Atmospheric Dispersion, Transport and Deposition. Dispersion. Wind Speed. EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D.

Size: px
Start display at page:

Download "Atmospheric Dispersion, Transport and Deposition. Dispersion. Wind Speed. EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D."

Transcription

1 Atmospheric Dispersion, Transport and Deposition EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D. Dispersion Atmospheric process affect dilution. Wind speed and lapse rate impact on emissions. Planetary Boundary Layer (PBL) Up to 2000 meters from surface Relatively stable layer in troposphere above PBL. Mixing in PBL is variable in short term. Wind Speed Varies with height. Profile is affected by topography. 1

2 Wind Speed The wind profile affects dilution (image from Boubel, 1994) Wind Direction Affected by meteorology, and topography. Depending on conditions, small changes can have big impact on pollution concentration. Quite variable Long range transport. Turbulence Mechanical Smaller in scale, regular pattern Work around edges of a plume Thermal Larger in scale, more variable Can transport larger bundles of air. 2

3 Mechanical turbulence Caused by air moving over and around structures/vegetation Increases with wind speed Affected by surface roughness Turbulence Turbulence will usually dilute pollutants Downwash is an exception. Thermal turbulence Caused by heating/cooling of the earth s surface Flows are typically vertical Convection cells of upwards of meters 3

4 Thermal turbulence Effects Enhances mixing/pollutant dispersion Downwash may result from mechanical turbulence Increases ground level concentrations Atmospheric stability Back to temperature profiles Atmospheric stability affects plume behavior and dispersion. Dry adiabatic lapse rate is constant, air cools as it rises degrees C per 1000 meters. Air contains water; it will cool at dry lapse rate until water starts condensing, then cool at (variable) wet adiabatic lapse rate degrees C per 1000 meters. Atmospheric Stability Environmental Lapse rate refers to the actual temperature profile, as impacted by meteorological variables. This is what can lead to temperature inversions, and stable or unstable air. 4

5 Atmospheric Stability The relationship between environmental and dry lapse rates determines stability of air. Here, we see a mixing height. Atmospheric stability As parcels of air rise, they are cool less than the environment and buoyancy is enhanced. Unstable air. Sunny days with low wind speeds. Atmospheric Stability Neutral conditions. Environmental Lapse rate is equal to dry lapse rate. Dividing line between stable and unstable conditions. Windy days or cloud cover 5

6 Atmospheric Stability Stable conditions. Air rises, but then is cooler than surrounding air, so falls back down. Night time with little or no wind. Atmospheric Stability Radiational inversion. Ground cools at night, air is stable near the ground. Types Radiational Subsidence Frontal Advective Inversions 6

7 Inversions Frontal -warm air overrides cooler air Advective - warm air flows over a cold surface or cold air Radiational inversions Result from radiational cooling of the ground Occur at night -nocturnal Typically surface based Radiational inversions Occur on cloudless nights Are intensified in river valleys Cause pollutants to be trapped 7

8 Radiational inversion Radiational inversions Breakup after sunrise Breakup results in elevated ground level concentrations Breakup described as a fumigation Radiational inversions Elevated inversions are formed over urban areas Due to heat island effect Due to dust dome 8

9 Dust dome and inversion Subsidence inversion Associated with high-pressure systems Inversion layer is formed aloft Covers hundreds of thousands of square kms Persists for days Subsidence inversion 9

10 Subsidence inversion Migrating high-pressure systems Semi-permanent marine high-pressure systems Results in large number of sunny calm days Inversion layer closest to the ground on continental side Responsible for air stagnation over Southern California Mixing Height Height of air that is relatively vigorously mixed and where dispersion occurs Varies from one region to another Mixing Heights 10

11 Atmospheric Stability Associated with high pressure systems. Subsiding air warms, becomes warmer than air below: inversion forms Stable for longer periods than radiational inversions. Stability and plume behavior Stability and plume behavior 11

12 Stability and plume behavior Stability and plume behavior Stability and plume behavior 12

13 Plume height depends on temperature of plume, and air at top of stack. Plume Height Dispersion Modeling Models can be used to predict dispersion and transport of stack emissions. The figure represents a Gaussian plume Air Pollution Modeling Now essential for effective planning and control. See EPA web site: dex.htm Modeling photochemical smog: calindex.htm 13

14 Urban Plume Consider all the sources in an urban region. Large geographic area Regional transport with weather systems. Photochemistry will occur in the plume. Long Range Transport Historical assumption: dispersion results in minimal effects distant from the source s: observed long range transport of ozone, with elevated levels at night. Acid rain issue, for example in the NE US. Arctic haze resulted form pollution emitted in Europe and Asia. Natural and anthropogenic pollution. Long Range Transport 14

15 Removal/deposition Atmospheric lifetimes Average of the life histories of all molecules of a substance May also be described as residence time Can be characterized by half life Time to decrease to 50% of initial value Removal Mechanisms Chemical reactions do this, as substances are converted, for example, from gas to particle. Sedimentation < 20 µ treat as gases 20 to 100 µ move with the plume, but drop due to gravity > 100 µ particles particles fall rapidly Removal Mechanisms Dry Deposition refers to particles impacting on surfaces of vegetation. This is described by a deposition velocity, and can include chemical reactions. Wet Deposition refers to scavenging in clouds (cloud droplets), or below clouds (rain droplets). 15

16 Deposition processes Dry deposition Transfer of gas/particulate phase substances to ground, water, vegetation by: Impaction Diffusion Settling Physiological uptake Deposition rates Depositional processes Wet deposition Processes by which gases/particles are brought to the earth s surface in aqueous form Absorption in cloud/rain droplets Particles serve as condensation nuclei in in-cloud processes Described as rainout 16

17 Emission inventories Emission inventories are essential for input in air pollution modeling. Tutorial is here: 19a/index.html 17

Vertical Motion and Atmospheric Stability

Vertical Motion and Atmospheric Stability Lesson 4 Vertical Motion and Atmospheric Stability This lesson describes the vertical structure of the atmosphere, atmospheric stability and the corresponding vertical motion. Adiabatic diagrams are introduced

More information

1. Large-scale temperature inversions.

1. Large-scale temperature inversions. Lecture 18. Local and regional pollution issues: plumes of pollution. Objectives: 1. Large-scale temperature inversions. 2. Plumes of pollution. Readings: Turco: p.128-135; Brimblecombe: p.130-138 1. Large-scale

More information

Air Pollution Dispersion

Air Pollution Dispersion Air Pollution Dispersion Dispersion Processes Convective Dispersion Air Parcel Dynamics Adiabatic Process Lapse Rate Equilibrium and Stability Atmospheric Stability Stability and Dispersion Temperature

More information

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology EVE 402/502 Air Pollution Generation and Control Chapter #3 Meteorology Introduction Meteorology is the study and forecasting of weather changes resulting from large-scale atmospheric circulation Characteristics

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 3 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Natural convection and turbulence are most likely to occur when: a) temperature decreases rapidly with

More information

Meteorology & Air Pollution. Dr. Wesam Al Madhoun

Meteorology & Air Pollution. Dr. Wesam Al Madhoun Meteorology & Air Pollution Dr. Wesam Al Madhoun Dispersion = Advection (Transport) + Dilution (Diffusion) Source Transport Receptor Re-entrainment Fick s law of diffusion J= - D * D C/Dx Where, J= Mass

More information

Chapter 2. Turbulence and the Planetary Boundary Layer

Chapter 2. Turbulence and the Planetary Boundary Layer Chapter 2. Turbulence and the Planetary Boundary Layer In the chapter we will first have a qualitative overview of the PBL then learn the concept of Reynolds averaging and derive the Reynolds averaged

More information

Local Winds. Please read Ahrens Chapter 10

Local Winds. Please read Ahrens Chapter 10 Local Winds Please read Ahrens Chapter 10 Scales of Motion Microscale: meters Turbulent eddies Formed by mechanical disturbance or convection Lifetimes of minutes Mesoscale: km s to 100 s of km s Local

More information

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams ATS 351 Lecture 6 Stability & Skew-T Diagrams To demonstrate stability, a parcel of air is used Expands and contracts freely Always has uniform properties throughout Air Parcel Air Parcel Movement: Why

More information

Scott Denning CSU CMMAP 1

Scott Denning CSU CMMAP 1 Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic Lapse Rates Dry and Moist Convective Motions Present Atmospheric Composition What

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the air temperature remains constant, evaporating water into the air will the dew point and the relative

More information

Adiabatic Lapse Rates and Atmospheric Stability

Adiabatic Lapse Rates and Atmospheric Stability 8 Adiabatic Lapse Rates and Atmospheric Stability Learning Goals After studying this chapter, students should be able to: 1. describe adiabatic processes as they apply to the atmosphere (p. 174); 2. apply

More information

Meteorology 2/6/2017. Wind, and its Interaction with Particle Plumes. Variation of wind speed with elevation. Variation of wind speed during the day

Meteorology 2/6/2017. Wind, and its Interaction with Particle Plumes. Variation of wind speed with elevation. Variation of wind speed during the day Meteorology The effect of wind, weather, and temperature conditions on the behavior of particle plumes Wind, and its Interaction with Particle Plumes Variation of wind speed with elevation Variation of

More information

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation.

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation. Chapter 6: Stability Concept of Stability Concept of Stability Lapse Rates Determine Stability and Stability Indices Air Parcel Expands as It Rises Air Parcel Expands As It Rises Air pressure decreases

More information

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle from: USGS http://water.usgs.gov/edu/watercycle.html Evaporation: enough water to cover the entire surface of Earth to 1 meter cycles

More information

PHSC 3033: Meteorology Stability

PHSC 3033: Meteorology Stability PHSC 3033: Meteorology Stability Equilibrium and Stability Equilibrium s 2 States: Stable Unstable Perturbed from its initial state, an object can either tend to return to equilibrium (A. stable) or deviate

More information

Cloud Development and Forms

Cloud Development and Forms Chapter 6 Lecture Understanding Weather and Climate Seventh Edition Cloud Development and Forms Redina L. Herman Western Illinois University Mechanisms That Lift Air When air lifts, clouds develop and

More information

Moisture and Stability in the Atmosphere

Moisture and Stability in the Atmosphere Moisture and Stability in the Atmosphere Humidity can be measured as: HUMIDITY Absolute humidity the mass of water vapour in a volume of air (g/m 3.) Relative Humidity the proportion of the actual mass

More information

DEPARTMENT OF ENVIRONMENTAL AFFAIRS AND TOURISM. Environmental Quality and Protection. Chief Directorate: Air Quality Management & Climate Change

DEPARTMENT OF ENVIRONMENTAL AFFAIRS AND TOURISM. Environmental Quality and Protection. Chief Directorate: Air Quality Management & Climate Change DEPARTMENT OF ENVIRONMENTAL AFFAIRS AND TOURISM Environmental Quality and Protection Chief Directorate: Air Quality Management & Climate Change NATIONAL AIR QUALITY MANAGEMENT PROGRAMME PHASE II TRANSITION

More information

What is Air Temperature? Temperature, Buoyancy, and Vertical Motion. How Atmospehric Temperature is Measured. Temperature Scales

What is Air Temperature? Temperature, Buoyancy, and Vertical Motion. How Atmospehric Temperature is Measured. Temperature Scales Temperature, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Temperature Lapse Rates Rising & Falling Motions in the Air What is Air Temperature? Temperature

More information

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 3, Lecture 1 Mass emission rate, Atmospheric Stability Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Review homework Review quiz Mass emission

More information

Meteorology I Pre test for the Second Examination

Meteorology I Pre test for the Second Examination Meteorology I Pre test for the Second Examination MULTIPLE CHOICE 1. A primary reason why land areas warm up more rapidly than water areas is that a) on land, all solar energy is absorbed in a shallow

More information

1. Atmospheric Diffusion of Stack Gases

1. Atmospheric Diffusion of Stack Gases 1. Atmospheric Diffusion of Stack Gases 5F: Atmospheric Diffusion & Field Experiment Atmospheric diffusion is the process of diluting air pollutants by atmospheric turbulences. Historically, Taylor, G.I.

More information

Chapter 4. Convec.on Adiaba.c lapse rate

Chapter 4. Convec.on Adiaba.c lapse rate Chapter 4 Convec.on Adiaba.c lapse rate 1.Outline: a. air parcel theory, adiabatic processes b. how do we define/determine atmospheric stability? 2.Readings: Chapter 4 VERTICAL STRUCTURE T STRATIFICATION

More information

ENVIRONMENTAL PHYSICS

ENVIRONMENTAL PHYSICS ENVIRONMENTAL PHYSICS Atmospheric Stability An understanding of why and how air moves in the atmosphere is fundamental to the prediction of weather and climate. What happens to air as it moves up and down

More information

REMINDERS: Problem Set 2: Due Monday (Feb 3)

REMINDERS: Problem Set 2: Due Monday (Feb 3) REMINDERS: Problem Set 2: Due Monday (Feb 3) Midterm 1: Next Wednesday, Feb 5 - Lecture material covering chapters 1-5 - Multiple Choice, Short Answers, Definitions - Practice midterm will be on course

More information

Wind: Small Scale and Local Systems Chapter 9 Part 1

Wind: Small Scale and Local Systems Chapter 9 Part 1 Wind: Small Scale and Local Systems Chapter 9 Part 1 Atmospheric scales of motion Scales of atmospheric circulations range from meters or less to thousands of kilometers- millions of meters Time scales

More information

Lesson 2C - Weather 2C-1-S190-EP

Lesson 2C - Weather 2C-1-S190-EP Lesson 2C - Weather 2C-1-S190-EP Fire Weather *Click on image to play video 2C-2-S190-EP A. Air Temperature The degree of hotness or coldness of a substance. 1. Air Temperature varies with: Time Location

More information

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately.

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately. Instructor: Prof. Seiberling PHYSICS DEPARTMENT MET 1010 2nd Midterm Exam October 28, 2002 Name (print, last rst): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Chapter 24 Solid to Liquid The process of changing state, such as melting ice, requires that energy be transferred in the form of heat. Latent heat is the energy absorbed or released

More information

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each)

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each) NAME: Section A. Circle the letter corresponding to the best answer. (1 point each) 1. Rainbows result from: a. refraction and reflection of sunlight by water droplets b. reflection of sunlight by oceans

More information

Local Winds & Microclimates. Unit 2- Module 1

Local Winds & Microclimates. Unit 2- Module 1 Local Winds & Microclimates Unit 2- Module 1 Objectives Overview of local winds (sea & land breezes, valley winds) Overview of microclimates (valley, urban, woodland) Local Winds Local Winds Local winds

More information

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces MET 200 Lecture 11 Local Winds Last Lecture: Forces Scales of Motion Eddies Sea Breeze Mountain-Valley Circulations Chinook - Snow Eater Drainage Wind - Katabatic Wind 1 2 Review of Forces 1. Pressure

More information

Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER

Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER Climate Weather and Identity Climate and weather have a large influence on how Canadians build their identity. We will study the factors that contribute

More information

ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS

ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS SUNEETHA RANI. JUPUDI Prof. M. PURNACHANDRA RAO Department of Physics, Andhra University, Visakhapatnam, India. ABSTRACT The SODAR echograms

More information

MET Lecture 8 Atmospheric Stability

MET Lecture 8 Atmospheric Stability MET 4300 Lecture 8 Atmospheric Stability Stability Concept Stable: Ball returns to original position Neutral: Ball stays wherever it is placed Unstable: Displacement grows with time. Atmospheric Stability

More information

Atmospheric & Ocean Circulation-

Atmospheric & Ocean Circulation- Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds

More information

Seasonal Evaluation of Temperature Inversion

Seasonal Evaluation of Temperature Inversion Seasonal Evaluation of Temperature Inversion Kandil, H A 1, Kader M M. A 2, Moaty, A A. 2, Elhadidi, B 3, Sherif, A.O. 3 The seasonal evaluation of the temperature inversion over Cairo-Egypt is examined

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Numerical investigation of the formation of elevated pollution layers over the Los Angeles air basin Rong Lu, R.P. Turco Department of Atmospheric Sciences, University of California, Los Angeles, 405 Hilgard

More information

VI. Static Stability. Consider a parcel of unsaturated air. Assume the actual lapse rate is less than the dry adiabatic lapse rate: Γ < Γ d

VI. Static Stability. Consider a parcel of unsaturated air. Assume the actual lapse rate is less than the dry adiabatic lapse rate: Γ < Γ d VI. Static Stability Consider a parcel of unsaturated air. Assume the actual lapse rate is less than the dry adiabatic lapse rate: Γ < Γ d VI. Static Stability Consider a parcel of unsaturated air. Assume

More information

Goals for today: continuing Ch 8: Atmospheric Circulation and Pressure Distributions. 26 Oct., 2011

Goals for today: continuing Ch 8: Atmospheric Circulation and Pressure Distributions. 26 Oct., 2011 Goals for today: 26 Oct., 2011 continuing Ch 8: Atmospheric Circulation and Pressure Distributions Examples of synoptic scale and mesoscale circulation systems that are driven by geographic diversity in

More information

Conditions for Offshore Wind Energy Use

Conditions for Offshore Wind Energy Use Carl von Ossietzky Universität Oldenburg Institute of Physics Energy Meteorology Group Detlev Heinemann Conditions for Offshore Wind Energy Use Detlev Heinemann ForWind Carl von Ossietzky Universität Oldenburg

More information

Clouds and More Clouds AOSC 200 Tim Canty. Class Web Site: Lecture 12 Oct Hot air rises!

Clouds and More Clouds AOSC 200 Tim Canty. Class Web Site:   Lecture 12 Oct Hot air rises! Clouds and More Clouds AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: How to make clouds pt 1. Lecture 12 Oct 4 2018 1 Hot air rises! What happens then? 2

More information

6.9B verify through investigations that thermal energy moves in a predictable pattern from warmer to cooler 6.5B recognize that a limited number of

6.9B verify through investigations that thermal energy moves in a predictable pattern from warmer to cooler 6.5B recognize that a limited number of 6.9B verify through investigations that thermal energy moves in a predictable pattern from warmer to cooler 6.5B recognize that a limited number of elements comprise the largest portion of oceans and atmosphere

More information

Global Weather Patterns

Global Weather Patterns Global Weather Patterns AZ State Standards Concept 2: Energy in the Earth System (Both Internal and External) Understand the relationships between the Earth s land masses, oceans, and atmosphere. PO 2.

More information

Cool Science Convection.. Take away concepts and ideas. State Properties of Air

Cool Science Convection.. Take away concepts and ideas. State Properties of Air Thermal Structure of the Atmosphere: Lapse Rate, Convection, Clouds Cool Science 2007 Lamont Open House Saturday, October 4th 10am - 4pm Free Shuttle buses to / from Amsterdam & 118th: 9:30am, every 30

More information

Atmospheric Stability/Skew-T Diagrams. Fall 2016

Atmospheric Stability/Skew-T Diagrams. Fall 2016 Atmospheric Stability/Skew-T Diagrams Fall 2016 Air Parcel Consider a parcel of infinitesimal dimensions that is: Thermally isolated from the environment so that its temperature changes adiabatically as

More information

A Guide To Aviation Weather

A Guide To Aviation Weather A Guide To Aviation Weather Richard D. Clark, Ph.D. Professor of Meteorology Student Assistants: Keith Liddick and Sam DeAlba Department of Earth Sciences Millersville University 16 NOV 2005 Outline Icing

More information

Review for the second quarter. Mechanisms for cloud formation

Review for the second quarter. Mechanisms for cloud formation Review for the second quarter Mechanisms for cloud formation 1 Rising air expands and cools; Sinking air compresses and warms. (18) (24) Dry adiabatic lapse rate (10 o C/km): the rate of temperature decrease

More information

LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS

LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS Introduction LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS This lab will provide students with the opportunity to become familiar with the concepts of atmospheric stability

More information

Chapter 3 Atmospheric Thermodynamics

Chapter 3 Atmospheric Thermodynamics Chapter 3 Atmospheric Thermodynamics Spring 2017 Partial Pressure and Dalton Dalton's law of partial pressure: total pressure exerted by a mixture of gases which do not interact chemically is equal to

More information

APPI PPG LECTURE 5: FURTHER METEOROLOGY

APPI PPG LECTURE 5: FURTHER METEOROLOGY LECTURE 5: FURTHER METEOROLOGY Introduction: This lecture covers Further Meteorology and aims to give you more of an understanding of advanced weather conditions and patterns. However Meteorology is a

More information

18 Flight Hazards over High Ground

18 Flight Hazards over High Ground 18 Flight Hazards over High Ground meteorology 18.1 Mountain Effect on Fronts When a warm front passes a mountain range, the air, is lifted over the mountain and will strengthen the formation of cloud

More information

3.3 USING A SIMPLE PARCEL MODEL TO INVESTIGATE THE HAINES INDEX

3.3 USING A SIMPLE PARCEL MODEL TO INVESTIGATE THE HAINES INDEX 3.3 USING A SIMPLE PARCEL MODEL TO INVESTIGATE THE HAINES INDEX Mary Ann Jenkins 1 Steven K. Krueger 2 and Ruiyu Sun 2 1 York University, Toronto, Canada 2 University of Utah, Salt Lake City, Utah 1. INTRODUCTION

More information

Atmospheric Stability & Cloud Development

Atmospheric Stability & Cloud Development Atmospheric Stability & Cloud Development This section looks at the basic cause of stability and instability in the atmosphere. Why some clouds are like tall towers, others huge flat sheets. We shall look

More information

6-7 AIR POLLUTION METEOROLOGY The Atmospheric Engine

6-7 AIR POLLUTION METEOROLOGY The Atmospheric Engine AIR POLLUTION 491 tration, the direct radiative effect of increasing CO2 alone is not sufficient to explain current trends that show an increase in nighttime temperatures but not an increase in daytime

More information

ATS 351, Spring 2010 Lab #6 Stability & Skew-T 48 points

ATS 351, Spring 2010 Lab #6 Stability & Skew-T 48 points ATS 351, Spring 2010 Lab #6 Stability & Skew-T 48 points 1. (5 points) What is an adiabatic process? Why are the moist and dry adiabatic rates of cooling different? An adiabatic process is a process that

More information

PGF. Pressure Gradient. Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 2/14/2017

PGF. Pressure Gradient. Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 2/14/2017 Winds Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 1. Pressure gradient force a. High pressure flows to low pressure b. Pressure gradient = difference in pressure

More information

METEOROLOGICAL FACTORS AFFECTING ENVIRONMENTAL NOISE PROPAGATION OVER SEVERAL KILOMETRES

METEOROLOGICAL FACTORS AFFECTING ENVIRONMENTAL NOISE PROPAGATION OVER SEVERAL KILOMETRES METEOROLOGICAL FACTORS AFFECTING ENVIRONMENTAL NOISE PROPAGATION OVER SEVERAL KILOMETRES Abstract Aleks Todoroski Todoroski Air Sciences 2b, 14 Glen Street Eastwood NSW 2122, Australia Email: atodoroski@airsciences.com.au

More information

Wind is caused by differences in air pressure created by changes in temperature and water vapor content.

Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Topic 8: Weather Notes, Continued Workbook Chapter 8 Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Wind blows from high pressure areas to low

More information

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Exam 1 Review Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Location on Earth (L04) Latitude & Longitude great circles, prime meridian, time zones, cardinal points, azimuth

More information

Chapter 8 Air Masses

Chapter 8 Air Masses Chapter 8 Air Masses Air Masses - 1 1. An Air Mass is a large body of air usually about 1500 km across and several km thick, that has homogeneous physical properties. 2. The important physical properties

More information

6.9B verify through investigations that thermal energy moves in a predictable pattern from warmer to cooler 6.5B recognize that a limited number of

6.9B verify through investigations that thermal energy moves in a predictable pattern from warmer to cooler 6.5B recognize that a limited number of 6.9B verify through investigations that thermal energy moves in a predictable pattern from warmer to cooler 6.5B recognize that a limited number of elements comprise the largest portion of oceans and atmosphere

More information

Lecture The Oceans

Lecture The Oceans Lecture 22 -- The Oceans ATMOSPHERE CIRCULATION AND WINDS Coriolis effect Prevailing winds and vertical circulation Zones of pressure, evap. & ppt. Factors modifying global winds -- Differential heating

More information

Horizontal distance, x

Horizontal distance, x Height, z z i pping Free Atmosphere Inversion Boundary Layer Troposphere ~11 km ~2 km Earth Horizontal distance, x Adapted from Meteorology for Scientists and Engineers A Technical Companion Book to C.

More information

2.4. Applications of Boundary Layer Meteorology

2.4. Applications of Boundary Layer Meteorology 2.4. Applications of Boundary Layer Meteorology 2.4.1. Temporal Evolution & Prediction of the PBL Earlier, we saw the following figure showing the diurnal evolution of PBL. With a typical diurnal cycle,

More information

I. Atmosphere. Maintains a balance between the amount of heat absorbed from the Sun and the amount of heat that escapes back into space.

I. Atmosphere. Maintains a balance between the amount of heat absorbed from the Sun and the amount of heat that escapes back into space. Earth s Atmosphere 1-1 I Objectives: Identify the gases in Earthś atmosphere Describe the structures of Earthś atmosphere. Explain what causes air pressure. I. Atmosphere Maintains a balance between the

More information

Water Budget I: Precipitation Inputs

Water Budget I: Precipitation Inputs Water Budget I: Precipitation Inputs Forest Cover Global Mean Annual Precipitation (MAP) Biomes and Rainfall Forests won t grow where P < 15 / yr Forest type depends strongly on rainfall quantity, type

More information

ESCONDIDO FIRE DEPT TRAINING MANUAL Section Engine Module Page 1 of 15 Wildland Fire Weather Revised

ESCONDIDO FIRE DEPT TRAINING MANUAL Section Engine Module Page 1 of 15 Wildland Fire Weather Revised Engine Module Page 1 of 15 WEATHER Weather is the most critical element of fire behavior. Weather is also the most unpredictable element. Firefighting personnel should be knowledgeable in local weather

More information

Water Budget I: Precipitation Inputs

Water Budget I: Precipitation Inputs Water Budget I: Precipitation Inputs Forest Cover Forests and Rainfall Forests won t grow where P < 15 / yr Forest type depends strongly on rainfall quantity, type (snow, rain) and timing (summer, winter)

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

Chapter 7 Weather and Climate

Chapter 7 Weather and Climate Chapter 7 Weather and Climate *Describe what weather is, what affects it, and where it occurs. *Explain the connection between air pressure and wind. * *Many factors affect a region s weather. * *atmosphere

More information

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery Overview Directions: Complete the concept map using the terms in the list below. weather exosphere coldest air temperature ionosphere stratosphere 1. which is the region of space travel thermosphere which

More information

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Structure Consists of Layers Separated by Temperature Stratosphere: Temperature

More information

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 5 Winds, Oceans, Weather, and Climate Section 1 Global Wind Patterns and Weather What Do You See? Learning Outcomes In this section, you will Determine the effects of Earth s rotation and the uneven

More information

Unit Test Study Guide:

Unit Test Study Guide: Name: Homeroom: Date: Unit 6: Meteorology Study Guide Unit Test Study Guide: Atmosphere & Weather Use the summary points below as a resource to help you study for our unit test Monday! EARTH S ATMOSPHERE:

More information

Earth s Atmosphere. Atmospheric Gases. Other Gases. Solids in the Atmosphere

Earth s Atmosphere. Atmospheric Gases. Other Gases. Solids in the Atmosphere Earth s Atmosphere 1-1 I Atmospheric Gases Earth s Atmosphere extends from earth s surface to outer space. It is made up of a mixture of gases with some solids and liquids. Other Gases Water Vapor in the

More information

Atmospheric Motions & Climate

Atmospheric Motions & Climate Atmospheric Motions & Climate 20-1 Vertical Atmospheric Motion Hydrostatic Balance Non-hydrostatic Balance Science Concepts Newtonʼs Laws of Motion Vertical Forces Pressure Gradient Force Gravitational

More information

Atmospheric Gases. Earth s Atmosphere extends from earth s surface to outer space. It is made up of a mixture of gases with some solids and liquids.

Atmospheric Gases. Earth s Atmosphere extends from earth s surface to outer space. It is made up of a mixture of gases with some solids and liquids. Earth s Atmosphere 1-1 I Objectives: Identify the gases in Earthś atmosphere Describe the structures of Earthś atmosphere. Explain what causes air pressure. Atmospheric Gases Earth s Atmosphere extends

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM 1 TEM: 0643 OM-RT - Weather - hap. 6 OD_PREG: PREG20098600 (5301) PREGUNT: Every physical process of weather is accompanied

More information

The change in temperature as air rises or descends d in the atmosphere. This change is measured by a lapse rate

The change in temperature as air rises or descends d in the atmosphere. This change is measured by a lapse rate Adiabatics The change in temperature as air rises or descends d in the atmosphere. This change is measured by a lapse rate oftenplotted on an adiabatic chart. Such processes are closely connected to precipitation

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

The Hydrological Cycle

The Hydrological Cycle Introduction to Climatology GEOGRAPHY 300 The Hydrological Cycle Tom Giambelluca University of Hawai i at Mānoa Atmospheric Moisture Changes of Phase of Water Changes of Phase of Water 1 Changes of Phase

More information

= y y. In meteorological parlance, terms such as the above are known as

= y y. In meteorological parlance, terms such as the above are known as Mesoscale Meteorology: The Planetary Boundary Layer 8 March 017 Introduction The planetary boundary layer, sometimes referred to as the atmospheric boundary layer, is a layer of finite depth over which

More information

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions.

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions. Santa Ana Winds Surface weather map showing typical Santa Ana conditions. High Desert Elevation ~1500-2000 ft Santa Ana Winds ~1500 meters 0 meters Santa Ana Winds ~875 mb ~1500 meters ~875 mb Horizontal

More information

Atmospheric & Ocean Circulation- I

Atmospheric & Ocean Circulation- I Atmospheric & Ocean Circulation- I First: need to understand basic Earth s Energy Balance 1) Incoming radiation 2) Albedo (reflectivity) 3) Blackbody Radiation Atm/ Ocean movement ultimately derives from

More information

Length of day for a full year. Ocean Gyres. Wet. Adiabatic. lapse rate, starts at. dewpoint Dry Adiabatic lapse rate

Length of day for a full year. Ocean Gyres. Wet. Adiabatic. lapse rate, starts at. dewpoint Dry Adiabatic lapse rate Vernal Equinox March 20, 11:57 AM, CDT Sun will rise exactly in the east and set exactly in the west. All latitudes get 12 hours of day and 12 hours of dark. Length of day for a full year Wet Adiabatic

More information

Water on Earth. How do oceans relate to weather and the atmosphere? Solar Radiation and Convection Currents

Water on Earth. How do oceans relate to weather and the atmosphere? Solar Radiation and Convection Currents Earth is often called the Blue Planet because so much of its surface (about 71%) is covered by water. Of all the water on Earth, about 96.5% is held in the world s oceans. As you can imagine, these oceans

More information

ATMO 551b Spring Flow of moist air over a mountain

ATMO 551b Spring Flow of moist air over a mountain Flow of moist air over a mountain To understand many of the implications of the moist and dry adiabats and the control of moisture in the atmosphere and specifically why there are deserts, it is useful

More information

Weather and Climate Jim Keller & Paul Belanger. Classroom assistant: Fritz Ihrig. Week 3: January 29 TH, Announcements

Weather and Climate Jim Keller & Paul Belanger. Classroom assistant: Fritz Ihrig. Week 3: January 29 TH, Announcements Weather and Climate Jim Keller & Paul Belanger Classroom assistant: Fritz Ihrig Week 3: January 29 TH, 2019 1 Announcements Fritz Ihrig; classroom assistant, liaison to OLLI: fgihrig@msn.com ; h. 303-526-1750

More information

Atmosphere Glencoe. Name

Atmosphere Glencoe. Name Atmosphere 2005 Glencoe Name Note-taking Worksheet Atmosphere Section 1 Earth s Atmosphere A. thin layer of air that protects the Earth s surface from extreme temperatures and harmful Sun rays B. Atmospheric

More information

Chapter 3. Solids, Liquids, and Gases

Chapter 3. Solids, Liquids, and Gases Chapter 3 Solids, Liquids, and Gases Section 1: States of Matter Learning Objectives: Describe the characteristics of a solid Describe the characteristics of a liquid Describe the characteristics of a

More information

Atmospheric Stability. GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6

Atmospheric Stability. GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6 Atmospheric Stability GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6 Last lecture: Thanks to Dr. Stewart! Hydrologic cycle! Humidity! Diabatic: convection, conduction, radiation; mixing! Adiabatic: change

More information

CHAPTER 9. More on meteorology

CHAPTER 9. More on meteorology CHAPTER 9 More on meteorology 1). Atmospheric Pressure Atmospheric pressure is the pressure with which the atmosphere acts downwards due to its weight. Pressure decreases with altitude because the column

More information

Professor Alan H. Stein November 10, 2004

Professor Alan H. Stein November 10, 2004 Mathematics 108 Professor Alan H. Stein November 10, 2004 SOLUTIONS 1. (10 points) Consider a one-dimensional diffusion situation where a gas is of mass 15 grams is released in the center of a thin tube.

More information

Overview: Curriculum Goals: Materials: Explore:

Overview: Curriculum Goals: Materials: Explore: Overview: Students will study air quality. They will examine the ways that wildfire smoke affects the air. They will recognise why people are evacuated when air becomes smoke filled. Curriculum Goals:

More information

Weather and Meteorology Sheet 1 Adiabatic Processes The definition is:- A system where heat is neither added nor taken from a process.

Weather and Meteorology Sheet 1 Adiabatic Processes The definition is:- A system where heat is neither added nor taken from a process. Weather and Meteorology Sheet 1 Adiabatic Processes The definition is:- A system where heat is neither added nor taken from a process. The expansion and compression of gases are adiabatic. Consider the

More information

14 Oct., Dr. Wilson will post Quiz 2 correct answers and scores over the weekend. Today we begin Ch. 6 Cloud Development and Forms

14 Oct., Dr. Wilson will post Quiz 2 correct answers and scores over the weekend. Today we begin Ch. 6 Cloud Development and Forms 14 Oct., 2011 Dr. Wilson will post Quiz 2 correct answers and scores over the weekend Today we begin Ch. 6 Cloud Development and Forms Vertical motion is key in relation to cloud development, and vertical

More information

Convection Current Exploration:

Convection Current Exploration: Heat on Earth 8.10A RECOGNIZE THAT THE SUN PROVIDES THE ENERGY THAT DRIVES CONVECTION WITHIN THE ATMOSPHERE AND OCEANS, PRODUCING WINDS AND OCEAN CURRENTS [INCORPORATE 6.6B INTO CONVECTION] A few reminders

More information

Stormy Weather. tropopause. z i

Stormy Weather. tropopause. z i Stormy Weather tropopause z i z x High Low Stormy Weather Tropopausez Venting by thunderstorms y Venting by fronts x Stormy Weather Height, z tropopause clouds clouds z i BL n cold air warm air z i BL

More information