RESEARCH ON THE WIND LOAD PARAMETERS AND THE WIND FENCES BEHAVIOR FOR WIND FENCES OF RAILWAY BRIDGE

Size: px
Start display at page:

Download "RESEARCH ON THE WIND LOAD PARAMETERS AND THE WIND FENCES BEHAVIOR FOR WIND FENCES OF RAILWAY BRIDGE"

Transcription

1 RESEARCH ON THE WIND LOAD PARAMETERS AND THE WIND FENCES BEHAVIOR FOR WIND FENCES OF RAILWAY BRIDGE Shi-xiong Zheng Professor, School of Civil Engineering, Southwest Jiaotong University Chengdu Sichuan , PR China, ABSTRACT In southern Xingjiang autonomous region of China, the wind fence is installed on the railway bridge to keep the operation safety and on time of train in strong winds. can reduce wind loads acting on train and increase critical wind velocity of overturning, but increase the wind load on the bridge too. In this paper, the wind load parameters of wind-fence, trains and beams are studied with the method of CFD and wind tunnel model test. The effects of the parameters such as height and porosity of wind are investigated. The operation safety analysis of train is performed. KEYWORDS: WIND FENCES, COMPUTATIONAL FLUID DYNAMICS, WIND TUNNEL TEST Introduction The southeast coast region and Xinjiang autonomous region of China are two main areas where always be attacked by strong wind. In Xinjiang autonomous region, the strong wind occurs in spring and autumn because of the cold air. However, in the southeast coast region, the strong wind does in summer and autumn due to the typhoon. The basic wind speed of the two areas may be greater than 40m/s. Recently, the railways of Xinjiang are often hit by gale and lead to big hazards. The trains especially box wagon are derailed or constrained and even turn over due to strong wind. In order to ensure safe operation of trains and enhance the capacity of trains passing through, setting up wind fence on roadbeds or on bridge is the most effective measures[j.d.holmes 001 and S. Charuvisit et al 004]. On the railway from Lanzhou to Xinjiang, the railway wind structure is composed of windbreaks and wind. The windbreaks have been used to the roadbed. The wind are always employed to the bridge. The wind were installed on the wind-fence-bridge. The wind-fence-bridge is the special bridge only used to bearing the wind. It stands alone, located at the windward of the bridge of railway and parallel to the bridge of railway. This wind measure is economical for the low bridge with height less than 10m and needs the good geological conditions. For the new or high bridge, it is much more expensive to build the wind-fence-bridge and gives rise to poor visual effects. So, installing the wind on the railway bridge is the economical and practical measure for the new railways. To guarantee the train running safety and reducing the number of train stopping due to strong wind, it is the most effective measures to install the wind on the railways bridge. The bridge wind can improve the aerodynamic stability of trains, but increase the wind load on the bridge and affect the design of bridge. In this paper, systematically analysis and wind tunnel model testing were carried out. The more reasonable bridge wind structure

2 was researched. The wind-load parameters and wind behavior are investigated[k.g. Ranga Raju 1976]. The research of bridge wind behavior can be carried out in accordance with the following two methods: computational fluid dynamics (CFD) numerical simulation and wind tunnel model testing[simiu,e.et al.1986]. The method of CFD may be lower precision than wind tunnel model testing method, but it is low cost and can analyze the full-scale structure. The wind tunnel model test is only for the scale model. In this paper, both of methods are adopted. No. railway line from Turofan to Kuerle in South-Xinjiang passes through three draught areas, where the basic wind velocity is larger than 40m/s. Toudao river bridge which is 59m high is the highest bridge in the draught areas. By the methods of CFD simulation and wind tunnel-test, the wind load parameters of bridge wind, train and bridge were systematically studied. The wind shield effect for difference height and porosity are analyzed. In this paper, Toudao river bridge is taken as example of the case study. It crosses perpendicularly to the valley of Toudao river. The records of the strong wind velocity at the bridge site shows, at the height of 10m, the largest 10min mean wind speed for return period 50 years is 47.0m/s, and 50.5m/s for return period 100 years. The basic wind speed for Toudao river bridge is 50.5m/s. The path and direction of the strong wind are very stable above Beaufort scale 8. The changing of wind direction is very small and always flowing along the river valley. So only the cross-bridge wind is taken into account. The Toudao river bridge is composed of many spans of simple supported. The spans are all 3m. The railway beam is composed of four T-section beams and the railway is two-lane railway layout. By analysis the terrain roughness of the site of Toudao river bridge, the terrain roughness height and its characters were acquired. The terrain roughness height Z 0 0.5~ 0.5mm. The roughness is closed to the snow surface with the depth of 0cm or more. So the terrain roughness is classified to category of A. The exponent of the power law profile of the wind speed contour lineα=0.073 and at the bridge site of 60m height, the largest mean wind speed averaged over a period of 10min is 57.3m/s with the return period 50 years, the largest mean wind speed averaged over a period of 10min is 61.6m/s with the return period of 100 years. At the height of 0m, the mean wind speed averaged over a period of 10min V 10 and the instantaneous wind speed Vs is satisfied the following formula Vs=1.1051V (1) and the correlative coefficient is Calculation the Load Parameters of with CFD By the method of Computational Fluid Dynamics, the wind load parameters of wind are calculated [J.D.Holmes 001 and C.W. Letchford el al 1994]. The software of Fluent 6.0 is used, which is composed of pre-processor module Gambit, solver module Fluent and other auxiliary module. The analysis process is as follows. Firstly, building computation models with Gambit; then, defining boundary conditions, flowing field characteristics, flowing field parameters, analysis parameters and so on with Fluent; finally, calculating and analyzing. The coordinate system is defined as follows: x-axis is the same as the transverse direction of bridge, the y-axis is vertical upward; the z-axis is longitudinal along the bridge at the bottom of rails. Accordingly, tri-component forces, which are drag force, lift force and pitching moment, of trains, beam, wind can be expressed as F x F y and M z respectively:

3 F x 1 ρ = V HBCx ; Fy V HBCz 1 1 = ρ ; M z = ρ V H BCMz Where ρ is air density; V is wind speed; H and B are structural characteristic scales. For simplification, H or B for the trains, beam,wind can be same, and H is 3m, B is 1m in this paper. C C C x y Mz are the force coefficients which are respectively drag coefficients,lift coefficients and pitching moment coefficient. When caculating, the passenger train is taken as an example, the wind comes in the cross-bridge direction, the wind speed is 40m/s. The different porositys and heights of wind are considered. The bridge is composed of 4 T-beam. 1 studied cases are performed. Show in table 1. The Fig.1 and Fig. show the wind speed distributional and the total pressure distributional in the region of calculation for the NO.3 studied case respectively. Table. illustrates the force coefficients of trains, beam, wind under each studied case. Fig.1. Nephogram of Speed Fig.. Nephogram of Total Pressure It can be see from table. After setting up the wind, the coefficients of drag force and pitching moment of train reduce significantly and the lift force coefficients of train change greaterly. When wind is 3m high and the porosity is 1.6%, the drag force and pitching moment of train are only about % and 3% of the condition of no wind respectively. When wind wall is 3m high and the porosity is 30%, the drag force and pitching moment of train are only about 9% and 8% of the condition of no wind respectively.when wind is 3.5m high and the porosity is 30%, the drag force and pitching moment of train are only about % and 3% of the condition of no wind respectively. So, setting up wind wall will can improve the safe operation of trains significantly. Comparing the studied case No., No.4 and No. 5, the height of wind are 3.0m,.5m and 3.5m respectively, and their porosity are same. It can be seen, the drag force, lift force and pitching moment of trains decrease with the height of wind increases. drag force and pitching moment of wind increase slightly with the height of wind increases.

4 Table 1 Studied Case for CFD Number of Studied Case Height of -fence(m) porosity of -fence Rail line Located by Train 1 none none ward side % ward side % ward side % ward side % ward side % none % Leeward side % ward side % Leeward side % none % Leeward side % none Studied Case Table Force Coefficients of train, and beam Structural Force Coefficients Studied Structural Force Coefficients C X C Y C MZ Case C X C Y C MZ beam beam / / / train train beam beam train train beam beam train train beam beam train train beam beam train train beam beam train train For the studied case No., No.3 and No.8, they have the same height of wind but the porosity are 30%,1.6% and 0% respectively. the drag force, lift force and pitching moment of trains decrease with the porosity decreases. It can also see, train on or not on the bridge has slight effect on wind load of wind and the drag forces of beam. The wind load of wind and bridge have little relation with whether train is at the windward side of rails or the leeward side od rails. The the drag force and pitching moment of train at windward side are greater than that at leeward side. So, when the tain runs at windward side rails, it will be more unfavourable.

5 Fig.3 illustrates the force coefficients of train changing with different passing speeds. They can be get by CFD dynamic grid technology. In this paper, Only when the height of wind is 3.0m and its porosity is 30% is considered Force coeffcients Cx Cy C Mz Speed of train(km/h) Fig. 3. Force Coefficients of train changing with Train Speed Tunnel Model Test for the Load Parameters tunnel model test is done to measure the force coefficients of wind, bridge and train. Considering the geometrical size of train, height of bridge beam, sectional size of wind tunnel, requirement of obstructive degree and simulative need on the whole, the geometric scale of wind tunnel test model (including wind, bridge, train and so on) is taken 1:30. The model of train or bridge is made of high-quality timber and bridge is made of mm thickness aluminous plate punched with holes. MODEL AND TESTING EQUIPMENT The wind tunnel model test aims at the engineering condition of height of 3m and ventilate rate of 30%. The whole length of wind tunnel testing model is.1m,height of wind wall model is 100mm and to the bridge model,the width is 303m, the height is 108mm. The test was done in the wind tunnel at Southwest Jiaotong University(XNJD-1). The wind tunnel section is.4m width and.0m height. The test wind speed in the section can change from 0.5m/s to 45m/s. The test is done in the condition of uniform flow. Hot-wire wind speeding probes are installed at windward side of model to measure wind speed. testing wind speed is 0m/s,30m/s,40m/s. The coordinate system of model is same as above CFD calculation. THE TESTING RESULTS AND ANALYSIS tunnel test case and testing results under each case are showed in Tabel3. In accordance with CFD calculation, the characteristic sizes of train, beam,wind are taken uniformly as H=3m and B=1m when caculating the force coefficients. The test results shows that wind loads of train,wind and beam under three test wind speed are in good agreement. That is to say, the force coefficients has little dependence on the wind speed.

6 It can be conclusion, when wind is 3.0m height and porosity rate of 30%, the drag forces coefficient of train is 30% times greater than that of no wind and pitch moment coefficient is about 33.5% times greater than that of no wind. Comparing results of wind tunnel with that of CFD, we can see that the force coefficients from wind tunnel is in good accordance with that from CFD. TABLE. 3. Force Coefficient of beam, and Train under Each test case Test Case Characteristics of Fences Location of Train 1 No wall windward side 3.0m height and 30% porosity 3 3.0m height and 30% porosity 4 3.0m height and 30% porosity windward side leeward side no train Structure Force Coefficient C X C Y C MZ beam wind / / / train beam wind train beam wind train beam wind train Analysis the Operation Safety of Train The CFD calculating results and the results form wind tunnel test are all show that it is move unsafely when the train running at the railway of windward side. So the operation safety analysis of train is focused on this state. The method of quasi-static is used to operation safety analysis. Ignoring the influences of coupling gear force causing by other vehicle, disregarding the oscillating load of train, the wind loads are regarded as static load. The effects of crooked curve or orbit and swing load of train are ignored. Only single vehicle is considered saftly. The passenger train which is called YZ5k is taked into considered. Its net weight is 45.6t. The distance between two contacting spot of two wheels at each sides of train is 1.5m. The train overturning coefficient is taken as 0.8 and the moment of self-stability is 73.6kN.m. Table 4 shows the relation between train speed,dangerous turning over wind speed (instantaneous wind speed) and 10min average wind speed. It can be see, when the train is at the state of motionless, the overturning instantaneous wind speed is 56m/s. that is to say, when the transient wind speed is larger than 56m/s,the overturning moment causing by wind will be larger than stable moment. And the train is in dangerous state. The wind speed is called dangerous wind speed. According to the formula (1), the 10min average wind speed can also be get. Also shows in Table 4.

7 It can also be seen. with the train speed increases, the dangerous wind speed will decreases. When the train runs under the speed of 160km/h, the average turning over wind speeds at the height of bridge are all greater than the largest wind speed of Beaufort scale 1 wind. The threshold value of wind velocity for safety operation of train can be enhanced to above Beaufort scale 1 wind with rational wind. Table 4 Relation of Train Speed, Dangerous Turning Over Speed and Speed(10min) Speed of train (km/h) Dangerous turning over wind speed (transient, m/s) wind speed(10min average m/s) Conclusion By wind tunnel model testing and CFD simulation to the wind load parameters of wind, bridge and train, the following conclusion can be made: 1) The force coefficient results from wind tunnel test and from CFD are in good accordance. According to the CFD calculating, the wind pressure coefficient of wind distributes evenly along the height. ) The drag-force, overturning moment and other wind loads of train decrease obviously after setting up wind. When the wind- is 3.0m height and the porosity is 1.6%, the drag force coefficient of train is 3% of the coefficient without setting wind, and the overturn moment coefficient of train is 5% of the coefficient without setting wind. When the wind- is 3.0m height and the porosity is 30%, the drag force coefficient of train is 30% of the coefficient without setting wind, and the overturn moment coefficient of train is 33.5% of the coefficient without setting wind. When the wind- is 3.5m height and the porosity is 30%, the drag force coefficient of train is % of the coefficient without setting wind, and the overturn moment coefficient of train is 3% of the coefficient without setting wind. 3) With the increasing of wind fence height, coefficients of drag force and pitch moments of train decrease slightly, but the coefficients of lift force of train increase. 4) With the porosity of wind fence decreasing, the coefficients of drag force and pitch moments of train decrease, but the coefficients of lift force of train increase. The changing of the porosity of wind (limited to 0%-30%) has little effect on the coefficients of drag force and pitch moments. 5) The train running at the windward side railway or at leeward side railway, it has little affect on the wind loads of wind, but has greatly affect on the wind load of train itself. The wind load of train is larger when the train running at the windward side of railway. 6) It is proved a good wind shield effect can be expected with wind of 3m or 3.5m high and the porosity of 30%. The higher of the wind, the larger wind load of the bridge. The threshold value of wind velocity for safety operation of train can be enhanced to above Beaufort scale 1 wind with rational wind.

8 References Simiu,E., and Scanlan, R.H.(1986), effects on structures", d Ed,. John Wiley and Sons, New York, N.Y.. J.D.Holmes(001), loading of parallel free-standing walls on bridges, cliffs, embankments and ridges [J], Journal of Engineering and Industrial Aerodynamics,89, S. Charuvisit, K. Kimura, Y. Fujino(004), Effects of wind fence on a vehicle passing in the wake of a bridge tower in cross wind and its response [J], Journal of Engineering and Industrial Aerodynamics,9, K.G. Ranga Raju, J. Loeser, E.J. Plate(1976), Velocity profiles and fence drag for a turbulent boundary layer along smooth and rough flat plates [J], J. Fluid Mech. 76, C.W. Letchford, J.D. Holmes (1994), loads on free-standing walls in turbulent boundary layers [J], J. Eng. Ind. Aerodyn. 51,1 7.

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge *Feng Wang 1), Jialing Song 2), Tuo Wu 3), and Muxiong Wei 4) 1), 2, 3), 4) Highway School, Chang

More information

Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind

Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind Taizhong Xie

More information

The Study on the Influence of Gust Wind on Vehicle Stability Chen Wang a, Haibo Huang b*, Shaofang Xu c

The Study on the Influence of Gust Wind on Vehicle Stability Chen Wang a, Haibo Huang b*, Shaofang Xu c Applied Mechanics and Materials Submitted: 214-6-4 ISSN: 1662-7482, Vol. 598, pp 198-21 Accepted: 214-6-4 doi:1.428/www.scientific.net/amm.598.198 Online: 214-7-16 214 Trans Tech Publications, Switzerland

More information

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,

More information

Aerodynamic Performance of 160km Box Car

Aerodynamic Performance of 160km Box Car Aerodynamic Performance of 16km Box Car *Tianyun Dong 1) and Xifeng Liang 2) 1), 2) Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information

Wind tunnel test and numerical simulation of wind pressure on a high-rise building

Wind tunnel test and numerical simulation of wind pressure on a high-rise building Journal of Chongqing University (English Edition) [ISSN 1671-8224] Vol. 9 No. 1 March 2010 Article ID: 1671-8224(2010)01-0047-07 To cite this article: AL ZOUBI Feras, LI Zheng-liang, WEI Qi-ke, SUN Yi.

More information

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Investigation on 3-D of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Rohit Jain 1, Mr. Sandeep Jain 2, Mr. Lokesh Bajpai 3 1PG Student, 2 Associate Professor, 3 Professor & Head 1 2 3

More information

NUMERICAL SIMULATION OF STATIC INTERFERENCE EFFECTS FOR SINGLE BUILDINGS GROUP

NUMERICAL SIMULATION OF STATIC INTERFERENCE EFFECTS FOR SINGLE BUILDINGS GROUP NUMERICAL SIMULATION OF STATIC INTERFERENCE EFFECTS FOR SINGLE BUILDINGS GROUP Xing-qian Peng, Chun-hui Zhang 2 and Chang-gui Qiao 2 Professor, College of Civil Engineering, Huaqiao University, Quanzhou,

More information

Wind tunnel tests of a non-typical stadium roof

Wind tunnel tests of a non-typical stadium roof Wind tunnel tests of a non-typical stadium roof G. Bosak 1, A. Flaga 1, R. Kłaput 1 and Ł. Flaga 1 1 Wind Engineering Laboratory, Cracow University of Technology, 31-864 Cracow, Poland. liwpk@windlab.pl

More information

SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DECK WITH CENTRAL SLOT

SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DECK WITH CENTRAL SLOT The Seventh Asia-Pacific Conference on Wind Engineering, November 8-, 009, Taipei, Taiwan SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DEC WITH CENTRAL SLOT Le-Dong Zhu, Shui-Bing

More information

Pressure coefficient on flat roofs of rectangular buildings

Pressure coefficient on flat roofs of rectangular buildings Pressure coefficient on flat roofs of rectangular buildings T. Lipecki 1 1 Faculty of Civil Engineering and Architecture, Lublin University of Technology, Poland. t.lipecki@pollub.pl Abstract The paper

More information

COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND

COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND WIND TUNNEL EXPERIMENTS FOR PEDESTRIAN WIND ENVIRONMENTS Chin-Hsien

More information

EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES

EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 29, Taipei, Taiwan EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES Yasushi Uematsu 1, Koichi Nakahara 2,

More information

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Numerical Analysis of Wings for UAV based on High-Lift Airfoils Numerical Analysis of Wings for UAV based on High-Lift Airfoils Sachin Srivastava Department of Aeronautical Engineering Malla Reddy College of Engineering & Technology, Hyderabad, Telangana, India Swetha

More information

Surrounding buildings and wind pressure distribution on a high rise building

Surrounding buildings and wind pressure distribution on a high rise building Surrounding buildings and wind pressure distribution on a high rise building Conference or Workshop Item Accepted Version Luo, Z. (2008) Surrounding buildings and wind pressure distribution on a high rise

More information

Computer Simulation of a Train Exiting a Tunnel through a Varying Crosswind

Computer Simulation of a Train Exiting a Tunnel through a Varying Crosswind IJR International Journal of Railway, pp. 99-105 The Korean Society for Railway Computer Simulation of a Train Exiting a Tunnel through a Varying Crosswind S. Krajnovic Abstract Flow around an ICE2 high-speed

More information

CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack

CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 4 Ver. II (Jul. - Aug. 2016), PP 18-24 www.iosrjournals.org CFD Analysis ofwind Turbine

More information

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Norbert Jendzelovsky 1,*, Roland Antal 1 and Lenka Konecna 1 1 STU in Bratislava, Faculty

More information

Effect of High-Lift Devices on Aircraft Wing

Effect of High-Lift Devices on Aircraft Wing IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 01-05 www.iosrjen.org Effect of High-Lift Devices on Aircraft Wing Gaurav B. Mungekar 1, Swapnil N. More 1, Samadhan V.

More information

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

CFD Analysis of Giromill Type Vertical Axis Wind Turbine 242 CFD Analysis Giromill Type Vertical Axis Wind Turbine K. Sainath 1, T. Ravi 2, Suresh Akella 3, P. Madhu Sudhan 4 1 Associate Pressor, Department Mechanical Engineering, Sreyas Inst. Engg. & Tech.,

More information

Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train

Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train Wang Zhe and Ji Peng

More information

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision J.Linortner & R.Faber Pöyry Energy GmbH, Turkey-Austria E.Üzücek & T.Dinçergök General Directorate of State Hydraulic

More information

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1 Advances in Natural Science Vol. 3, No. 2, 2010, pp. 244-20 www.cscanada.net ISSN 171-7862 [PRINT] ISSN 171-7870 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Numerical

More information

Vertical Wind Velocity Distribution in Typical Hilly Terrain

Vertical Wind Velocity Distribution in Typical Hilly Terrain Vertical Wind Velocity Distribution in Typical Hilly Terrain Wen-juan Lou 1), * Hong-chao Liang 2), Zheng-hao Li 3), Li-gang Zhang 4) and Rong Bian 5) 1), 2), 3) Institute of Structural Engineering, Zhejiang

More information

External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs

External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs Authors: Bo Cui, Ph.D. Candidate, Clemson University, 109 Lowry Hall, Clemson, SC 9634-0911, boc@clemson.edu David O. Prevatt, Assistant

More information

CFD ANALYSIS OF AIRFOIL SECTIONS

CFD ANALYSIS OF AIRFOIL SECTIONS CFD ANALYSIS OF AIRFOIL SECTIONS Vinayak Chumbre 1, T. Rushikesh 2, Sagar Umatar 3, Shirish M. Kerur 4 1,2,3 Student, Jain College of Engineering, Belagavi, Karnataka, INDIA 4Professor, Dept. of Mechanical

More information

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent Aerodynamics of : A Computational Fluid Dynamics Study Using Fluent Rohit Jain 1, Mr. Sandeep Jain, Mr. Lokesh Bajpai 1PG Student, Associate Professor, Professor & Head 1 Mechanical Engineering Department

More information

DESIGN AND CHARACTERISTICS OF A LARGE BOUNDARY- LAYER WIND TUNNEL WITH TWO TEST SECTIONS

DESIGN AND CHARACTERISTICS OF A LARGE BOUNDARY- LAYER WIND TUNNEL WITH TWO TEST SECTIONS The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan DESIGN AND CHARACTERISTICS OF A LARGE BOUNDARY- LAYER WIND TUNNEL WITH TWO TEST SECTIONS Kai Chen 1, Xin-Yang

More information

Basis of Structural Design

Basis of Structural Design Basis of Structural Design Course 10 Actions on structures: Wind loads Other loads Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Wind loading: normative references

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS www.mechieprojects.com CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS PRESENTATION OUTLINE AIM INTRODUCTION LITERATURE SURVEY CFD ANALYSIS OF AEROFOIL RESULTS CONCLUSIONS www.mechieprojects.com

More information

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 1-10 TJPRC Pvt. Ltd., PRESSURE DISTRIBUTION OF SMALL WIND TURBINE

More information

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT - 277 - NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT Iseler J., Heiser W. EAS GmbH, Karlsruhe, Germany ABSTRACT A numerical study of the flow behaviour

More information

Single Phase Pressure Drop and Flow Distribution in Brazed Plate Heat Exchangers

Single Phase Pressure Drop and Flow Distribution in Brazed Plate Heat Exchangers Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Single Phase Pressure Drop and Flow Distribution in Brazed Plate Heat Exchangers

More information

Wind Directional Effect on a Single Storey House Using Educational Wind Tunnel

Wind Directional Effect on a Single Storey House Using Educational Wind Tunnel Wind Directional Effect on a Single Storey House Using Educational Wind Tunnel S S Zaini 1, N Rossli 1, T A Majid 1, S N C Deraman 1 and N A Razak 2 1 Disaster Research Nexus, School of Civil Engineering,

More information

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study ISSN 1750-9823 (print) International Journal of Sports Science and Engineering Vol. 03 (2009) No. 01, pp. 017-021 Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study Zahari

More information

Numerical Analysis of Wind loads on Tapered Shape Tall Buildings

Numerical Analysis of Wind loads on Tapered Shape Tall Buildings IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 11 May 2015 ISSN (online): 2349-784X Numerical Analysis of Wind loads on Tapered Shape Tall Buildings Ashwin G Hansora Assistant

More information

The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Wind tunnel measurements

The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Wind tunnel measurements The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Wind tunnel measurements of aeroelastic guyed mast models a, Tomasz Lipecki

More information

Fig 2.17: Topographic model: snow-free area (Snow boundary = red) Contour interval of 1 m.

Fig 2.17: Topographic model: snow-free area (Snow boundary = red) Contour interval of 1 m. Fig 2.17: Topographic model: snow-free area (Snow boundary = red) Contour interval of 1 m. Fig 2.18: Utsteinen ridge characteristics: (1) Utsteinen ridge granite bedrock; (2) Compacted snow (west-side);

More information

EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS

EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, 2-24 8 EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS J. A. Amin and A. K. Ahuja

More information

MEASUREMENTS ON THE SURFACE WIND PRESSURE CHARACTERISTICS OF TWO SQUARE BUILDINGS UNDER DIFFERENT WIND ATTACK ANGLES AND BUILDING GAPS

MEASUREMENTS ON THE SURFACE WIND PRESSURE CHARACTERISTICS OF TWO SQUARE BUILDINGS UNDER DIFFERENT WIND ATTACK ANGLES AND BUILDING GAPS BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, 2-24 28 MEASUREMENTS ON THE SURFACE WIND PRESSURE CHARACTERISTICS OF TWO SQUARE BUILDINGS UNDER DIFFERENT

More information

Wind Tunnel Study on Spanwise Correlation of Aerodynamic Forces on a 5:1 Rectangular Cylinder

Wind Tunnel Study on Spanwise Correlation of Aerodynamic Forces on a 5:1 Rectangular Cylinder The Eighth Asia-Pacific Conference on Wind Engineering, December 10 1, 2013, Chennai, India Wind Tunnel Study on Spanwise Correlation of Aerodynamic Forces on a 5:1 Rectangular Cylinder Xiaobing Liu 1,

More information

Effects of seam and surface texture on tennis balls aerodynamics

Effects of seam and surface texture on tennis balls aerodynamics Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 140 145 9 th Conference of the International Sports Engineering Association (ISEA) Effects of seam and surface texture on tennis

More information

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN George Feng, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga, Ontario Vadim Akishin, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga,

More information

WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION

WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION S. Pindado, J. Meseguer, J. M. Perales, A. Sanz-Andres and A. Martinez Key words: Wind loads, bridge construction, yawing moment. Abstract.

More information

Wind effects on tall building frames-influence of dynamic parameters

Wind effects on tall building frames-influence of dynamic parameters Indian Journal of Science and Technology Vol. 3 No. 5 (May 21) ISSN: 974-6846 583 Wind effects on tall building frames-influence of dynamic parameters B. Dean Kumar 1 and B.L.P. Swami 2 1 Department of

More information

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil International Journal of Materials, Mechanics and Manufacturing, Vol. 3, No., February 2 Numerical and Experimental Investigations of Lift and Drag Performances of NACA Wind Turbine Airfoil İzzet Şahin

More information

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 225 231 10th International Conference on Mechanical Engineering, ICME 2013 Investigation of the aerodynamic characteristics

More information

Wind pressure coefficient determination for greenhouses built in a reclaimed land using CFD technique

Wind pressure coefficient determination for greenhouses built in a reclaimed land using CFD technique Ref: 1064 Wind pressure coefficient determination for greenhouses built in a reclaimed land using CFD technique Hyun-seob Hwang and In-bok Lee, Department of Rural Systems Engineering, Research Institute

More information

2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil

2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil 2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil Akshay Basavaraj1 Student, Department of Aerospace Engineering, Amrita School of Engineering, Coimbatore 641 112, India1 Abstract: This

More information

Wind Tunnel Study on the Structural Stability of a Container Crane According to the Boom Shape

Wind Tunnel Study on the Structural Stability of a Container Crane According to the Boom Shape Proceedings of the 4th WSEAS International Conference on Fluid Mechanics, Gold Coast, Queensland, Australia, January 17-19, 2007 64 Wind Tunnel Study on the Structural Stability of a Container Crane According

More information

SIMULATION OF THE FLOW FIELD CHARACTERISTICS OF TRANSIENT FLOW

SIMULATION OF THE FLOW FIELD CHARACTERISTICS OF TRANSIENT FLOW The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan SIMULATION OF THE FLOW FIELD CHARACTERISTICS OF TRANSIENT FLOW S. Cao 1, Y. Zhao 2, H. Ozono, Y. Tamura, A.Kareem

More information

Aerodynamic Analysis of a Symmetric Aerofoil

Aerodynamic Analysis of a Symmetric Aerofoil 214 IJEDR Volume 2, Issue 4 ISSN: 2321-9939 Aerodynamic Analysis of a Symmetric Aerofoil Narayan U Rathod Department of Mechanical Engineering, BMS college of Engineering, Bangalore, India Abstract - The

More information

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE - 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,

More information

average length of the bluff body surface reattachment will decrease with blockage ratio increasing. Cherry's test results showed that 5% of the blocka

average length of the bluff body surface reattachment will decrease with blockage ratio increasing. Cherry's test results showed that 5% of the blocka The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2 6, 2012 Investigation on wind tunnel blockage effect of super high-rise building WANG

More information

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-213 1 Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped

More information

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer: Anemometry Anemometry Function of an anemometer: Measure some or all of the components of the wind vector In homogeneous terrain, vertical component is small express wind as -D horizontal vector For some

More information

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics Indian Journal of Science and Technology, Vol 9(45), DOI :10.17485/ijst/2016/v9i45/104585, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 CFD Study of Solid Wind Tunnel Wall Effects on

More information

NUMERICAL SIMULATION OF WIND INTERFERENCE EFFECT

NUMERICAL SIMULATION OF WIND INTERFERENCE EFFECT NUMERICAL SIMULATION OF WIND INTERFERENCE EFFECT FOR A STADIUM AND A GYMNASIUM Gang Xu 1, Xing-qian Peng 2, Li Wu 1, Hai Zhu 1 1 Graduate student, College of Civil Engineering, Huaqiao University, Quanzhou,

More information

Post-mortem study on structural failure of a wind farm impacted by super typhoon Usagi

Post-mortem study on structural failure of a wind farm impacted by super typhoon Usagi Downloaded from orbit.dtu.dk on: Nov 26, 2018 Post-mortem study on structural failure of a wind farm impacted by super typhoon Usagi Chen, Xiao; Li, Chuan Feng; Xu, Jian Zhong Publication date: 2015 Document

More information

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING ICAS 2002 CONGRESS AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING Yoshiaki NAKAMURA (nakamura@nuae.nagoya-u.ac.jp) Takafumi YAMADA (yamada@nuae.nagoya-u.ac.jp) Department of Aerospace Engineering,

More information

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE Jung-Hyun Kim*, Kyu-Hong

More information

Wind tunnel acoustic testing of wind generated noise on building facade elements

Wind tunnel acoustic testing of wind generated noise on building facade elements See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/307638896 Wind tunnel acoustic testing of wind generated noise on building facade elements

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car Structural Analysis of Formula One Racing Car Triya Nanalal Vadgama 1, Mr. Arpit Patel 2, Dr. Dipali Thakkar 3, Mr. Jignesh Vala 4 Department of Aeronautical Engineering, Sardar Vallabhbhai Patel Institute

More information

Field Measurement for Aerodynamic Mitigation of Wind Pressure on Gable-roofed Low-rise Building

Field Measurement for Aerodynamic Mitigation of Wind Pressure on Gable-roofed Low-rise Building The Eighth Asia-Pacific Conference on Wind Engineering, December 10 14, 2013, Chennai, India Field Measurement for Aerodynamic Mitigation of Wind Pressure on Gable-roofed Low-rise Building Peng Huang 1,

More information

Stability and Computational Flow Analysis on Boat Hull

Stability and Computational Flow Analysis on Boat Hull Vol. 2, Issue. 5, Sept.-Oct. 2012 pp-2975-2980 ISSN: 2249-6645 Stability and Computational Flow Analysis on Boat Hull A. Srinivas 1, V. Chandra sekhar 2, Syed Altaf Hussain 3 *(PG student, School of Mechanical

More information

Australian Journal of Basic and Applied Sciences. Pressure Distribution of Fluid Flow through Triangular and Square Cylinders

Australian Journal of Basic and Applied Sciences. Pressure Distribution of Fluid Flow through Triangular and Square Cylinders AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Pressure Distribution of Fluid Flow through Triangular and Square Cylinders 1 Nasaruddin

More information

Geometry Modification For Minimizing The Aeroelastics Effect

Geometry Modification For Minimizing The Aeroelastics Effect Geometry Modification For Minimizing The Aeroelastics Effect Fariduzzaman a, Subagyo a, Fadilah Hasim a and Matza Gusto Andika a a Aero-Gas dynamics and Vibration Laboratory (LAGG), BPPT, PUSPIPTEK, Serpong

More information

EXPERIMENTAL INVESTIGATION OF WAKE SURVEY OVER A CYLINDER WITH DIFFERENT SURFACE PROFILES

EXPERIMENTAL INVESTIGATION OF WAKE SURVEY OVER A CYLINDER WITH DIFFERENT SURFACE PROFILES EXPERIMENTAL INVESTIGATION OF WAKE SURVEY OVER A CYLINDER WITH DIFFERENT SURFACE PROFILES Abdul Ahad Khan 1, Abhishek M. B 2, Tresa Harsha P George 3 1 Under Graduate student, Department of Aeronautical

More information

Yasuyuki Hirose 1. Abstract

Yasuyuki Hirose 1. Abstract Study on Tsunami force for PC box girder Yasuyuki Hirose 1 Abstract In this study, a waterway experiment was performed in order to understand the influence of tsunami forms on tsunami forces acting on

More information

EMPIRICAL EVALUATION OF THREE WIND ANALYSIS TOOLS FOR CONCEPT DESIGN OF AN URBAN WIND SHELTER

EMPIRICAL EVALUATION OF THREE WIND ANALYSIS TOOLS FOR CONCEPT DESIGN OF AN URBAN WIND SHELTER Y. Ikeda, C. M. Herr, D. Holzer, S. Kaijima, M. J. Kim. M, A, Schnabel (eds.), Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference

More information

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder (AET- 29th March 214) RESEARCH ARTICLE OPEN ACCESS Experimental Investigation Of Flow Past A Rough Surfaced Cylinder Monalisa Mallick 1, A. Kumar 2 1 (Department of Civil Engineering, National Institute

More information

Analysis of wind resistance of high-rise building structures based on computational fluid dynamics simulation technology

Analysis of wind resistance of high-rise building structures based on computational fluid dynamics simulation technology International Journal of Heat and Technology Vol. 36, No. 1, March, 18, pp. 376-38 Journal homepage: http://iieta.org/journals/ijht Analysis of wind resistance of high-rise building structures based on

More information

Aerodynamic Performance Comparison of Head Shapes for High-Speed Train at 500KPH

Aerodynamic Performance Comparison of Head Shapes for High-Speed Train at 500KPH The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Aerodynamic Performance Comparison of Head Shapes for High-Speed Train at

More information

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown

More information

Aerodynamics of a wind turbine

Aerodynamics of a wind turbine Aerodynamics of a wind turbine Author: Kosmacheva Anna Supervisor: Jari Hämäläinen Lappeenranta University of Technology Technomatematics Introduction Wind turbine is a device that converts kinetic energy

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation

Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation Journal of Modern Transportation Volume 20, Number 1, March 2012, Page 44-48 Journal homepage: jmt.swjtu.edu.cn DOI: 10.1007/BF03325776 1 Numerical simulation and analysis of aerodynamic drag on a subsonic

More information

ANNUAL OF NAVIGATION 6/2003

ANNUAL OF NAVIGATION 6/2003 ANNUAL OF NAVIGATION 6/23 Leszek Smolarek Gdynia Maritime University Faculty of Navigation MODELING OF THE WIND GENERATED FORCE ACTING ON THE LIFERAFT ABSTRACT The aim of this paper is to derive a mathematical

More information

Full scale measurements and simulations of the wind speed in the close proximity of the building skin

Full scale measurements and simulations of the wind speed in the close proximity of the building skin Full scale measurements and simulations of the wind speed in the close proximity of the building skin Radoslav Ponechal 1,* and Peter Juras 1 1 University of Zilina, Faculty of Civil Engineering, Department

More information

Available online at Procedia Engineering 200 (2010) (2009) In situ drag measurements of sports balls

Available online at  Procedia Engineering 200 (2010) (2009) In situ drag measurements of sports balls Available online at www.sciencedirect.com Procedia Engineering 200 (2010) (2009) 2437 2442 000 000 Procedia Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering

More information

Study on the shape parameters of bulbous bow of. tuna longline fishing vessel

Study on the shape parameters of bulbous bow of. tuna longline fishing vessel International Conference on Energy and Environmental Protection (ICEEP 2016) Study on the shape parameters of bulbous bow of tuna longline fishing vessel Chao LI a, Yongsheng WANG b, Jihua Chen c Fishery

More information

Aerodynamic behavior of a discus

Aerodynamic behavior of a discus Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 92 97 9 th Conference of the International Sports Engineering Association (ISEA) Aerodynamic behavior of a discus Kazuya Seo a*,

More information

THREE DIMENSIONAL STRUCTURES OF FLOW BEHIND A

THREE DIMENSIONAL STRUCTURES OF FLOW BEHIND A The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 29, Taipei, Taiwan THREE DIMENSIONAL STRUCTURES OF FLOW BEHIND A SQUARE PRISM Hiromasa Kawai 1, Yasuo Okuda 2 and Masamiki Ohashi

More information

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft , July 1-3, 2015, London, U.K. Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft Pooja Pragati, Sudarsan Baskar Abstract This paper provides a practical design of a new concept of massive

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER

EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER Yoichi Yamagishi 1, Shigeo Kimura 1, Makoto Oki 2 and Chisa Hatayama 3 ABSTRACT It is known that for a square cylinder subjected

More information

Gorge Wind Characteristics in Mountainous Area in South-West China Based on Field Measurement

Gorge Wind Characteristics in Mountainous Area in South-West China Based on Field Measurement Gorge Wind Characteristics in Mountainous Area in South-West China Based on Field Measurement *Yingzi Zhong 1) and Mingshui Li 2) 1), 2) Research Centre for Wind Engineering, Southwest Jiaotong University,

More information

The wind tunnel tests of wind pressure acting on the derrick of deepwater semi-submersible drilling platform

The wind tunnel tests of wind pressure acting on the derrick of deepwater semi-submersible drilling platform Available online at www.sciencedirect.com Energy Procedia 14 (2012) 1267 1272 2011 2nd International Conference on Advances in Energy Engineering (ICAEE2011) The wind tunnel tests of wind pressure acting

More information

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Razeen Ridhwan, Mohamed Alshaleeh, Arunvinthan S Abstract: In the Aerodynamic performance of wind turbine blade by

More information

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c Applied Mechanics and Materials Online: 2013-06-13 ISSN: 1662-7482, Vols. 321-324, pp 299-304 doi:10.4028/www.scientific.net/amm.321-324.299 2013 Trans Tech Publications, Switzerland Study on the Influencing

More information

Development of Biomimicry Wind Louver Surface Design

Development of Biomimicry Wind Louver Surface Design International Proceedings of Chemical, Biological and Environmental Engineering, V0l. 93 (2016) DOI: 10.7763/IPCBEE. 2016. V93. 6 Development of Biomimicry Wind Louver Surface Design Jaepil Choi 1, Donghwa

More information

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015 International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 2, February 2017, pp. 210 219 Article ID: IJMET_08_02_026 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=2

More information

Study on the Shock Formation over Transonic Aerofoil

Study on the Shock Formation over Transonic Aerofoil Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 113-118 Research India Publications http://www.ripublication.com/aasa.htm Study on the Shock Formation over

More information

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b 06 International Conference on Mechanics Design, Manufacturing and Automation (MDM 06) ISBN: 978--60595-354-0 Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a,

More information

The study on micro-location of wind-electric field in the complex terrain

The study on micro-location of wind-electric field in the complex terrain Academia Journal of Scientific Research 3(3): 000-000, February 2019 DOI: 10.15413/ajsr.2019.2006 ISSN 2315-7712 2019 Academia Publishing Research Paper The study on micro-location of wind-electric field

More information

Reduction of Skin Friction Drag in Wings by Employing Riblets

Reduction of Skin Friction Drag in Wings by Employing Riblets Reduction of Skin Friction Drag in Wings by Employing Riblets Kousik Kumaar. R 1 Assistant Professor Department of Aeronautical Engineering Nehru Institute of Engineering and Technology Coimbatore, India

More information

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Colloquium FLUID DYNAMICS 2008 Institute of Thermomechanics AS CR, v.v.i., Prague, October 22-24, 2008 p.1 CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Vladimír Horák 1, Dalibor

More information