Measured wake losses By Per Nielsen

Size: px
Start display at page:

Download "Measured wake losses By Per Nielsen"

Transcription

1 Measured wake losses By Per Nielsen

2 Wake losses Cannot be measured directly, but by setting up a calculation model and comparing to measurements, with proper data filtering, the wake losses can be identified quite precisely. Here I look both at many arrays (deep array losses), and a simple 1 row windfarm. The windpro Performance Check tool is used with the time step PARK calculation.

3 Horns Rev 1, offshore The one everybody knows. 7 RD spacing, 10 x 8 rows, V80 2MW, 70m hub height.

4 N.O.Jensen model with modifications First tuning; adding linear combination of wind speed deficit, this helps, but over compensate especially in row 3-5 from main wind direction. WDC decrease by number of upwind turbines regulates this: 1,02 1,01 1 0,99 0,98 0,97 0,96 0,95 HR-1 measured/calculated avg STD WDC 0.04 Lin 25% WDC+25% lin Calculation is based on 2008 EMDConWx meso scale data and 10- min. scada production data for each turbine, filtered for downtime. <- here row by row, 1 is west most.

5 N.O.Jensen model with modifications More adjustments tested, best fit is 35% linear weight in combination model + WDC decrease by number of up wind turbines by this formula: HR-1 measured/calculated 1,02 1,01 1 0,99 0,98 0,97 0,96 0, avg STD WDC 0.04 WDC+35%lin Last but 2012 WDC+35%lin-2012-incl.HR2 Y is the factor multiplied on WDC, x the number of up-wind turbines. <- Back rows lifted 1.5% on totals. Test of 2012 data in addition to Including HR2 wind farm in 2012 calculation makes this perform almost exactly as the 2008 calculations.

6 DTU 2012-> <-EMD 2002

7 Measured wake loss HR-1 Based on the STD calc. WDC 0.04 and the overprediction, the measured wake loss is 10.25%; 9% higher than STD calc. - but only 1% on AEP. 16% 14% 12% 10% 8% 6% Measured wake loss = calculated all data + over prediction based on all approved (filtered) concurrent measured and calculated data. 4% 2% 0% -2% % Wake loss calc. STD Overpred. Measured

8 Row by row loss, 360 o STD calc. 9.4% Tuned calc. 10.5% 14,0% 12,0% 10,0% 8,0% 6,0% 4,0% Average of Wake loss calc. STD Average of Overpred. Average of Measured 14,0% 2,0% 12,0% 10,0% 0,0% -2,0% Row number 8,0% 6,0% 4,0% 2,0% Average of Wake loss calc. Corr Average of Overpred. Average of Measured Not a big difference, but the tuning gives more confidence and is easy to use and tested on several other large arrays. 0,0% -2,0% Row number

9 Directional tests, HR-1 1,15 1,1 The calculations are also tested by direction: Measured/calculated 1,15 1,1 Measured/calculated 1,05 1 0,95 0,9 0,85 1,05 Average of N Average of NNE 1 Average of ENE Average of E 0,95 Average of ESE 0,9 Average of SSE 0,85 Average of S Average of SSW Average of WSW Average of W Average of WNW Average of NNW 0, , Note the bias is probably related to meso scale data inaccuracies what is important here is that the lines are horizontal, meaning wake loss calculation is handled well in all directional sectors.

10 ElZayt, Egypt, desert 200MW, Gamesa G80, 60m hub height, 7 rows All wind from NW. 5 Spacing: 6 Row: 14 RD In-row: 3 RD 7

11 ElZayt, Egypt Short operation period, still not in full operation, therefore data quality not perfect yet. But the trends appear quite clear. Over prediction of back rows due to wake issues. 1,04 1,02 1,00 0,98 Measured/ calculated Average of WAsP ORG Wake model Average of WAsP 35% lin. + WDC red (deep array Wake) Average of WasP lin 35% NO WDC red. WTG number Red line: Same tuning as HR-1, but base WDC make all rows within +/- 2%. Within few months much better data will be available 0,96 0,94 0,92 0,90 Row number ROW perf: STD WDC Tuned 35% lin. + WDC red (deep array Wake) Tuned 35% lin. NO WDC red. Stdev: 3,8% 1,5% 2,1% Max - min 9,1% 4,0% 6,0%

12 ElZayt, measured wake loss 25,0% 20,0% 15,0% Based on same approach as for HR-1, the measured wake loss is 11.3%, std. calc.: 8.4% We see an increase in wake loss by row up to ~20% for 5 th row. The short operation period and that the windfarm still are in the start up phase makes these calculations uncertain. 10,0% 5,0% Average of Calc. wake loss Average of Overpred. Average of Measured The reason for the drop in wake losses for the two back rows is the wind farm configuration. 0,0% ,0%

13 + 2 years 10 min data 4 degree avg.: Thin line: Calculated, Thick line: Measured only concurrent data Simple 1 row project, KE We are part owners and have extremely good data more than 2 years 10-min data and high quality operation. ( 4 x V112, 94m hub height (northern 84m but on a 10m hill) 3 RD spacing

14 Krogstrup Enge (KE) WTG1 and WTG4 wind in combination used as input for calculations. Fine-tuning of the directional calibration is a very important part of the calculation setup! Looking at the ratios measured/calculated we get the hands down, up to 30% errors in centre wake angle and a very clear picture: First wake turbine is over predicted Second under predicted Third more under predicted Can this be solved by tuning wake model parameters? Now you probably expect a YES, but it is a NO our tunings so far increases calculated wake losses for back rows, here we need the opposite.

15 Tuning wake model for a single row We have of course tried: First the STD, fixed WDC First wake turbine (1 in front): Last wake turbine: (3 in front) Much data from SE Few data from NW

16 Tuning wake model for a single row Let the turbulence control the WDC look better, but do not solve the identified problem First wake turbine (1 in front): Last wake turbine: (3 in front)

17 Tuning wake model for a single row Varying the direction in calculation within each time step helps a little, but cannot fully solve the problem First wake turbine (1 in front): Last wake turbine: (3 in front)

18 Conclusions The only real solver when based on N.O. Jensen model, will be a combination model that adds the deficits with a root sum square where the exponent is higher than 2. A bell shaped single wake model would make the reproduction of the measurements more precise, but not solve the issue that the back turbines in a single row are under predicted (wake loss predicted too high) relative to the turbines with fewer up wind turbines. Remaining problem: How do we construct a combination model that punish multiple rows harder and single rows less? When this is said, it must also be added that we with present N.O. Jensen model and the presented tunings are calculating VERY close to measurements on 360 degree basis and more precise than all other tested wake models.

19 Practical useable experience 1. WDC controlled by turbulence solves hub height problem 2. Turbulence correct power curve works, but have no real impact on AEP (maybe if the site has extreme turbulence (high or low)) 3. Use the new deep array tuning options in windpro, it works!

Site Assessment Report. Wind farm: Ascog Farm (GB)

Site Assessment Report. Wind farm: Ascog Farm (GB) Site Assessment Report Energy Yield Estimation Wind farm: (GB) 3 x E- kw with 5m hh Imprint Publisher Copyright notice ENERCON GmbH 5 Aurich Germany Phone: +9 91 97- Fax: +9 91 97-19 E-mail: info@enercon.de

More information

Torrild - WindSIM Case study

Torrild - WindSIM Case study Torrild - WindSIM Case study Note: This study differs from the other case studies in format, while here another model; WindSIM is tested as alternative to the WAsP model. Therefore this case should be

More information

WindPRO version Nov 2012 Project:

WindPRO version Nov 2012 Project: 23/11/2012 15:21 / 1 WAsP interface - Main Result Calculation: WAsP Interface example Name for WAsP Site coordinates UTM NAD27 Zone: 14 East: 451,101 North: 5,110,347 Air density calculation mode Result

More information

PARK - Main Result Calculation: PARK calculation (5 x 166m, + LT CORR + MITIGATION) N.O. Jensen (RISØ/EMD)

PARK - Main Result Calculation: PARK calculation (5 x 166m, + LT CORR + MITIGATION) N.O. Jensen (RISØ/EMD) PRK - Main Result Calculation: PRK calculation (5 x V15 @ 166m, + LT CORR + MITIGTION) Wake Model N.O. Jensen (RISØ/EMD) Calculation Settings ir density calculation mode Result for WTG at hub altitude

More information

Wind Project Siting & Resource Assessment

Wind Project Siting & Resource Assessment Wind Project Siting & Resource Assessment David DeLuca, Project Manager AWS Truewind, LLC 463 New Karner Road Albany, NY 12205 ddeluca@awstruewind.com www.awstruewind.com AWS Truewind - Overview Industry

More information

Wind Farm Blockage: Searching for Suitable Validation Data

Wind Farm Blockage: Searching for Suitable Validation Data ENERGY Wind Farm Blockage: Searching for Suitable Validation Data James Bleeg, Mark Purcell, Renzo Ruisi, and Elizabeth Traiger 09 April 2018 1 DNV GL 2014 09 April 2018 SAFER, SMARTER, GREENER Wind turbine

More information

HOUTEN WIND FARM WIND RESOURCE ASSESSMENT

HOUTEN WIND FARM WIND RESOURCE ASSESSMENT CIRCE CIRCE Building Campus Río Ebro University de Zaragoza Mariano Esquillor Gómez, 15 50018 Zaragoza Tel.: 976 761 863 Fax: 976 732 078 www.fcirce.es HOUTEN WIND FARM WIND RESOURCE ASSESSMENT CIRCE AIRE

More information

renewable energy projects by renewable energy people

renewable energy projects by renewable energy people renewable energy projects by renewable energy people Our Services Full lifecycle services across renewable energy sectors 2 Time variant energy yield analysis A case study Presenter: Daniel Marmander Date:

More information

Yawing and performance of an offshore wind farm

Yawing and performance of an offshore wind farm Yawing and performance of an offshore wind farm Troels Friis Pedersen, Julia Gottschall, Risø DTU Jesper Runge Kristoffersen, Jan-Åke Dahlberg, Vattenfall Contact: trpe@risoe.dtu.dk, +4 2133 42 Abstract

More information

Background Preliminary Review... 3

Background Preliminary Review... 3 January 23, 2012 Evaluation of Prop osed NRWC Wind Farm on Lo cal Micro climate: Preliminary Review & Work Plan For: Debbie Zimmerman Chief Executive Officer Grap e Growers of Ontario P.O. Box 100 Vineland

More information

Wake effects at Horns Rev and their influence on energy production. Kraftværksvej 53 Frederiksborgvej 399. Ph.: Ph.

Wake effects at Horns Rev and their influence on energy production. Kraftværksvej 53 Frederiksborgvej 399. Ph.: Ph. Wake effects at Horns Rev and their influence on energy production Martin Méchali (1)(*), Rebecca Barthelmie (2), Sten Frandsen (2), Leo Jensen (1), Pierre-Elouan Réthoré (2) (1) Elsam Engineering (EE)

More information

WIND DATA REPORT. Paxton, MA

WIND DATA REPORT. Paxton, MA WIND DATA REPORT Paxton, MA September 1 2003 November 30 2003 by James F. Manwell Anthony F. Ellis Kai Wu April 15, 2004 Renewable Energy Research Laboratory 160 Governors Drive, www.ceere.org/rerl (413)

More information

WindPRO version Jan 2011 Printed/Page :55 / 1. SHADOW - Main Result

WindPRO version Jan 2011 Printed/Page :55 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 27.7.2011 17:55 / 1 Minimum

More information

Yawing and performance of an offshore wind farm

Yawing and performance of an offshore wind farm Downloaded from orbit.dtu.dk on: Dec 18, 217 Yawing and performance of an offshore wind farm Friis Pedersen, Troels; Gottschall, Julia; Kristoffersen, Jesper Runge; Dahlberg, Jan-Åke Published in: Proceedings

More information

2 Asymptotic speed deficit from boundary layer considerations

2 Asymptotic speed deficit from boundary layer considerations EWEC Techn.track Wake, paper ID 65 WAKE DECAY CONSTANT FOR THE INFINITE WIND TURBINE ARRAY Application of asymptotic speed deficit concept to existing engineering wake model. Ole Steen Rathmann, Risø-DTU

More information

Fuga. - Validating a wake model for offshore wind farms. Søren Ott, Morten Nielsen & Kurt Shaldemose Hansen

Fuga. - Validating a wake model for offshore wind farms. Søren Ott, Morten Nielsen & Kurt Shaldemose Hansen Fuga - Validating a wake model for offshore wind farms Søren Ott, Morten Nielsen & Kurt Shaldemose Hansen 28-06- Outline What is Fuga? Model validation: which assumptions are tested? Met data interpretation:

More information

3D Nacelle Mounted Lidar in Complex Terrain

3D Nacelle Mounted Lidar in Complex Terrain ENERGY 3D Nacelle Mounted Lidar in Complex Terrain PCWG Hamburg, Germany Paul Lawson 25.03.2015 1 DNV GL 125.03.2015 SAFER, SMARTER, GREENER Agenda Introduction and Project Background Lidar Specifications

More information

Power curves - use of spinner anemometry. Troels Friis Pedersen DTU Wind Energy Professor

Power curves - use of spinner anemometry. Troels Friis Pedersen DTU Wind Energy Professor Power curves - use of spinner anemometry Troels Friis Pedersen DTU Wind Energy Professor Spinner anemometry using the airflow over the spinner to measure wind speed, yaw misalignment and flow inclination

More information

windnavigator Site Analyst Report

windnavigator Site Analyst Report windnavigator Site Analyst Report for Central NY Created for Stephen Meister April 27, 2010 ID NUMBER: N2-128 AWS Truepower, LLC Albany - Barcelona - Bangalore p: +1.518.21.00 e: info@awstruepower.com

More information

Wind statistics offshore based on satellite images

Wind statistics offshore based on satellite images Wind statistics offshore based on satellite images Charlotte Bay Hasager, Merete Badger, Poul Astrup, Morten Nielsen, Ioanna Karagali, Risø DTU Alexis Mouche, CLS, France Content Offshore sites QuikSCAT

More information

The Park2 Wake Model - Documentation and Validation

The Park2 Wake Model - Documentation and Validation Downloaded from orbit.dtu.dk on: Jan 3, 209 The Park2 Wake Model - Documentation and Validation Rathmann, Ole Steen; Hansen, Brian Ohrbeck; Hansen, Kurt Schaldemose; Mortensen, Niels Gylling; Murcia Leon,

More information

NordFoU: External Influences on Spray Patterns (EPAS) Report 16: Wind exposure on the test road at Bygholm

NordFoU: External Influences on Spray Patterns (EPAS) Report 16: Wind exposure on the test road at Bygholm NordFoU: External Influences on Spray Patterns (EPAS) Report 16: Wind exposure on the test road at Bygholm Jan S. Strøm, Aarhus University, Dept. of Engineering, Engineering Center Bygholm, Horsens Torben

More information

8 SHADOW FLICKER 8.1 INTRODUCTION 8.2 RECEIVING ENVIRONMENT

8 SHADOW FLICKER 8.1 INTRODUCTION 8.2 RECEIVING ENVIRONMENT QS-000169-02-R460-003 Assessment Report of Phase 1 and Phase 2 8 SHADOW FLICKER 8.1 INTRODUCTION A shadow flicker assessment has been undertaken for the Phase 1 and Phase 2 only part of the development

More information

VINDKRAFTNET MEETING ON TURBULENCE

VINDKRAFTNET MEETING ON TURBULENCE VINDKRAFTNET MEETING ON TURBULENCE On-going Work on Wake Turbulence in DONG Energy 28/05/2015 Cameron Brown Load Engineer Lucas Marion R&D graduate Who are we? Cameron Brown Load Engineer from Loads Aerodynamics

More information

Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D

Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D vestas.com Outline The atmospheric modeling capabilities

More information

EERA DTOC wake results offshore

EERA DTOC wake results offshore EERA DTOC wake results offshore Charlotte Hasager, Kurt Schaldemose Hansen, Pierre-Elouan Réthoré, Søren Ott, Jake Badger, Gerard Schepers, Ole Rathmann, Elena Cantero, Giorgos Sieros, Takis Chaviaropoulos,

More information

Investigation on Deep-Array Wake Losses Under Stable Atmospheric Conditions

Investigation on Deep-Array Wake Losses Under Stable Atmospheric Conditions Investigation on Deep-Array Wake Losses Under Stable Atmospheric Conditions Yavor Hristov, Mark Zagar, Seonghyeon Hahn, Gregory Oxley Plant Siting and Forecasting Vestas Wind Systems A/S Introduction Introduction

More information

COLLECTOR WIND FARM SHADOW FLICKER ASSESSMENT

COLLECTOR WIND FARM SHADOW FLICKER ASSESSMENT COLLECTOR WIND FARM SHADOW FLICKER ASSESSMENT Prepared by: Terry Johannesen (BEng, RPEQ) 1. INTRODUCTION This report discusses the shadow flicker phenomenon and presents an assessment of the associated

More information

WIND DATA REPORT. Swan s Island, ME

WIND DATA REPORT. Swan s Island, ME WIND DATA REPORT Swan s Island, ME June 1, 2009 August 31, 2009 Prepared for US Department of Energy by Daniel T. Grip Utama Abdulwahid James F. Manwell Anthony F. Ellis September 17, 2009 Report template

More information

The Wind Resource: Prospecting for Good Sites

The Wind Resource: Prospecting for Good Sites The Wind Resource: Prospecting for Good Sites Bruce Bailey, President AWS Truewind, LLC 255 Fuller Road Albany, NY 12203 bbailey@awstruewind.com Talk Topics Causes of Wind Resource Impacts on Project Viability

More information

WIND DATA REPORT. Mt. Lincoln Pelham, MA

WIND DATA REPORT. Mt. Lincoln Pelham, MA WIND DATA REPORT Mt. Lincoln Pelham, MA May 2009 to April 2010 Prepared for Massachusetts Department of Energy Resources 100 Cambridge Street, Suite 1020 Boston, MA 02114 by Jonathan D. Black James F.

More information

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Helen Markou 1 Denmark and Torben J. Larsen, Risø-DTU, P.O.box 49, DK-4000 Roskilde, Abstract The importance of continuing

More information

Course 1 (18.0 NM) From the start,

Course 1 (18.0 NM) From the start, CORINTHIAN YACHT CLUB OF PHILADELPHIA 2016 Fall Cruise RACE COURSES Start 10:45 Friday, September 16th, 2016 The start will be in the Tred Avon River off the Tred Avon Yacht Club between the Race Committee

More information

Wind Resource Assessment Østerild National Test Centre for Large Wind Turbines

Wind Resource Assessment Østerild National Test Centre for Large Wind Turbines Downloaded from orbit.dtu.dk on: Jan 21, 2018 Wind Resource Assessment Østerild National Test Centre for Large Wind Turbines Hansen, Brian Ohrbeck; Courtney, Michael; Mortensen, Niels Gylling Publication

More information

Chart Discussion: Fri-25-May-2018 Rainfall Last Week

Chart Discussion: Fri-25-May-2018 Rainfall Last Week Chart Discussion: Fri-25-May-2018 Rainfall Last Week 1 Last Week s Charts 2 MSL Analysis / Sat Image (Thu) 3 MSL Analysis / Sat Image (Fri) 4 Last Week s Model Forecasts OBSERVED Chart Discussion: Fri-25-May-2018

More information

Study on wind turbine arrangement for offshore wind farms

Study on wind turbine arrangement for offshore wind farms Downloaded from orbit.dtu.dk on: Jul 01, 2018 Study on wind turbine arrangement for offshore wind farms Shen, Wen Zhong; Mikkelsen, Robert Flemming Published in: ICOWEOE-2011 Publication date: 2011 Document

More information

MULTI-WTG PERFORMANCE OFFSHORE, USING A SINGLE SCANNING DOPPLER LIDAR

MULTI-WTG PERFORMANCE OFFSHORE, USING A SINGLE SCANNING DOPPLER LIDAR MULTI-WTG PERFORMANCE OFFSHORE, USING A SINGLE SCANNING DOPPLER LIDAR Rémi Gandoin 1, Benny Svardal 2, Valerie Kumer 3, Raghavendra Krishna Murthy 4, Matthieu Boquet 4 1 DONG Energy Wind Power (DK) remga@dongenergy.dk

More information

Welcome to the world of wind energy Wind Farm design. Dr. D. V. Kanellopoulos OPWP Renewable Energy Training Program December 2016 Muscat, Oman

Welcome to the world of wind energy Wind Farm design. Dr. D. V. Kanellopoulos OPWP Renewable Energy Training Program December 2016 Muscat, Oman Welcome to the world of wind energy Wind Farm design Dr. D. V. Kanellopoulos OPWP Renewable Energy Training Program 11-14 December 2016 Muscat, Oman 1 Wind farm design What are the 2 main parameters that

More information

LES* IS MORE! * L ARGE E DDY S IMULATIONS BY VORTEX. WindEnergy Hamburg 2016

LES* IS MORE! * L ARGE E DDY S IMULATIONS BY VORTEX. WindEnergy Hamburg 2016 LES* IS MORE! * L ARGE E DDY S IMULATIONS BY VORTEX WindEnergy Hamburg 2016 OUTLINE MOTIVATION Pep Moreno. CEO, BASIS Alex Montornés. Modelling Specialist, VALIDATION Mark Žagar. Modelling Specialist,

More information

BENCHMARKING OF WIND FARM SCALE WAKE MODELS IN THE EERA - DTOC PROJECT

BENCHMARKING OF WIND FARM SCALE WAKE MODELS IN THE EERA - DTOC PROJECT BENCHMARKING OF WIND FARM SCALE WAKE MODELS IN THE EERA - DTOC PROJECT P.-E. Réthoré 1, K.S. Hansen 1, R.J. Barthelmie 2, S.C. Pryor 2, G. Sieros 5, J. Prospathopoulos 5, J.M.L.M. Palma 4, V.C. Gomes 4,

More information

On wake modeling, wind-farm gradients and AEP predictions at the Anholt wind farm

On wake modeling, wind-farm gradients and AEP predictions at the Anholt wind farm Wind Energ. Sci. Discuss., https://doi.org/.194/wes-17-37 On wake modeling, wind-farm gradients and AEP predictions at the Anholt wind farm Alfredo Peña 1, Kurt Schaldemose Hansen 1, Søren Ott 1, and Maarten

More information

Design Criteria Data

Design Criteria Data FRESNO CA Latitude = 36.77 N WMO No. 72389 Longitude =119.7 W Elevation = 328 feet Period of Record = 1972 to 1996 Average Pressure = 29.62 inches Hg Design Criteria Data Mean Coincident (Average) Values

More information

Design Criteria Data

Design Criteria Data MEMPHIS TN Latitude = 35.35 N WMO No. 723345 Longitude = 89.87 W Elevation = 322 feet Period of Record = 1973 to 1996 Average Pressure = 29.68 inches Hg Design Criteria Data Mean Coincident (Average) Values

More information

Predicting climate conditions for turbine performance

Predicting climate conditions for turbine performance Predicting climate conditions for turbine performance Mark Žagar, Vinay Belathur Krishna, Alvaro Matesanz Gil Vestas Data Engineering & Analytics / Advanced Plant Modelling Resource assessment, power curve,

More information

Scoping analysis of the potential yield of the Hollandse Kust (zuid) wind farm sites and the influence on the existing wind farms in the proximity

Scoping analysis of the potential yield of the Hollandse Kust (zuid) wind farm sites and the influence on the existing wind farms in the proximity Scoping analysis of the potential yield of the Hollandse Kust (zuid) wind farm sites and the influence on the existing wind farms in the proximity B.H. Bulder E.T.G. Bot A.J Marina August 2016 ECN-E--16-021

More information

Bankable Wind Resource Assessment

Bankable Wind Resource Assessment Bankable Wind Resource Assessment Bankable Wind Resource Assessment 1.800.580.3765 WWW.TTECI.COM Pramod Jain, Ph.D. Presented to: DFCC Bank and RERED Consortia Members January 25 27, 2011 Colombo, Sri

More information

Design Criteria Data

Design Criteria Data TUCUMCARI NM Latitude = 35.18 N WMO No. 723676 Longitude =13.6 W Elevation = 465 feet Period of Record = 1973 to 1996 Average Pressure = 25.86 inches Hg Design Criteria Data Mean Coincident (Average) Values

More information

FINAL WIND DATA REPORT. Mattapoisett Mattapoisett, Massachusetts

FINAL WIND DATA REPORT. Mattapoisett Mattapoisett, Massachusetts FINAL WIND DATA REPORT Mattapoisett Mattapoisett, Massachusetts January 19, 2006 June 29, 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive Westborough, MA 01581 by William L. W.

More information

Gorge Wind Characteristics in Mountainous Area in South-West China Based on Field Measurement

Gorge Wind Characteristics in Mountainous Area in South-West China Based on Field Measurement Gorge Wind Characteristics in Mountainous Area in South-West China Based on Field Measurement *Yingzi Zhong 1) and Mingshui Li 2) 1), 2) Research Centre for Wind Engineering, Southwest Jiaotong University,

More information

Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model Downloaded from orbit.dtu.dk on: Aug 22, 28 Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model Pena Diaz, Alfredo; Réthoré, Pierre-Elouan; Rathmann,

More information

SURF BREAK INFORMATION

SURF BREAK INFORMATION SURF BREAK INFORMATION SWELL INTERVALS / PERIODS: ANYTHING ABOVE 10/11SECS FOR ALL BREAKS MEANS LONGER PERIOD GROUND SWELL, WHICH STARTS PRODUCING BETTER, CLEANER AND BIGGER, MORE POWERFUL WAVES! SHORT

More information

WIND DIRECTION ERROR IN THE LILLGRUND OFFSHORE WIND FARM

WIND DIRECTION ERROR IN THE LILLGRUND OFFSHORE WIND FARM WIND DIRECTION ERROR IN THE LILLGRUND OFFSHORE WIND FARM * Xi Yu*, David Infield*, Eoghan Maguireᵜ Wind Energy Systems Centre for Doctoral Training, University of Strathclyde, R3.36, Royal College Building,

More information

Atmospheric Stability Affects Wind Turbine Performance and Wake Effect

Atmospheric Stability Affects Wind Turbine Performance and Wake Effect Atmospheric Stability Affects Wind Turbine Performance and Wake Effect Hong Liu, John Liu*, Gus DiMaria and Jon Fournier CanWEA Annual Conference and Exhibition, October 23-25, 2018, Calgary, AB *York

More information

Analyses of 03 OP-FTIR monitoring results

Analyses of 03 OP-FTIR monitoring results Analyses of 03 OP-FTIR monitoring results Project overview for the CEWG Harry Hunsaker Intel 19-Dec-2007 Analysis by wind direction Examining possible sources ( source attribution ) of substances measured

More information

Poland is one of the new countries, which seems to have the potential of being a large market for wind energy projects in the near future.

Poland is one of the new countries, which seems to have the potential of being a large market for wind energy projects in the near future. Wind atlas for Midnorth POLAND. EMD/Per Nielsen 2001-10-31 Poland is one of the new countries, which seems to have the potential of being a large market for wind energy projects in the near future. EMD

More information

WIND DATA REPORT. Mt. Tom

WIND DATA REPORT. Mt. Tom WIND DATA REPORT Mt. Tom September 1, 2003 November 31, 2003 Prepared for Massachusetts Technology Collaborative 7 North Drive Westborough, MA 0181 by James F. Manwell Anthony F. Ellis Taylor Geer January

More information

Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction Energies 2015, 8, 3075-3092; doi:10.3390/en8043075 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of

More information

On the use of rotor equivalent wind speed to improve CFD wind resource mapping. Yavor V. Hristov, PhD Plant Performance and Modeling Vestas TSS

On the use of rotor equivalent wind speed to improve CFD wind resource mapping. Yavor V. Hristov, PhD Plant Performance and Modeling Vestas TSS On the use of rotor equivalent wind speed to improve CFD wind resource mapping Yavor V. Hristov, PhD Plant Performance and Modeling Vestas TSS Firestorm- Number 53 on Top500 list from June 2011 14664 processors

More information

Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah

Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah Vol:7, No:12, 213 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah F. Ahwide, Y. Bouker, K. Hatem International Science Index, Environmental and Ecological

More information

EERA DTOC wake results offshore

EERA DTOC wake results offshore Downloaded from orbit.dtu.dk on: May 04, 2018 EERA DTOC wake results offshore Hasager, Charlotte Bay; Hansen, Kurt Schaldemose; Réthoré, Pierre-Elouan; Volker, Patrick; Palomares, Ana; Prospathopoulos,

More information

Flow modelling hills complex terrain and other issues

Flow modelling hills complex terrain and other issues Flow modelling hills, complex terrain and other issues Modelling approaches sorted after complexity Rules of thumbs Codes and standards Linear model, 1 st order turbulence closure LINCOM/Wasp Reynolds-averaged

More information

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su THE RUDDER starting from the requirements supplied by the customer, the designer must obtain the rudder's characteristics that satisfy such requirements. Subsequently, from such characteristics he must

More information

Modelling atmospheric stability with CFD: The importance of tall profiles

Modelling atmospheric stability with CFD: The importance of tall profiles ENERGY Modelling atmospheric stability with CFD: The importance of tall profiles VindKraftNet Seminar on Profiles Jean-François Corbett, Global Head of CFD Service 1 SAFER, SMARTER, GREENER DNV GL CFD

More information

Wind and wake models for IEC site assessment

Wind and wake models for IEC site assessment Downloaded from orbit.dtu.dk on: Nov 27, 217 Wind and wake models for IEC 614-1 site assessment Nielsen, Morten; Ejsing Jørgensen, Hans; Frandsen, Sten Tronæs Published in: EWEC 29 Proceedings online Publication

More information

RESOURCE DECREASE BY LARGE SCALE WIND FARMING

RESOURCE DECREASE BY LARGE SCALE WIND FARMING ECN-RX--4-14 RESOURCE DECREASE BY LARGE SCALE WIND FARMING G.P. Corten A.J. Brand This paper has been presented at the European Wind Energy Conference, London, -5 November, 4 NOVEMBER 4 Resource Decrease

More information

Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign

Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign Authors: Velmurugan. k, Durga Bhavani, Ram kumar. B, Karim Fahssis As wind turbines size continue to grow with

More information

Flow analysis with nacellemounted

Flow analysis with nacellemounted Flow analysis with nacellemounted LiDAR E.T.G. Bot September 2016 ECN-E--16-041 Acknowledgement The work reported here is carried out in the TKI LAWINE project which is partially funded by the Dutch government

More information

Session 2a: Wind power spatial planning techniques. IRENA Global Atlas Spatial planning techniques 2-day seminar

Session 2a: Wind power spatial planning techniques. IRENA Global Atlas Spatial planning techniques 2-day seminar Session 2a: Wind power spatial planning techniques IRENA Global Atlas Spatial planning techniques 2-day seminar Central questions we want to answer After having identified those areas which are potentially

More information

Lake Michigan Wind Assessment Project Data Summary and Analysis: October 2012

Lake Michigan Wind Assessment Project Data Summary and Analysis: October 2012 Grand Valley State University ScholarWorks@GVSU Monthly Buoy Report Offshore Wind Project 1-1- Lake Michigan Wind Assessment Project Data Summary and Analysis: October Lake Michigan Offshore Wind Assessment

More information

Wind Farm Power Performance Test, in the scope of the IEC

Wind Farm Power Performance Test, in the scope of the IEC Wind Farm Power Performance Test, in the scope of the IEC 61400-12.3 Helder Carvalho 1 (helder.carvalho@megajoule.pt) Miguel Gaião 2 (miguel.gaiao@edp.pt) Ricardo Guedes 1 (ricardo.guedes@megajoule.pt)

More information

Executive Summary of Accuracy for WINDCUBE 200S

Executive Summary of Accuracy for WINDCUBE 200S Executive Summary of Accuracy for WINDCUBE 200S The potential of offshore wind energy has gained significant interest due to consistent and strong winds, resulting in very high capacity factors compared

More information

Session 2: Wind power spatial planning techniques

Session 2: Wind power spatial planning techniques Session 2: Wind power spatial planning techniques IRENA Global Atlas Spatial planning techniques 2-day seminar Central questions we want to answer After having identified those areas which are potentially

More information

Appendix D. Special Use Permit Legal Descriptions

Appendix D. Special Use Permit Legal Descriptions Appendix D Special Use Permit Legal Descriptions TWE Project D-1 Manti-La Sal National Forest 600 kv Transmission Line Long-Term Right-of-Way: T. 13 S., R. 2 E., sec. 8, lot 1; PB 37, unsurveyed protracted.

More information

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES Herning / October 3 / 2017 By Jesper Madsen Chief Engineer, Aerodynamics & Acoustics WIND ENERGY DENMARK Annual Event 2017 Agenda 1. Aerodynamic design and

More information

Turbulence intensity within large offshore wind farms

Turbulence intensity within large offshore wind farms Loughborough University Institutional Repository Turbulence intensity within large offshore wind farms This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

Offshore Micrositing - Meeting The Challenge

Offshore Micrositing - Meeting The Challenge Offshore Micrositing - Meeting The Challenge V. Barth; DEWI GmbH, Oldenburg English Introduction Offshore wind is increasingly gaining importance in the wind energy sector. While countries like the UK

More information

Dynamic Positioning Control Augmentation for Jack-up Vessels

Dynamic Positioning Control Augmentation for Jack-up Vessels DYNAMIC POSITIONING CONFERENCE October 9-10, 2012 Design and Control Session Dynamic Positioning Control Augmentation for Jack-up Vessels By Bradley Deghuee L-3 Communications 1 Introduction Specialized

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

Wave Energy Resources Assessment for the China Sea Based on AVISO Altimeter and ERA Reanalysis Data (ID:10412)

Wave Energy Resources Assessment for the China Sea Based on AVISO Altimeter and ERA Reanalysis Data (ID:10412) Wave Energy Resources Assessment for the China Sea Based on AVISO Altimeter and ERA Reanalysis Data (ID:4) Junmin Meng, Jie Zhang First Institute of Oceanography, State Oceanic Administration, Qingdao,

More information

The Famous Grouse Restaurant ORCHARD RALLY FRIDAY 19 SEPTEMBER 2008

The Famous Grouse Restaurant ORCHARD RALLY FRIDAY 19 SEPTEMBER 2008 FINAL INSTRUCTIONS No 1 1. Thank you for your entry to the Orchard Rally 2008. Your Competition Number is. In Class. 2. The Scrutiny / Start / Finish venue is, Loughgall, map reference 9315 5190. Scrutiny

More information

PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS?

PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS? Title Authors: Organisation PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS? Simon Feeney(1), Alan Derrick(1), Alastair Oram(1), Iain Campbell(1), Gail Hutton(1), Greg Powles(1), Chris Slinger(2),

More information

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Nicolas BRUMIOUL Abstract This thesis deals with the optimization of the aerodynamic design of a small

More information

Investigating Wind Flow properties in Complex Terrain using 3 Lidars and a Meteorological Mast. Dimitri Foussekis

Investigating Wind Flow properties in Complex Terrain using 3 Lidars and a Meteorological Mast. Dimitri Foussekis Investigating Wind Flow properties in Complex Terrain using Lidars and a Meteorological Mast Dimitri Foussekis Centre for Renewable Energy Sources (C.R.E.S.), Wind Energy Dept., 9th km Marathonos Ave.,

More information

Wakes in very large wind farms and the effect of neighbouring wind farms

Wakes in very large wind farms and the effect of neighbouring wind farms Journal of Physics: Conference Series OPEN ACCESS Wakes in very large wind farms and the effect of neighbouring wind farms To cite this article: Nicolai Gayle Nygaard 2014 J. Phys.: Conf. Ser. 524 012162

More information

St. Augustine Yacht Club Founded 1873

St. Augustine Yacht Club Founded 1873 St. Augustine Yacht Club Founded 1873 Commodore s Cup Sunday, November 12 th, 2017 Notice of Race 1. Rules Races will be governed by The Racing Rules of Sailing (RRS); the prescriptions of the United States

More information

Wind Flow Modeling Software Comparison

Wind Flow Modeling Software Comparison Wind Flow Modeling Software Comparison John Vanden Bosche AWEA Wind Resource Assessment Workshop Minneapolis, MN September 30, 2009 Issues With Wind Flow Modeling Impractical to measure the wind at the

More information

Decision Making as the Wind Blows

Decision Making as the Wind Blows Decision Making as the Wind Blows - A Perspective on Wind Energy Control May 16, 2012, Martin Ansbjerg Kjær, LCCC 2nd Industrial Workshop, Lund Martin Ansbjerg Kjær MAANS@vestas.com 2003 MSc.EE. From Aalborg

More information

MEMO CC: Summary. ESMWT16419: _MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx 1/8

MEMO CC: Summary. ESMWT16419: _MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx 1/8 MEMO Prepared: Anthony Crockford 23.02.2016 Reviewed: Erik Holtslag 24.02.2016 Approved: Michiel Müller 29.02.2016 Filename 20160224_MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx Pages 8 Version Author

More information

Rotor Average wind speed for power curve performance. Ioannis Antoniou (LAC), Jochen Cleve (LAC), Apostolos Piperas (LAC)

Rotor Average wind speed for power curve performance. Ioannis Antoniou (LAC), Jochen Cleve (LAC), Apostolos Piperas (LAC) Rotor Average wind speed for power curve performance Ioannis Antoniou (LAC), Jochen Cleve (LAC), Apostolos Piperas (LAC) March 2, 23 Contents Rotor Average wind speed EU flat terrain wind profiles vs.

More information

26 th Annual Monkey s Uncle Race Sunday, May 6, 2018

26 th Annual Monkey s Uncle Race Sunday, May 6, 2018 St. Augustine Yacht Club Founded 1873 26 th Annual Monkey s Uncle Race Sunday, May 6, 2018 Notice of Race 1. Rules Races will be governed by The Racing Rules of Sailing (RRS); the prescriptions of the

More information

Why does T7 underperform? Individual turbine performance relative to preconstruction estimates.

Why does T7 underperform? Individual turbine performance relative to preconstruction estimates. Why does T7 underperform? Individual turbine performance relative to preconstruction estimates. P. Stuart, N. Atkinson, A. Clerc, A. Ely, M. Smith, J. Cronin, M. Zhu & T Young. EWEA Technology Workshop

More information

Analysis of long distance wakes behind a row of turbines a parameter study

Analysis of long distance wakes behind a row of turbines a parameter study Journal of Physics: Conference Series OPEN ACCESS Analysis of long distance wakes behind a row of turbines a parameter study To cite this article: O Eriksson et al 2014 J. Phys.: Conf. Ser. 524 012152

More information

WIND DATA REPORT. Ragged Mt Maine

WIND DATA REPORT. Ragged Mt Maine WIND DATA REPORT Ragged Mt Maine December 1 st 2007 to February 29 th 2007 by James R. Browning James F. Manwell Utama Abdulwahid Anthony F. Ellis April 10, 2008 Report template version 3.1 Renewable Energy

More information

Analysis of Shear Lag in Steel Angle Connectors

Analysis of Shear Lag in Steel Angle Connectors University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2013 Analysis of Shear Lag in Steel Angle Connectors Benjamin Sawyer

More information

Wake measurements from the Horns Rev wind farm

Wake measurements from the Horns Rev wind farm Wake measurements from the Horns Rev wind farm Leo E. Jensen, Elsam Engineering A/S Kraftvaerksvej 53, 7000 Fredericia Phone: +45 7923 3161, fax: +45 7556 4477 Email: leje@elsam.com Christian Mørch, Elsam

More information

Comparison of flow models

Comparison of flow models Comparison of flow models Rémi Gandoin (remga@dongenergy.dk) March 21st, 2011 Agenda 1. Presentation of DONG Energy 2. Today's presentation 1. Introduction 2. Purpose 3. Methods 4. Results 3. Discussion

More information

WIND DATA REPORT. Quincy DPW, MA

WIND DATA REPORT. Quincy DPW, MA WIND DATA REPORT Quincy DPW, MA March 1 st 2007 to May 31 st 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive Westborough, MA 01581 by James R. Browning James F. Manwell Anthony

More information

WIND DATA REPORT. Bishop and Clerks

WIND DATA REPORT. Bishop and Clerks WIND DATA REPORT Bishop and Clerks March 1, 2004 May 31, 2004 Prepared for Massachusetts Technology Collaborative 75 North Drive Westborough, MA 01581 by James F. Manwell Anthony L. Rogers Anthony F. Ellis

More information

How an extreme wind atlas is made

How an extreme wind atlas is made How an extreme wind atlas is made AC Kruger South African Weather Service X Larsén DTU Wind Energy Wind 1 Atlas for South Africa (WASA) Why do we need extreme wind statistics? Statistical background for

More information

Improvement of Wind Farm Performance by Means of Spinner Anemometry

Improvement of Wind Farm Performance by Means of Spinner Anemometry Downloaded from orbit.dtu.dk on: Jun 8, 218 Improvement of Wind Farm Performance by Means of Spinner Anemometry Troels F Pedersen, Giorgio Demurtas, Julia Gottschall, Jørgen Højstrup, Jesper Degn Nielsen,

More information