Australian standard AS/NZS (Standards Australia, 2011) can be considered as one of the frequently used standards for such analysis all over the world. However, the standard clearly emphasises that the values given in the code are only applicable for structures below 200 m height. In addition, for free standing tall buildings the first-mode fundamental frequency shall be larger than 0.2 Hz. Therefore, tall buildings outside these limits, the AS has recommended to use wind tunnel tests as a supplementary technique in order to estimate the wind loads. However, performing wind tunnel tests require considerable resources and it is a time consuming and expensive effort. Therefore, it is worthwhile to look into alternative solutions to replace such experimental procedures. With the advancement of computer capabilities, it is now possible to simulate considerable complex numerical simulations within a feasible time period. CFD (Computational Fluid Dynamics) is getting popular among wind engineering research community due to its capability of modeling wind flow in different domains. Computational fluid dynamics, usually abbreviated as CFD, is a branch of fluid mechanics that uses numerical methods and algorithms to solve and analyze problems that involve fluid flows. Computers are used to perform the calculations required to simulate the interaction of liquids and gases with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved within a reasonable time period. Ongoing research yields software

2 that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. CFD has been used effectively in modeling aerodynamics effect on automotives. Therefore, it has shown a considerable accuracy in simulating atmospheric boundary layer effect. This highlights the possibility of using a similar approach to simulate the wind behaviour around the buildings (Blocken et al., 2012; Hang et al., 2012). The fundamental basis of almost all CFD problems are the Navier Stokes equations, which define any single-phase (gas or liquid, but not both) fluid flow. Unlike flow around streamed line object, analysis of flow around sharp edged bluff-body involves many difficulties as pointed out by previous researchers. Accurate representation of flow separation, turbulent formation are vital for achieving better representation of actual scenario of virtual wind models. In this study advanced Finite element code, ANSYS FLUENT 14.5 (ANSYS Inc, 2012) has been used as the solver. Six different turbulence models are available in FLUENT which are incorporated with equations to solve the transported variable, turbulent viscosity, turbulent production and turbulent destruction terms. LES (large Eddy simulation) and K- ε models are the most commonly used turbulent models to represent the wind flow around building domains. There are considerable advantages and disadvantages of these models in terms of using in wind simulations. This paper only presents the results obtained using K- ε model even though the LES model (Zhang, 1994; Franke et al., 2004; Blocken et al., 2007; Blocken et al., 2007; Parente et al., 2011; Lou et al., 2012) studies are continuing in the current research study. This paper presents the preliminary work of an ongoing research project to simulate the wind pressure acting on tall buildings, in three main sections. Section 1 gives a brief introduction on CFD applications in wind engineering. Section 2 of this paper presents the details of the numerical model used in this study with a brief introduction to numerical simulation process. Section 3 of this paper discusses some of the findings of this study. A general summary and future plan of the current study are given under the conclusions. 2.0 Numerical Modeling A full scale geometrical model has been used in this study. The building has a rectangular prismatic shape with dimensions 100 m (x) by 150 m (y) by 600 m (z) height representing a true scale building in an open terrain. The flow is described in a Cartesian coordinate system (x, y, z), in which the Z-axis is aligned with the stream flow direction, the X-axis is in the perpendicular direction and the Y-axis is in the vertical direction. The computational domain dimensions, boundary conditions and the wind tunnel configurations are given in Figure 1. A half of the model has been used in the analysis to save computation cost using the symmetricity of the building and the fluid domain. As shown in Figure 1 the inlet and outlet boundaries have been extended to 8 times and 25 times the width of the building in order to obtain the undisturbed flow near the fluid domain boundaries. Top wall Inlet Principle building Outlet Bottom wall (a)

3 25 B 8B (b) Figure 1 Geometry of the numerical model H 2H (c) B D An engineering wind model for Australia has been developed in Melbourne from the Deaves and Harris model (D&H model,1978) (Mendis et al., 2007). This model has been developed based on full scale data and on the classic logarithmic law from which a mean velocity profile in strong winds applicable in non-cyclonic regions is derived, as given in Eq.(1). V z u 0.4 [log e ( z ) ( z ) 1.88 ( z 2 ) 1.33 ( z 3 ) ( z 4 ) z 0 z g z g z g z g V z u 0.4 log e ( z z 0 ) ] (1) (2) The numerical values are based on a mean gradient wind speed of 50 m/s. For values of z<30.0 m, the z/z g values become insignificant and the Eq.(1) can be simplified to Eq.(2). Where, V z is the design hourly mean wind speed at height z, u is the friction velocity as described in Mendis et al.(2007). This wind profile has been integrated as a user defined function (UDF) in addition to a constant velocity profile in simulation of incoming wind. Turbulent intensity of 1% and turbulent intensity ratio of 10% were adopted at the inlet while turbulent intensity was increased to 5% at the outlet. Figure 2 Wind velocity profile used in this study, Mendis et al. (2007) Table 1 Configurations used in the study Case Configuration Velocity profile Case 1 Isolated Continuous flow Case 2 Isolated Use D&H model Case 3 Full height adj. Bldg upwind of PB (principal Use D&H model building) Case 4 half height adj. Bldg upwind of PB Use D&H model Case 5 Full height adj. Bldg downwind of PB Use D&H model Case 6 half height adj. Bldg downwind of PB Use D&H model

4 In the present study, six different configurations under two different flow fields have been investigated. Table 1 summarises all the configurations considered for the numerical simulation in this study. Case I simulates the wind effects on an isolated building with a constant velocity profile. Case 2 uses same building model with the D &H velocity profile described above. Case 3 and 5 investigate the flow pattern and the pressure distribution on the two adjacent buildings of same heights both in upwind and downwind directions. The two remaining configurations given in table 1 investigate the effect of wind flow due to the presence of a building with half in height to the principal building considered. Although not proven in a systematic study, it is believed that, in general, a half height building could provide maximum interference effects. 3.0 Results and Discussion Flow behaviour around the building under a constant velocity profile is shown in Figure 3. The preliminary simulations clearly show the vortex formation in the wake of the bluff body. Even with the initial coarse mesh, the simulations were able to capture flow separations and vortex formation quiet well (Figure 3(b)). Even though the incident velocity is around 40 m/s, the sharp edges near the building corners have caused an increment in the velocity of the stream lines and jumped approximately closer to 50 m/s in the vicinity of the front edges. The above results agree with the results published by Baetke et al. (1990). Inlet 3D flow domain Velocity Stream lines Building model Outlet (a) Z= 150 m (b) (c) Figure 3 Velocity stream lines of the flow (Case 1) (a) 3D flow domain (b) At z=150 m (c) At the symmetrical plane The pressure coefficients of the building surface along the symmetrical plane of the building were obtained and presented as shown in Figure 4. A constant velocity profile was used in case 1 of the analysis. Therefore the pressure induced on the front surface (A- B) does not show considerable variation as expected in a real building. However, this simulation was used to explain the difference in

5 Cp (presure coefficients) pressure on the building with the application of atmospheric boundary layer wind profile. According to the results obtained from the analysis shows that the building front face has a maximum pressure coefficient of 1.26 while downwind face has a pressure coefficient of These results are in agreement with the experimental results published by Dagnew et al. (2009) B C A D -1.5 A B C Position along the symmetrical plane-case 1 Figure 4 Pressure coefficients along the symmetrical plane (A-B) Obtaining the correct pressure development on the building surface is very important in the designing of tall structures to predict the behaviour of the structures correctly. This will help the designers to accurately predict the acceleration of the building which is one of the key elements in the designing of such structures. The user defined velocity (UDF) profile was used in the analysis (case 2-6) to represent the atmospheric boundary layer wind profile. The velocity vectors formation in the symmetrical plane of the domain is presented in Figure 5(a). Figure 5 (b) further elaborates the velocity contours developed in two directional symmetrical planes. D Velocity builds up according to D&H model Symmetrical plane (a) (b)

6 Figure 5 Velocity distribution incorporating the D&H model(a) velocity vector formation (b) velocity contours (Case 2) Figure 6 Velocity stream lines at two different levels of the buildings (a) z=150 m (b) z=480m (Case 2) Figure 6 shows the wake region formation at two different elevations of the buildings. As the velocity of the incoming wind is different at those two planes, the development of flows separation and the outgoing velocity are considerably different. In addition, the results obtained from Case 2 analysis show a considerable difference with the results obtained from the uniform wind velocity. The pressure distributions obtained from the simulations are presented in Figure 7 and 8. The horseshoe vortex shape contours generation on the front wall agree with the results presented by Dagnew et al.(2009) and Huang et al.(2012). The distribution of pressure iso-surfaces shows a considerable disagreement with the code adopted procedure for the pressure distribution of tall buildings. The pressure values increase with the increasing height. However, results show that by utilising the distribution given in CFD analysis, the design values can be optimised by considering high and low pressure zones in the buildings. Figure 7 Pressure distribution along the symmetric plane (Case 2) (a) (b) (c)

7 Figure 8 Pressure induced on the building surface (case 1) (a) 3D pressure contour map (b) windward face (b) leeward face The wind flow pattern of two close buildings with same size was studies in Cases 3 and 5. Shielding effect to a particular building from another can be positively used to reduce the vulnerability to wind induced loadings. The model was able to capture the low pressure zone generated due to the shielding effect from the neighbouring building and the turbulence created in between the buildings. This turbulent wind zone can affect the comfort of the pedestrians walking in the close vicinity. Therefore it is important to have some sort of vegetation or landscape those areas to improve the comfort of the pedestrians. The results for Case 5 given in Table 1 are presented in Figure 9. Inlet 3D flow domain (a) Principal building Wake region Low pressure zone (b) (c) Figure 9 (a) 3D representation of stream line distribution of two adjacent buildings with same size (b) at z=150 m (c) along the symmetrical plane (case 3) Figure 10 Influence of adjacent building to the pressure distribution (case 3) As shown in Figure 9, the presence of nearby building has a considerable influence on the aerodynamic response of the neighbouring buildings. Wind flow around different buildings located in

8 different geographical topologies therefore should be investigated on case by case basis. One of the other main configurations considered in this paper was the assessment of the influence of the adjacent buildings with half of the height to the principal building. In Case 5, the adjacent building was placed in windward (upwind) direction (As shown in Figure 11-12). In case 6, the smaller building was located in the down wind direction of the principle building. In both scenarios, the heights of the buildings were same. As reported by Dagnew et al (2009), a reduction of % in mean pressure has been observed in the principle building when it is shielded by the shorter building, when compared with the isolated building model. This is due to the complete sheltering effect coming from the adjacent building into the principle building model. However in the case of locating the adjacent building in the leeward direction, there is no considerable reduction in pressure observed in the front wall but shows a considerable reduction in the back wall. This low pressure region can cause considerable suction on the building which increases the deflection and acceleration of the principal building. And also these low pressure regions can cause discomfort to the pedestrians in the vicinity. Figure 11 Velocity vectors development around the buildings (case 4) Inlet Principal building (a) Wake region (b) (c) Figure 12 Velocity stream line distribution along a plane at z=175 m from the ground surface

9 A considerable velocity reduction was observed near the taller building. This causes less pressure on the front surfaces of the principal building. However a similar pressure distribution contour pattern has been observed in two buildings. When compared with the isolated building model, the centre of the pressure contours has moved in the vertical direction towards the top of the building. Therefore lesser loads can be expected on the building due to the wind pressure. There is a possibility of using these simple phenomena in future tall building design to protect against severe wind effects. Figure 13 Pressure development on the surface of the buildings in the windward face and leeward face Figure 14 Pressure development in the vicinity of the building along the symmetrical plane 4.0 Concluding Remarks A preliminary analyse of CFD for wind analysis of tall buildings is performed and presented. Several geometrical configurations were analysed in order to understand the effect of wind on isolated buildings and others with some surrounding buildings. The results show that CFD has a great potential to be used in wind engineering for tall structures. In order to achieve accurate atmospheric boundary layer wind profiles, a group of roughness elements were created on the bottom surface. This shows much improvement in the implementation of boundary layer wind profile in wind analysis. This study is in progress at the University of Melbourne, to investigate the possibility of incorporating the FSI (fluid-structure interaction) computational method into wind simulation of tall buildings.

10 References ANSYS Inc (2012). "ANSYS ", Release 14.5, Century Dynamics Inc, CA,USA. Baetke, F., H. Werner and H. Wengle (1990). "Numerical-Simulation of Turbulent-Flow over Surface-Mounted Obstacles with Sharp Edges and Corners." Journal of Wind Engineering and Industrial Aerodynamics, 35(1-3): Blocken, B., J. Carmeliet and T. Stathopoulos (2007). "CFD evaluation of wind speed conditions in passages between parallel buildings effect of wall-function roughness modifications for the atmospheric boundary layer flow." Journal of Wind Engineering & Industrial Aerodynamics, 95(9-11): Blocken, B., W. D. Janssen and T. van Hooff (2012). "CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus." Environmental Modelling and Software, 30: Blocken, B., T. Stathopoulos and J. Carmeliet (2007). "CFD simulation of the atmospheric boundary layer: wall function problems." Atmospheric Environment, 41(2): Dagnew, A. K., G. T. Bitsuamalk and R. Merrick [2009]. Computational Evaluation of Wind Presure On tall Buildings. 11th Americas Conference on Wind Engineering. San Juan, Puerto Rico. Franke, J., C. Hirsch, A. G. Jensen, H. W. Krüs, M. Schatzmann, P. S. Westbury, S. D. Miles, J. A. Wisse and N. G. Wright (2004). Recommendations on the use of CFD in wind engineering. Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics, von Karman Institute, Sint-Genesius-Rode, Belgium,. Hang, J., Y. Li, R. Buccolieri, M. Sandberg and S. Di Sabatino (2012). "On the contribution of mean flow and turbulence to city breathability: The case of long streets with tall buildings." Science of The Total Environment, 416(0): Lou, W., M. Huang, M. Zhang and N. Lin (2012). "Experimental and zonal modeling for wind pressures on double-skin facades of a tall building." Energy and Buildings, 54(0): Mendis, P., T. Ngo, N. Haritos and A. Hira (2007). "Wind Loading on Tall Buildings." Electronic Journal of Structural Engineering: Parente, A., C. Gorlé, J. van Beeck and C. Benocci (2011). "Improved k ε model and wall function formulation for the RANS simulation of ABL flows." Journal of Wind Engineering & Industrial Aerodynamics, 99(4): Standards Australia (2011). AS/NZS Structural Design Action-Part 2: Wind Actions. Sydney. Zhang, C. X. (1994). "Numerical predictions of turbulent recirculating flows with a k-e model." Journal of Wind Engineering and Industrial Aerodynamics, 51(1994):

Surrounding buildings and wind pressure distribution on a high rise building

Surrounding buildings and wind pressure distribution on a high rise building Surrounding buildings and wind pressure distribution on a high rise building Conference or Workshop Item Accepted Version Luo, Z. (2008) Surrounding buildings and wind pressure distribution on a high rise

More information

Numerical Analysis of Wind loads on Tapered Shape Tall Buildings

Numerical Analysis of Wind loads on Tapered Shape Tall Buildings IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 11 May 2015 ISSN (online): 2349-784X Numerical Analysis of Wind loads on Tapered Shape Tall Buildings Ashwin G Hansora Assistant

More information

a high-rise (78 m) building in the city of Antwerp. CFD simulations are performed for the building with and without second-skin facade concept impleme

a high-rise (78 m) building in the city of Antwerp. CFD simulations are performed for the building with and without second-skin facade concept impleme The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 CFD analysis of wind comfort on high-rise building balconies: validation and

More information

Journal of Engineering Science and Technology Review 9 (5) (2016) Research Article. CFD Simulations of Flow Around Octagonal Shaped Structures

Journal of Engineering Science and Technology Review 9 (5) (2016) Research Article. CFD Simulations of Flow Around Octagonal Shaped Structures Jestr Journal of Engineering Science and Technology Review 9 (5) (2016) 72-76 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org CFD Simulations of Flow Around Octagonal

More information

WIND FLOW CHARACTERISTICS AROUND ROOFTOP SOLAR ARRAY - A NUMERICAL STUDY

WIND FLOW CHARACTERISTICS AROUND ROOFTOP SOLAR ARRAY - A NUMERICAL STUDY The Eighth Asia-Pacific Conference on Wind Engineering, December 10 14, 2013, Chennai, India WIND FLOW CHARACTERISTICS AROUND ROOFTOP SOLAR ARRAY - A NUMERICAL STUDY D.Ghosh 1, A. K. Mittal 2, S. Behera

More information

AERODYNAMIC FEATURES AS AUXILIARY ARCHITECTURE

AERODYNAMIC FEATURES AS AUXILIARY ARCHITECTURE N. Gu, S. Watanabe, H. Erhan, M. Hank Haeusler, W. Huang, R. Sosa (eds.), Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer- Aided

More information

Improving pedestrian wind comfort around a high rise building in an urban area: a case study by CFD simulations and on-site measurements

Improving pedestrian wind comfort around a high rise building in an urban area: a case study by CFD simulations and on-site measurements Improving pedestrian wind comfort around a high rise building in an urban area: a case study by CFD simulations and on-site measurements WD Janssen, B Blocken, and T van Hooff Unit Building Physics and

More information

Wind tunnel test and numerical simulation of wind pressure on a high-rise building

Wind tunnel test and numerical simulation of wind pressure on a high-rise building Journal of Chongqing University (English Edition) [ISSN 1671-8224] Vol. 9 No. 1 March 2010 Article ID: 1671-8224(2010)01-0047-07 To cite this article: AL ZOUBI Feras, LI Zheng-liang, WEI Qi-ke, SUN Yi.

More information

Numerical analysis of surface pressure coefficients for a building with balconies

Numerical analysis of surface pressure coefficients for a building with balconies Numerical analysis of surface pressure coefficients for a building with balconies Montazeri H., Blocken B. Building Physics and Services, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven,

More information

EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS

EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, 2-24 8 EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS J. A. Amin and A. K. Ahuja

More information

COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND

COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND WIND TUNNEL EXPERIMENTS FOR PEDESTRIAN WIND ENVIRONMENTS Chin-Hsien

More information

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE - 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,

More information

Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip

Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip S. J. Wylie 1, S. J. Watson 1, D. G. Infield 2 1 Centre for Renewable Energy Systems Technology, Department of Electronic

More information

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,

More information

Pressure coefficient on flat roofs of rectangular buildings

Pressure coefficient on flat roofs of rectangular buildings Pressure coefficient on flat roofs of rectangular buildings T. Lipecki 1 1 Faculty of Civil Engineering and Architecture, Lublin University of Technology, Poland. t.lipecki@pollub.pl Abstract The paper

More information

Computational evaluation of pedestrian wind comfort and wind safety around a high-rise building in an urban area

Computational evaluation of pedestrian wind comfort and wind safety around a high-rise building in an urban area International Environmental Modelling and Software Society (iemss) 7th Intl. Congress on Env. Modelling and Software, San Diego, CA, USA, Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.) http://www.iemss.org/society/index.php/iemss-2014-proceedings

More information

Full scale measurements and simulations of the wind speed in the close proximity of the building skin

Full scale measurements and simulations of the wind speed in the close proximity of the building skin Full scale measurements and simulations of the wind speed in the close proximity of the building skin Radoslav Ponechal 1,* and Peter Juras 1 1 University of Zilina, Faculty of Civil Engineering, Department

More information

EMPIRICAL EVALUATION OF THREE WIND ANALYSIS TOOLS FOR CONCEPT DESIGN OF AN URBAN WIND SHELTER

EMPIRICAL EVALUATION OF THREE WIND ANALYSIS TOOLS FOR CONCEPT DESIGN OF AN URBAN WIND SHELTER Y. Ikeda, C. M. Herr, D. Holzer, S. Kaijima, M. J. Kim. M, A, Schnabel (eds.), Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 CASE STUDIES ON THE IMPACT OF SURROUNDING BUILDINGS ON WIND-INDUCED RESPONSE John Kilpatrick Rowan Williams Davies and Irwin, Guelph, Ontario, Canada ABSTRACT In

More information

Windsimulaties op de meteorologische microschaal

Windsimulaties op de meteorologische microschaal Windsimulaties op de meteorologische microschaal dr.ir. Twan van Hooff prof.dr.ir. Bert Blocken Building Physics Section KU Leuven Unit Building Physics and Services TU/e 2015 Twan van Hooff All Rights

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

2013 Wall of Wind (WoW) Contest Informational Workshop

2013 Wall of Wind (WoW) Contest Informational Workshop 2013 Wall of Wind (WoW) Contest Informational Workshop Presented By: Ioannis Zisis February 22, 2013 With Contributions By: Dr. Girma Bitsuamlak, Roy Liu, Walter Conklin, Dr. Arindam Chowdhury, Jimmy Erwin,

More information

CFD ANALYSIS AND COMPARISON USING ANSYS AND STAR-CCM+ OF MODEL AEROFOIL SELIG 1223

CFD ANALYSIS AND COMPARISON USING ANSYS AND STAR-CCM+ OF MODEL AEROFOIL SELIG 1223 International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 2017, pp. 312 318, Article ID: IJMET_08_11_034 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11

More information

Aerodynamic study of a cyclist s moving legs using an innovative approach

Aerodynamic study of a cyclist s moving legs using an innovative approach Aerodynamic study of a cyclist s moving legs using an innovative approach Francesco Pozzetti 30 September 2017 Abstract During a period of four weeks in September, I completed a research project in fluid

More information

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2 Fluid Structure Interaction Modelling of A Novel 10MW Vertical-Axis Wind Turbine Rotor Based on Computational Fluid Dynamics and Finite Element Analysis Lin Wang 1*, Athanasios Kolios 1, Pierre-Luc Delafin

More information

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study ISSN 1750-9823 (print) International Journal of Sports Science and Engineering Vol. 03 (2009) No. 01, pp. 017-021 Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study Zahari

More information

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Norbert Jendzelovsky 1,*, Roland Antal 1 and Lenka Konecna 1 1 STU in Bratislava, Faculty

More information

INTERFERENCE EFFECTS OF TWO BUILDINGS ON PEAK WIND PRESSURES

INTERFERENCE EFFECTS OF TWO BUILDINGS ON PEAK WIND PRESSURES The Seventh Asia-Pacific Conference on Wind Engineering, November 8-, 9, Taipei, Taiwan INTERFERENCE EFFECTS OF TWO BUILDINGS ON PEAK WIND PRESSURES Wonsul Kim, Yukio Tamura and Akihito Yoshida 3 Ph.D.

More information

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine Matheus C. Fernandes 1, David H. Matthiesen PhD *2 1 Case Western Reserve University Dept. of Mechanical Engineering,

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

Effects of wind incidence angle on wind pressure distribution on square plan tall buildings

Effects of wind incidence angle on wind pressure distribution on square plan tall buildings J. Acad. Indus. Res. Vol. 1(12) May 2013 747 RESEARCH ARTICLE ISSN: 2278-5213 Effects of wind incidence angle on wind pressure distribution on square plan tall buildings S.K. Verma 1, A.K. Ahuja 2* and

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

AIR FLOW DISTORTION OVER MERCHANT SHIPS.

AIR FLOW DISTORTION OVER MERCHANT SHIPS. AIR FLOW DISTORTION OVER MERCHANT SHIPS. M. J. Yelland, B. I. Moat and P. K. Taylor April 2001 Extended Abstract Anemometers on voluntary observing ships (VOS) are usually sited above the bridge in a region

More information

OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL. Rehan Yousaf 1, Oliver Scherer 1

OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL. Rehan Yousaf 1, Oliver Scherer 1 OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL Rehan Yousaf 1, Oliver Scherer 1 1 Pöyry Infra Ltd, Zürich, Switzerland ABSTRACT Gotthard Base Tunnel with its 57 km

More information

Computational Fluid Flow Analysis of Formula One Racing Car Triya Nanalal Vadgama 1 Mr. Arpit Patel 2 Dr. Dipali Thakkar 3 Mr.

Computational Fluid Flow Analysis of Formula One Racing Car Triya Nanalal Vadgama 1 Mr. Arpit Patel 2 Dr. Dipali Thakkar 3 Mr. IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Computational Fluid Flow Analysis of Formula One Racing Car Triya Nanalal Vadgama 1 Mr.

More information

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Investigation on 3-D of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Rohit Jain 1, Mr. Sandeep Jain 2, Mr. Lokesh Bajpai 3 1PG Student, 2 Associate Professor, 3 Professor & Head 1 2 3

More information

Validating CFD Simulation Results: Wind flow around a surface mounted cube in a turbulent channel flow

Validating CFD Simulation Results: Wind flow around a surface mounted cube in a turbulent channel flow Validating CFD Simulation Results: Wind flow around a surface mounted cube in a turbulent channel flow ISLAM ABOHELA 1, NEVEEN HAMZA 1, STEVEN DUDEK 1 1 School of Architecture, Planning and Landscape,

More information

A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS AND EXPERIMENTAL DATA OF SUBMERSIBLE PUMP

A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS AND EXPERIMENTAL DATA OF SUBMERSIBLE PUMP IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN 2321-8843 Vol. 1, Issue 3, Aug 2013, 57-64 Impact Journals A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE Proceedings of the 37 th International & 4 th National Conference on Fluid Mechanics and Fluid Power FMFP2010 December 16-18, 2010, IIT Madras, Chennai, India FMFP2010 341 MODELING AND SIMULATION OF VALVE

More information

Computational Analysis of Cavity Effect over Aircraft Wing

Computational Analysis of Cavity Effect over Aircraft Wing World Engineering & Applied Sciences Journal 8 (): 104-110, 017 ISSN 079-04 IDOSI Publications, 017 DOI: 10.589/idosi.weasj.017.104.110 Computational Analysis of Cavity Effect over Aircraft Wing 1 P. Booma

More information

A Study on the Effects of Wind on the Drift Loss of a Cooling Tower

A Study on the Effects of Wind on the Drift Loss of a Cooling Tower A Study on the Effects of Wind on the Drift Loss of a Cooling Tower Wanchai Asvapoositkul 1* 1 Department of Mechanical Engineering, Faculty of Engineering, King Mongkut s University of Technology Thonburi

More information

External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs

External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs Authors: Bo Cui, Ph.D. Candidate, Clemson University, 109 Lowry Hall, Clemson, SC 9634-0911, boc@clemson.edu David O. Prevatt, Assistant

More information

NUMERICAL SIMULATION OF STATIC INTERFERENCE EFFECTS FOR SINGLE BUILDINGS GROUP

NUMERICAL SIMULATION OF STATIC INTERFERENCE EFFECTS FOR SINGLE BUILDINGS GROUP NUMERICAL SIMULATION OF STATIC INTERFERENCE EFFECTS FOR SINGLE BUILDINGS GROUP Xing-qian Peng, Chun-hui Zhang 2 and Chang-gui Qiao 2 Professor, College of Civil Engineering, Huaqiao University, Quanzhou,

More information

CFD development for wind energy aerodynamics

CFD development for wind energy aerodynamics CFD development for wind energy aerodynamics Hamid Rahimi, Bastian Dose, Bernhard Stoevesandt Fraunhofer IWES, Germany IEA Task 40 Kick-off Meeting 12.11.2017 Tokyo Agenda BEM vs. CFD for wind turbine

More information

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder (AET- 29th March 214) RESEARCH ARTICLE OPEN ACCESS Experimental Investigation Of Flow Past A Rough Surfaced Cylinder Monalisa Mallick 1, A. Kumar 2 1 (Department of Civil Engineering, National Institute

More information

THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE

THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE S.Ramamurthy 1, R.Rajendran 1, R. S. Dileep Kumar 2 1 Scientist, Propulsion Division, National Aerospace Laboratories, Bangalore-560017,ramamurthy_srm@yahoo.com

More information

The evolution of the application of CFD on pedestrian wind comfort in engineering practice, a validation study

The evolution of the application of CFD on pedestrian wind comfort in engineering practice, a validation study EACWE 5 Florence, Italy 19 th 23 rd July 2009 Flying Sphere image Museo Ideale L. Da Vinci The evolution of the application of CFD on pedestrian wind comfort in engineering practice, a validation study

More information

Forest Winds in Complex Terrain

Forest Winds in Complex Terrain Forest Winds in Complex Terrain Ilda Albuquerque 1 Contents Project Description Motivation Forest Complex Terrain Forested Complex Terrain 2 Project Description WAUDIT (Wind Resource Assessment Audit and

More information

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN George Feng, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga, Ontario Vadim Akishin, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga,

More information

THREE DIMENSIONAL STRUCTURES OF FLOW BEHIND A

THREE DIMENSIONAL STRUCTURES OF FLOW BEHIND A The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 29, Taipei, Taiwan THREE DIMENSIONAL STRUCTURES OF FLOW BEHIND A SQUARE PRISM Hiromasa Kawai 1, Yasuo Okuda 2 and Masamiki Ohashi

More information

Wind pressure coefficient determination for greenhouses built in a reclaimed land using CFD technique

Wind pressure coefficient determination for greenhouses built in a reclaimed land using CFD technique Ref: 1064 Wind pressure coefficient determination for greenhouses built in a reclaimed land using CFD technique Hyun-seob Hwang and In-bok Lee, Department of Rural Systems Engineering, Research Institute

More information

Along and Across Wind Loads Acting on Tall Buildings

Along and Across Wind Loads Acting on Tall Buildings Along and Across Wind Loads Acting on Tall Buildings Aiswaria G. R* and Dr Jisha S. V** *M Tech student, Structural Engineering, Mar Baselios College of Engineering and Technology, Kerala aiswariagr@gmail.com

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information

Roof Mounted Wind Turbines: A Methodology for Assessing Potential Roof Mounting Locations

Roof Mounted Wind Turbines: A Methodology for Assessing Potential Roof Mounting Locations PLEA2013-29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany 10-12 September 2013 Roof Mounted Wind Turbines: A Methodology for Assessing Potential Roof Mounting Locations

More information

Numerical Simulation of Wind Effect on a Rooftop Solar Array

Numerical Simulation of Wind Effect on a Rooftop Solar Array J. Energy Power Sources Vol. 2, No. 8, 2015, pp. 317-322 Received: July 1, 2015, Published: August 30, 2015 Journal of Energy and Power Sources www.ethanpublishing.com Numerical Simulation of Wind Effect

More information

Influence of wing span on the aerodynamics of wings in ground effect

Influence of wing span on the aerodynamics of wings in ground effect Influence of wing span on the aerodynamics of wings in ground effect Sammy Diasinos 1, Tracie J Barber 2 and Graham Doig 2 Abstract A computational fluid dynamics study of the influence of wing span has

More information

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent Aerodynamics of : A Computational Fluid Dynamics Study Using Fluent Rohit Jain 1, Mr. Sandeep Jain, Mr. Lokesh Bajpai 1PG Student, Associate Professor, Professor & Head 1 Mechanical Engineering Department

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision J.Linortner & R.Faber Pöyry Energy GmbH, Turkey-Austria E.Üzücek & T.Dinçergök General Directorate of State Hydraulic

More information

Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects

Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects 53 MAKOTO KAWABUCHI *1 MASAYA KUBOTA *1 SATORU ISHIKAWA *2 As can be seen from

More information

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

CFD Analysis of Giromill Type Vertical Axis Wind Turbine 242 CFD Analysis Giromill Type Vertical Axis Wind Turbine K. Sainath 1, T. Ravi 2, Suresh Akella 3, P. Madhu Sudhan 4 1 Associate Pressor, Department Mechanical Engineering, Sreyas Inst. Engg. & Tech.,

More information

Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation

Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation Journal of Modern Transportation Volume 20, Number 1, March 2012, Page 44-48 Journal homepage: jmt.swjtu.edu.cn DOI: 10.1007/BF03325776 1 Numerical simulation and analysis of aerodynamic drag on a subsonic

More information

Wind tunnel tests of a non-typical stadium roof

Wind tunnel tests of a non-typical stadium roof Wind tunnel tests of a non-typical stadium roof G. Bosak 1, A. Flaga 1, R. Kłaput 1 and Ł. Flaga 1 1 Wind Engineering Laboratory, Cracow University of Technology, 31-864 Cracow, Poland. liwpk@windlab.pl

More information

CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack

CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 4 Ver. II (Jul. - Aug. 2016), PP 18-24 www.iosrjournals.org CFD Analysis ofwind Turbine

More information

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP 1 ANANTH S SHARMA, 2 SUDHAKAR S, 3 SWATHIJAYAKUMAR, 4 B S ANIL KUMAR 1,2,3,4

More information

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 1-10 TJPRC Pvt. Ltd., PRESSURE DISTRIBUTION OF SMALL WIND TURBINE

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY September 2009 ALDEN RESEARCH LABORATORY, INC.

More information

AIRFOIL PROFILE OPTIMIZATION OF AN AIR SUCTION EQUIPMENT WITH AN AIR DUCT

AIRFOIL PROFILE OPTIMIZATION OF AN AIR SUCTION EQUIPMENT WITH AN AIR DUCT THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1217-1222 1217 AIRFOIL PROFILE OPTIMIZATION OF AN AIR SUCTION EQUIPMENT WITH AN AIR DUCT by Li QIU a,b, Rui WANG a,*, Xiao-Dong CHEN b, and De-Peng WANG

More information

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Razeen Ridhwan, Mohamed Alshaleeh, Arunvinthan S Abstract: In the Aerodynamic performance of wind turbine blade by

More information

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Numerical Analysis of Wings for UAV based on High-Lift Airfoils Numerical Analysis of Wings for UAV based on High-Lift Airfoils Sachin Srivastava Department of Aeronautical Engineering Malla Reddy College of Engineering & Technology, Hyderabad, Telangana, India Swetha

More information

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge *Feng Wang 1), Jialing Song 2), Tuo Wu 3), and Muxiong Wei 4) 1), 2, 3), 4) Highway School, Chang

More information

ANALYSIS OF HEAT TRANSFER THROUGH EXTERNAL FINS USING CFD TOOL

ANALYSIS OF HEAT TRANSFER THROUGH EXTERNAL FINS USING CFD TOOL ANALYSIS OF HEAT TRANSFER THROUGH EXTERNAL FINS USING CFD TOOL B. Usha Rani 1 and M.E Thermal 2 1,2 Asst.Professor, Dadi Institute of Engineering and Technology, India Abstract-The rate of heat transfer

More information

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC!

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC! OUTLINE TACOMA NARROWS BRIDGE FLOW REGIME PAST A CYLINDER VORTEX SHEDDING MODES OF VORTEX SHEDDING PARALLEL & OBLIQUE FLOW PAST A SPHERE AND A CUBE SUMMARY TACOMA NARROWS BRIDGE, USA THE BRIDGE COLLAPSED

More information

Investigations on the Aerodynamic Forces of 2-D Square Lattice Tower Section Using CFD

Investigations on the Aerodynamic Forces of 2-D Square Lattice Tower Section Using CFD J. Energy Power Sources Vol. 1, No. 5, 2014, pp. 270-277 Received: August 14, 2014, Published: November 30, 2014 Journal of Energy and Power Sources www.ethanpublishing.com Investigations on the Aerodynamic

More information

Wind Loading Code for Building Design in Thailand

Wind Loading Code for Building Design in Thailand Wind Loading Code for Building Design in Thailand Virote Boonyapinyo a, Panitan Lukkunaprasit b Pennung Warnitchai c and Phoonsak Pheinsusom d a Associate Professor, Department of Civil Engineering, Thammasat

More information

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1 Advances in Natural Science Vol. 3, No. 2, 2010, pp. 244-20 www.cscanada.net ISSN 171-7862 [PRINT] ISSN 171-7870 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Numerical

More information

Free Surface Flow Simulation with ACUSIM in the Water Industry

Free Surface Flow Simulation with ACUSIM in the Water Industry Free Surface Flow Simulation with ACUSIM in the Water Industry Tuan Ta Research Scientist, Innovation, Thames Water Kempton Water Treatment Works, Innovation, Feltham Hill Road, Hanworth, TW13 6XH, UK.

More information

Analysis of wind resistance of high-rise building structures based on computational fluid dynamics simulation technology

Analysis of wind resistance of high-rise building structures based on computational fluid dynamics simulation technology International Journal of Heat and Technology Vol. 36, No. 1, March, 18, pp. 376-38 Journal homepage: http://iieta.org/journals/ijht Analysis of wind resistance of high-rise building structures based on

More information

Characteristics of Pedestrian Level Wind Environment in Twisted Wind Flow around Isolated Buildings

Characteristics of Pedestrian Level Wind Environment in Twisted Wind Flow around Isolated Buildings Characteristics of Pedestrian Level Wind Environment in Twisted Wind Flow around Isolated Buildings * X. Zhang ) A.U. Weerasuriya 2), K.T. Tse 3) and K.C.S. Kwok 4) ), 2) Department of Civil and Environmental

More information

Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM

Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM Nikolaos Stergiannis nstergiannis.com nikolaos.stergiannis@vub.ac.be

More information

Wind Microclimate Assessment

Wind Microclimate Assessment Australian Catholic University Pedestrian comfort at 115B Victoria Parade Pedestrian comfort at 115B Victoria Parade Quality Information Document 60519200 Client: Australian Catholic University ABN: 15050192660

More information

A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier

A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier Jeon-gi Lee*, Choul-jun Choi*, Nam-su Kwak*, Su-sang Park*

More information

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN Bridget M. Wadzuk 1 (Member, ASCE) and Ben R. Hodges 2 (Member, ASCE) ABSTRACT Modeling of dynamic pressure appears necessary to achieve a more robust

More information

Computational Analysis of the S Airfoil Aerodynamic Performance

Computational Analysis of the S Airfoil Aerodynamic Performance Computational Analysis of the 245-3S Airfoil Aerodynamic Performance Luis Velazquez-Araque and Jiří Nožička 2 Department of Mechanical Engineering National University of Táchira, San Cristóbal 5, Venezuela

More information

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT - 277 - NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT Iseler J., Heiser W. EAS GmbH, Karlsruhe, Germany ABSTRACT A numerical study of the flow behaviour

More information

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap U.Praveenkumar 1, E.T.Chullai 2 M.Tech Student, School of Aeronautical Science, Hindustan University,

More information

CYCLE ANALYSIS OF LINEAR COMPRESSORS USING THREE- DIMENSIONAL CFD

CYCLE ANALYSIS OF LINEAR COMPRESSORS USING THREE- DIMENSIONAL CFD CYCLE ANALYSIS OF LINEAR COMPRESSORS USING THREE- DIMENSIONAL CFD I. Y. An and Y. L. Lee Department of Mechanical Engineering, Kongju National University, Korea E-Mail: ylee@kongju.ac.kr ABSTRACT In order

More information

Basis of Structural Design

Basis of Structural Design Basis of Structural Design Course 10 Actions on structures: Wind loads Other loads Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Wind loading: normative references

More information

The Influence of Community Planning on Urban Thermal Environment

The Influence of Community Planning on Urban Thermal Environment 2012 International Conference on Environment Science and Engieering IPCBEE vol.3 2(2012) (2012)IACSIT Press, Singapoore The Influence of Community Planning on Urban Thermal Environment Chih-Hong Huang

More information

AIRFLOW AND TEMPERATURE FIELD CALCULATIONS FOR WINTER SPORTS FACILITIES

AIRFLOW AND TEMPERATURE FIELD CALCULATIONS FOR WINTER SPORTS FACILITIES AIRFLOW AND TEMPERATURE FIELD CALCULATIONS FOR WINTER SPORTS FACILITIES Andrea Frisque* Stantec Consulting, Vancouver BC V6B6A3, Canada Rowan, Williams, Davies & Irwin (RWDI), Vancouver, BC, V5Z 1K5, Canada**

More information

Bio-Effluents Tracing in Ventilated Aircraft Cabins

Bio-Effluents Tracing in Ventilated Aircraft Cabins Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Bio-Effluents Tracing in Ventilated Aircraft Cabins Petrone G. *, Cammarata L., Cammarata G. Department of Industrial and Mechanical Engineering,

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 227-238 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ CFD Analysis on Indoor Temperature and Velocity: Effects of Incident Wind Angle

More information

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14.

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14. Workshop 1: Bubbly Flow in a Rectangular Bubble Column 14. 5 Release Multiphase Flow Modeling In ANSYS CFX 2013 ANSYS, Inc. WS1-1 Release 14.5 Introduction This workshop models the dispersion of air bubbles

More information

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD http:// OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD Anand Kumar S malipatil 1, Anantharaja M.H 2 1,2 Department of Thermal Power Engineering, VTU-RO Gulbarga,

More information

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics Indian Journal of Science and Technology, Vol 9(45), DOI :10.17485/ijst/2016/v9i45/104585, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 CFD Study of Solid Wind Tunnel Wall Effects on

More information

Wind Flow Validation Summary

Wind Flow Validation Summary IBHS Research Center Validation of Wind Capabilities The Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test facility provides opportunities to simulate natural wind conditions

More information

FINAL REPORT. Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia

FINAL REPORT. Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia FINAL REPORT Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia Prepared for: Essendon Fields Pty Ltd Essendon Fields House Level 2, 7 English Street Essendon Fields

More information

The Study on the Influence of Gust Wind on Vehicle Stability Chen Wang a, Haibo Huang b*, Shaofang Xu c

The Study on the Influence of Gust Wind on Vehicle Stability Chen Wang a, Haibo Huang b*, Shaofang Xu c Applied Mechanics and Materials Submitted: 214-6-4 ISSN: 1662-7482, Vol. 598, pp 198-21 Accepted: 214-6-4 doi:1.428/www.scientific.net/amm.598.198 Online: 214-7-16 214 Trans Tech Publications, Switzerland

More information

The Effect of Von Karman Vortex Street on Building Ventilation

The Effect of Von Karman Vortex Street on Building Ventilation The Effect of Von Karman Vortex Street on Building Ventilation P.Praveen Kumar Abstract This paper deals with the utilisation of the von Karman vortex street principle to maximise air flow into buildings.

More information