An Investigation into the Effect of Water Depth on the Resistance Components of Trimaran Configuration

Size: px
Start display at page:

Download "An Investigation into the Effect of Water Depth on the Resistance Components of Trimaran Configuration"

Transcription

1 An Investigation into the Effect of Water Depth on the Resistance Components of Trimaran Configuration Muhammad,IQBAL 1 and I Ketut Aria Pria, UTAMA 2 1 Department of Naval Architecture Diponegoro University, Semarang 50275, Indonesia 2 Department of Naval Architecture and Shipbuilding Enginering Institut Teknologi SepuluhNopember (ITS), Surabaya 60111, Indonesia Abstract Research, in order to breackdown the resistance components of trimaran hull form, has been carried out worlwide. Almost all of the work is focused on the resistance investigation of trimaran configuration in deep sea condition. None of the research has formulated the estimation of trimaran resistance components into certain equation such as for catamaran. The current work is concentrated on the investigation of the effect of water depth, namely deep, medium and shallow waters, into the total resistance of the trimaran configuration. Experimental investigation using ITS model were carried out at a towing tank at various hull separation (S/L = 0.2, 0.3 and 0.4) and various speeds or Froude Numbers. Special consideration is given to medium and shallow water depth because the Froude Numbers are based on water depth and not based on ship length such as in deep water condition. CFD investigation using a CFD code called Tdyn, is also conducted in order to validate the results of the experimental investigation. The results of the experimental test and CFD analysis are in good agreement and comparative studies with other published data strengthen the findings. Keywords: trimaran, resistance, model test, CFD. 1. Background One of the most popular type of vessels at present is the multihulls where this vessel has several benefits compared to monohull. Trimaran is one type of multihull vessels which has three hulls connected by bridge construction hence the trimaran has wider deck space area compared to monohull of similar displacement. Trimaran has been investigated by many experts and naval architects in order to replace the use of monohull attributed to several advantages [1,2,3,4] explained that there are several benefits of the use of trimaran compared to monohull, namely lower wave resistance at higher speeds, wider deck space area, better transverse stability and better maneuverability hence more comfortable for passengers. Among those advantages, the difference of ship operational condition such as difference of water depth has caused unique hydrodynamics phenomena compared to deep sea condition. A ship moving at shallow water can cause its speed to decrease and consume more fuels. Moreover, the vessel is vulnerable for grounding, which is the situation when the bottom of ship hits the sea bottom. This is also dangerous for the vessel itself, where a ship moving at shallow waters can harm the maritime environment, onshore construction, and other vessels or objects situated nearby [5]. There is significant increase of resistance when a vessel moving at shallow waters. Based on the curve of resistance, there is peak of the curve which indicates the highest resistance among other speeds. This condition occurs at Frh 1,00 where Frh is called depth Froude number [6,7]. When a vessel moving at restricted waters, it may cause interaction between the bottom of ship and the bottom of seawaters. This interaction is caused by the significant pressure changes due to the change of flow speed under the ship [7]. In addition, interference between hulls can also cause the increase of ship s resistance. 2. Research Method 2.1. Main Dimension The experimental model tests were carried out at ITS towing tank at the model scale of 1:8 at the speeds of m/s ( knots of the real vessel speed) or in term of Froude

2 numbersfr L 0,21 0,41 orfr h 0,88 1,70without rudder and propeller. The ship model can be seen in Figure 1 and the principal particular can be found in Table 1. Side hull MainHull Side hull Figure 1. Ship model Table 1. Principal particular of ship and model Dimensions Main Hull Side hull Full Scale Model Full Scale Model Length between waterline, LWL (m) Breadth, B (m) Draft, T (m) Height, H (m) Displacement, Δ (ton) Block Coeffisient, Cb Watted Surface Area, WSA (m 2 ) Total Displacement Total WSA Full scale = 11.8 ton Full scale = m 2 Model = ton Model = m Sidehull Position The position of sidehull is notified as S/L ratio where S is distance between main-hull centreline and side-hull centreline and L or LWL is the length of main-hull in m. The values of S/L used for the tests were 0.2, 0.3 and 0.4. Details of the paramaters can be seen in Figure 2 and Table 2. Figure 2. Variation of sidehull position

3 Table 2. Distance between mainhull and sidehull positions (m) S/L Full Scale Model Depth of Water The depth of water of the tests was divided into three: deep, medium and shallow waters and notified as h/t where h is the depth of water (m) and T is ship s draught (m). The depth of water was categorized based on h/t values: for shallow water, for medium water and > 19.3 for deep water [8] and tabulated in Table 3. Table 3. Water depth (m) h/t Full Scale Model 1.22 (shallow water) (medium water) (deep water) Results and Discussion 3.1 Experimental and CFD The results of resistance tests can be seen in Figure 3. Both experiment and CFD results demonstrated similar trends where at shallow waters the curve of total resistance decreases from Fr L 0,24 to 0,41. At medium waters, the curve of resistance increases from Fr L 0,24 to 0,28 and later decreases until Fr L 0,41. Meanwhile, at deep waters the curve of resistance does not change significantly. Figure 3. Comparison of CFD and Experiment

4 Coefficient of Total Resistance (CT) The 9 th International Conference on Marine Technology 3.2. Category of Vessel Speed at Shallow Waters The determination of speed when a ship is operated at shallow waters is very important. Its resistance in deep waters, at the same speed, can increase drastically in shallow waters. This depends highly on the speed category and in order to describe this category, the curve of resistance is figured out in term offr h. If the speed of ship is the same of the speed of wave at shallow waters (c), notified as c = gh, hence the speed is called critical speed (Fr h = 1,00). Whilst, if the speed v < c, it is called subcritical (Fr h < 1,00) and ifv > c it is called supercritical (Fr h > 1,00). This category is popularly knows as Froude Number Based on Depth(Fr h ). The three categories provides differennt effects on ship resistance Froude Number Based on Depth (Frh) Shallow S/L 0.2 Shallow S/L 0.3 Shallow S/L 0.4 Medium S/L 0.2 Medium S/L 0.3 Medium S/L 0.4 Figure 4. Category of the speed of ship It can be seen in Figure 4 that with the same Fr L, the value of Fr h can be different because of different water depth condition. At shallow waters, the wave resistance coefficient lies from Fr h 1,00 and at medium waters fromfr h 0,88. Figure 5. Medium water depth Fr L 0,244 critical speed Fr h 0,890 Figure 6. Medium water depth Fr L 0,284 critical speed Fr h 1,035

5 Figure 7. Medium water depth Fr L 0,410 supercritical speed Fr h 1,495 Figure 8. Wave contour elevation at medium water depth Figures 5 to 7 show the difference among subcritical, critical and supercritical speeds based on experimental model tests, whereas Figure 8 demonstrates the difference from CFD analysis. Those show similar trend. Both experiment and CFD results show that wave at the bow part at critical speed is higher than that of subcritical speed. Meanwhile, the wave angle of entrance at critical speed is close to 90 o and this is in agreement with statement from [7]. At the critical speed the submerge transom part appears, but it does not appear at subcritical speed. At supercritical speed, the created wave is dominated by divergent wave, whilst the transverse wave disappears. According to [7], it is attributed to gravity waves, which does not occur at c > gh Variation of Pressure and Speed of Flow Figure 9 shows the measurement positions of pressure and speed of flow. Measurement if pressure is carried out in order to seek the interaction between the bottom of ship and see bed which affects pressure and fluid flow. The position of measurement lies at 0.01 m beneath ship model or it is 0.1 m below water surface if assumed that the coordinate from x = 0 showing that the after perpendicular (AP) until x = m showing the fore perpendicular (FP).

6 Velocity (m/s) Pressure (Pa) The 9 th International Conference on Marine Technology Figure 9. Position of pressure and flow speed measurement at the bottom of model Figure 10. Pressure at the bottom of ship atfr L 0,244, S/L 0, X Coordinate (m) X Coordinate (m) Figure 11. Speed of flow at the bottom of ship at Fr L 0,244, S/L 0,3 Figure 10 shows the measurement of pressure at Fr L 0,244, S/L 0,3 where the shallower the water depth, the pressure at ship bow increase drastically whilst at stern it drops drastically. Conversely, Figure 11 shows that the shallower the water depth, the speed of flow at bow decreases and it increases drastically at stern. According to [7], the increase and decrease of pressure and flow of speed has attracted the squat effect where the ship hull is likely to be pulled to the bottom hence caused the change of trim and snkage significantly. The stronger the pulling force to the bottom, the quicker the bottom of ship touching the bottom and this is called grounding, and this is certainly dangerous for the safety of ship. Furthermore, [9] described that the creation of wave resistance is caused by pressure of fluid works normal or perpendicular to ship hull. This explains that the existence of significant pressure changes on the hull surface due to the changes of fluid pressure has caused the wave resistance to increase The Effect of Water Depth on the Interference Between Hulls When a trimaran ship mowing at certain speed, each hull will create separate wave patterns. Each of those wave patterns will interfere among others and hence cause the increase of wave resistance. The orbital of wave particles at shallow waters does not create circle form like in deep waters but forming elliptical form. This causes the longer wave length to be produced compared to deep waters [5,10]. Moreover, the created wave length can be along the ship s length. This then describes how the wave resistance interference increase at shallow water as compared to that in deep sea. In order to understand the wave intrference, the superposition of each resistance components of each demihull can be obtained by using Equation (1) [11,12]. This is conducted in order to compare the combination of total demihull resistance coefficient against the total resistance coefficient of trimaran in relation with its S/L ratios. However, the experimental investigation on each hull was not

7 interference factor interference factor interference factor The 9 th International Conference on Marine Technology carried out. Therefore, the CFD results on the total resistance cannot be compared with the experimental work. It can be found from that comparison that the difference of total resistance for each S/L ratios to each sidehull is called interference factor (η). The calculation of interference factor is formulated in Equation (2). Negative values indicated that the interference is an advantage [12]. Ct tri NI = Ct m S m + 2Ct s S s S tri (1) η = Ct tri Ct tri NI 1,0 (2) The interference of trimaran in the current paper was presented in the same position of sidehull (S/L) but at different water depths. The results are shown in Figures 12 to 14. This shows that with the same S/L, the interference between hulls can be different for each water depths. In general, interference at shallow waters can be smaller compared to that of medium and deep waters and this is attributed to the speed of vessel and position of sidehull Froude Number Based on Length (FrL) Figure 12. Interference factor at S/L 0.2 at various water depth Froude Number Based on Length (FrL) Figure 13.Interference factor at S/L 0.3 at various water depth Froude Number Based on Length (FrL) Figure 14. Interference factor at S/L 0.4at various water depths.

8 4. Conclusions Based on the experimental and CFD analysis, it can be found that (at the same speed) the total ship resistance in deep waters can increase almost double at medium waters and about two and a half times at shallow waters. The difference between experiment and CFD analysis is quite small, under 10%. The increase of ship resistance is believed to be due to the significant pressure changes caused by significant change of flow speed. Moreover, the effect of water depth onto the interference between hulls is also obvious. In general, the interference at shallow waters is smaller than that of medium and deep waters and it depends highly on the speed of vessels and position of side-hulls. 5. References [1] Fang, M., Chen, T. (2008). A Parametric Study of Wave Loads on trimaran Ships Travelling in Waves, Ocean Engineering, Vol. 35, hal [2] Mynard, T., Sahoo, P.K., Mikkelsen, J., McGreer, D. (2008), Numerical and Experimental Study of Wave Resistance for Trimaran Hull Forms, Australian Maritime College, hal [3] Utama, I.K.A.P., Murdijanto., Sulisetyono, A., Jamaludin, A. (2009). Development of Multihull Ship Modes for Safe, Comfort and Efficient River and Ferry Transportations (in Indonesian), Final Report of Applied Intensive Research Scheme (RIT), ITS Research Centre (LPPM-ITS), Surabaya, Indonesia. [4] Min, X., Shi-lian, Z. (2011), A Numerical Study on Side Hull Optimization for trimaran, Journal of Hydrodynamics, Vol. 23, No. 2, hal [5] Lyakhovitsky, Anatoly. (2007), Shallow Water and Supercritical Ships, Backbone Publishing Company, Fair Lawn, NJ-USA. [6] Hofman, M., (2006). Prediction of Wave Making Resistance of Fast Ships in Shallow Water And Computer Program ShallowRess, Report BR001/2006 Technical Solution, Dept. Of Naval Architecture Faculty of Mechanical Engineering University of Belgrade, Serbia. [7] Molland, A.F., Turnock, S.R, Hudson, D.D, (2011), Ship Resistance and Propulsion, Cambridge University Press, Cambridge. [8] Koh, K.K., Yasukawa, H. (2012). Comparison study of a pusher barge system in shallow water, medium shallow water and deep water conditions, Ocean Engineering, Vol. 46, hal [9] Jamaluddin, A. (2012). Experimental and Numerical Analysis of Wave and Viscous Resistance Interference of Catamaran at Various Configurations (in Indonesian), PhD Thesis, Faculty of Marine Technology, ITS, Surabaya, Indonesia. [10] Djatmiko, E. B., (2012). Behaviour and Operability of Floating Bodies in Random Waves (in Indonesian), ITS Press, Surabaya. [11] Pei-young, L., Young-ming, Q., Min-tong, G. (2002), Study of Trimaran Wavemaking Resistance With Numerical Calculation and Experiment, Journal of Hydrodynamics, Vol. 2, hal [12] Hafez, K.A., El-Kot, A.A. (2012). Comparative Investigation of The Stagger Variation Influence on The Hydrodynamic Interference of High Speed Trimaran, Alexandria Engineering Journal, Vol. 51, hal

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-7, July- 2016]

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-7, July- 2016] Experimental Investigation into the Resistance Components of Displacement Trimaran at Various Lateral Spacings Richard B Luhulima 1, I Ketut Aria Pria Utama 2, Aries Sulisetyono 3 1 Department of Naval

More information

AN INVESTIGATION INTO THE RESISTANCE/POWERING AND SEAKEEPING CHARACTERISTICS OF RIVER CATAMARAN AND TRIMARAN

AN INVESTIGATION INTO THE RESISTANCE/POWERING AND SEAKEEPING CHARACTERISTICS OF RIVER CATAMARAN AND TRIMARAN MAKARA,TEKNOLOGI, VOL. 15, NO. 1, APRIL 2011: 25-30 AN INVESTIGATION INTO THE RESISTANCE/POWERING AND SEAKEEPING CHARACTERISTICS OF RIVER CATAMARAN AND TRIMARAN Murdijanto 1, I Ketut Aria Pria Utama 1*),

More information

Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria

Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria Richard B Luhulima 1, D Setyawan 2, and I K A P Utama 3 1. PhD Student Dept. of Naval

More information

EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER

EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER A.F. Molland, P.A. Wilson and D.J. Taunton Ship Science Report No. 124 University of Southampton December

More information

International Journal of Maritime Engineering

International Journal of Maritime Engineering International Journal of Maritime Engineering THE BORE PRODUCED BETWEEN THE HULLS OF A HIGH-SPEED CATAMARAN IN SHALLOW WATER T Gourlay, Curtin University, J Duffy, Australian Maritime College and A Forbes,

More information

Effect of Hull Form and its Associated Parameters on the Resistance of a Catamaran

Effect of Hull Form and its Associated Parameters on the Resistance of a Catamaran Effect of Hull Form and its Associated Parameters on the Resistance of a Catamaran Zulkarnain Bin Ramsani *1, Ivan CK Tam *2, and Arun Dev *3 *School of Marine Science and Technology, Newcastle University

More information

The Wake Wash Prediction on an Asymmetric Catamaran Hull Form

The Wake Wash Prediction on an Asymmetric Catamaran Hull Form The Wake Wash Prediction on an Asymmetric Catamaran Hull Form Omar Yaakob, Mohd. Pauzi Abd. Ghani, Mohd. Afifi Abd. Mukti, Ahmad Nasirudin, Kamarul Baharin Tawi, Tholudin Mat Lazim Faculty of Mechanical

More information

A Study into the Selection of Mono- and Multi-Hull Vessel for Better Sea Transportation System

A Study into the Selection of Mono- and Multi-Hull Vessel for Better Sea Transportation System A Study into the Selection of Mono- and Multi-Hull Vessel for Better Sea Transportation System I K A P Utama Professor, Department of Naval Architectur, ITS, Surabaya A. Jamaluddin Senior Research Fellow,

More information

Resistance and Stability Analysis for Catamaran Fishing Vessel with Solar Cell in Calm Water

Resistance and Stability Analysis for Catamaran Fishing Vessel with Solar Cell in Calm Water Resistance and Stability Analysis for Catamaran Fishing Vessel with Solar Cell in Calm Water Teguh Putranto 1,*, Wasis Dwi Aryawan 1, Hesty Anita Kurniawati 1, Dony Setyawan 1, and Sri Rejeki Wahyu Pribadi

More information

THE PREDICTION OF WAKE WASH IN THE TOWING TANK

THE PREDICTION OF WAKE WASH IN THE TOWING TANK Jurnal Mekanikal December 2008, No. 26, 129-140 THE PREDICTION OF WAKE WASH IN THE TOWING TANK Mohamad Pauzi Abdul Ghani 1*, M.N. Abdul Rahim 2 1 Faculty of Mechanical Engineering, Universiti Teknologi

More information

International Journal of Marine Engineering Innovation and Research, Vol. 2(2), Mar (pissn: , eissn:

International Journal of Marine Engineering Innovation and Research, Vol. 2(2), Mar (pissn: , eissn: (pissn: 2541-5972, eissn: 2548-1479 176 Analysis of Lift and Drag of Mono-foil Hysucat due to Longitudinal Foil-placement Variation Ketut Suastika 1, Regi Y. Dikantoro 1, Dedi B. Purwanto 1, Dony Setyawan

More information

International Journal of Offshore and Coastal Engineering Vol.1 No. 1 pp August 2017 e-issn: Department of Ocean Engineering ITS

International Journal of Offshore and Coastal Engineering Vol.1 No. 1 pp August 2017 e-issn: Department of Ocean Engineering ITS International Journal of Offshore and Coastal Engineering Vol.1 No. 1 pp. 16 21 August 2017 e-issn: 2580-0914 2017 Department of Ocean Engineering ITS Submitted: December 12, 2016 Revised: March 13, 2017

More information

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Minggui Zhou 1, Dano Roelvink 2,4, Henk Verheij 3,4 and Han Ligteringen 2,3 1 School of Naval Architecture, Ocean and Civil Engineering,

More information

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section International Ship Stability Workshop 2013 1 A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section Tatsuya Miyake and Yoshiho Ikeda Department of Marine System Engineering,

More information

CFD Analysis into the Resistance Interference of Displacement Trimaran

CFD Analysis into the Resistance Interference of Displacement Trimaran Australian Journal of Basic and Applied Sciences, 10(14) September 2016, Pages: 65-73 AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 2309-8414 Journal home page: www.ajbasweb.com

More information

Study on Resistance of Stepped Hull Fitted With Interceptor Plate

Study on Resistance of Stepped Hull Fitted With Interceptor Plate 39 Study on Resistance of Stepped Hull Fitted With Interceptor Plate Muhamad Asyraf bin Abdul Malek, a, and J.Koto, a,b,* a) Department of Aeronautic, Automotive and Ocean Engineering, Faculty of Mechanical

More information

Hull Separation Optimization of Catamaran Unmanned Surface Vehicle Powered with Hydrogen Fuel Cell

Hull Separation Optimization of Catamaran Unmanned Surface Vehicle Powered with Hydrogen Fuel Cell Hull Separation Optimization of Catamaran Unmanned Surface Vehicle Powered with Hydrogen Fuel Cell Seok-In Sohn, Dae-Hwan Park, Yeon-Seung Lee, Il-Kwon Oh International Science Index, Physical and Mathematical

More information

The influence of the high-speed Trimaran to Flow Field. Yi-fan Wang 1, Teng Zhao 2

The influence of the high-speed Trimaran to Flow Field. Yi-fan Wang 1, Teng Zhao 2 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) The influence of the high-speed Trimaran to Flow Field Yi-fan Wang 1, Teng Zhao 2 1 Chongqing jiaotong university,400074,chongqing

More information

Numerical Estimation of Shallow Water Resistance of a River-Sea Ship using CFD

Numerical Estimation of Shallow Water Resistance of a River-Sea Ship using CFD Numerical Estimation of Shallow Water Resistance of a River-Sea Ship using CFD Senthil Prakash M.N,Ph.D Associate Professor Department of Mechanical Engineering,CUSAT CUCEK, Alappuzha-688504, India Binod

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 95 CHIEF

More information

MEDIUM SPEED CATAMARAN WITH LARGE CENTRAL BULBS: EXPERIMENTAL INVESTIGATION ON RESISTANCE AND VERTICAL MOTIONS

MEDIUM SPEED CATAMARAN WITH LARGE CENTRAL BULBS: EXPERIMENTAL INVESTIGATION ON RESISTANCE AND VERTICAL MOTIONS MEDIUM SPEED CATAMARAN WITH LARGE CENTRAL BULBS: EXPERIMENTAL INVESTIGATION ON RESISTANCE AND VERTICAL MOTIONS Igor Zotti, University of Trieste, Department D.I.N.M.A., Italy SUMMARY: It has been noticed

More information

CFD PREDICTION OF THE WAVE RESISTANCE OF A CATAMARAN WITH STAGGERED DEMIHULLS

CFD PREDICTION OF THE WAVE RESISTANCE OF A CATAMARAN WITH STAGGERED DEMIHULLS MAHY 2006: International Conference on Marine Hydrodynamics 5-7January 2006, Visakhapatnam, India CFD PREDICTION OF THE WAVE RESISTANCE OF A CATAMARAN WITH STAGGERED DEMIHULLS Prasanta K. Sahoo Senior

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 A Comparison of Hull Resistances of a Mono-Hull and A SWATH Craft Josip Medaković, Ban Dario, Branko Blagojević University of Split, FESB, Department of Mechanical Engineering and Naval Architecture, 21000

More information

NUMERICAL AND EXPERIMENTAL STUDY OF WAVE RESISTANCE FOR TRIMARAN HULL FORMS

NUMERICAL AND EXPERIMENTAL STUDY OF WAVE RESISTANCE FOR TRIMARAN HULL FORMS NUMERICAL AND EXPERIMENTAL STUDY OF WAVE RESISTANCE FOR TRIMARAN HULL FORMS Thomas Mynard, Research student at Australian Maritime College, PO Box 986, Launceston, TAS 750, Australia Prasanta K Sahoo,

More information

THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS

THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS BY DOYOON KIM UNIVERSITY OF SOUTHAMPTON LIST OF CONTENTS AIM & OBJECTIVE HYDRODYNAMIC PHENOMENA OF PLANING HULLS TOWING TANK TEST RESULTS COMPUTATIONAL

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

A concept design of three rudders-shaped like body in columns for low-drag USV

A concept design of three rudders-shaped like body in columns for low-drag USV IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS A concept design of three rudders-shaped like body in columns for low-drag USV To cite this article: M N Azzeri et al 2016 IOP

More information

Figure 1: The squat effect. (Top) Ship at rest. (Bottom) Ship under way.

Figure 1: The squat effect. (Top) Ship at rest. (Bottom) Ship under way. Under-Keel Clearance of Frigates and Destroyers in Shallow Water Tim Gourlay, Centre for Marine Science and Technology, Curtin University CMST Research Report 013-53 Abstract For RAN ships operating in

More information

A Feasibility Study on a New Trimaran PCC in Medium Speed

A Feasibility Study on a New Trimaran PCC in Medium Speed The 6 th International Workshop on Ship ydrodynamics, IWS 010 January 9-1, 010, arbin, China Feasibility Study on a ew Trimaran PCC in Medium Speed Tatsuhiro Mizobe 1*, Yasunori ihei 1 and Yoshiho Ikeda

More information

The OTSS System for Drift and Response Prediction of Damaged Ships

The OTSS System for Drift and Response Prediction of Damaged Ships The OTSS System for Drift and Response Prediction of Damaged Ships Shoichi Hara 1, Kunihiro Hoshino 1,Kazuhiro Yukawa 1, Jun Hasegawa 1 Katsuji Tanizawa 1, Michio Ueno 1, Kenji Yamakawa 1 1 National Maritime

More information

STABILITY OF MULTIHULLS Author: Jean Sans

STABILITY OF MULTIHULLS Author: Jean Sans STABILITY OF MULTIHULLS Author: Jean Sans (Translation of a paper dated 10/05/2006 by Simon Forbes) Introduction: The capsize of Multihulls requires a more exhaustive analysis than monohulls, even those

More information

Resistance Analysis for a Trimaran Claire M. De Marco Muscat-Fenech, Andrea M. Grech La Rosa

Resistance Analysis for a Trimaran Claire M. De Marco Muscat-Fenech, Andrea M. Grech La Rosa Resistance Analysis for a Trimaran Claire M. De Marco Muscat-Fenech, Andrea M. Grech La Rosa Abstract Importance has been given to resistance analysis for various types of vessels; however, explicit guidelines

More information

Slamming Analysis on a 35,000 Ton Class of Drillship

Slamming Analysis on a 35,000 Ton Class of Drillship Slamming Analysis on a 35,000 Ton Class of Drillship Mahasin M. Ahmad, a,* Eko B. Djatmiko, b, and Handayanu, b a) Master Degree Student, Marine Technology Post-Graduate Program, Institut Teknologi Sepuluh

More information

Three New Concepts of Multi-Hulls

Three New Concepts of Multi-Hulls Three New Concepts of Multi-Hulls Victor A. Dubrovsky Independent designer, Russian Federation 114-71 Budapeshtskaja Str, St.Petersburg, 192283, Russian Federation Multi-hulls@yandex.ru Abstract Many multi-hull

More information

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves ABSTRACT Emre Kahramano lu, Technical University, emrek@yildiz.edu.tr Hüseyin Y lmaz,, hyilmaz@yildiz.edu.tr Burak

More information

Shallow-Draft Ro-Pax Ships for Various Cargos and Short Lines

Shallow-Draft Ro-Pax Ships for Various Cargos and Short Lines Journal of Water Resources and Ocean Science 2017; 6(5): 65-70 http://www.sciencepublishinggroup.com/j/wros doi: 10.11648/j.wros.20170605.12 ISSN: 2328-7969 (Print); ISSN: 2328-7993 (Online) Shallow-Draft

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

Australian Journal of Basic and Applied Sciences 2018Sept; 12(10): pages DOI: /ajbas

Australian Journal of Basic and Applied Sciences 2018Sept; 12(10): pages DOI: /ajbas Australian Journal of Basic and Applied Sciences 2018Sept; 12(10): pages 47-54 DOI: 10.22587/ajbas.2018.12.10.8 Research Article Journal home page: www.ajbasweb.com An Investigation into The Use of Engine-Sail

More information

TS 4001: Lecture Summary 4. Resistance

TS 4001: Lecture Summary 4. Resistance TS 4001: Lecture Summary 4 Resistance Ship Resistance Very complex problem: Viscous effects. Free surface effects. Can only be solved by a combination of: Theoretical methods. Phenomenological methods.

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects

Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects 53 MAKOTO KAWABUCHI *1 MASAYA KUBOTA *1 SATORU ISHIKAWA *2 As can be seen from

More information

Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe

Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe Includes Basic ship Terminologies and Investigation Check list Index 1. Ship Terminology 03 2. Motions of a Floating Body...09 3. Ship Stability.10 4. Free

More information

NEW CONCEPT OF SOLAR- POWERED CATAMARAN FISHING VESSEL

NEW CONCEPT OF SOLAR- POWERED CATAMARAN FISHING VESSEL Proceedings of the 7 th International Conference on Asian and Pacific Coasts (APAC 2013) Bali, Indonesia, September 24-26, 2013 NEW CONCEPT OF SOLAR- POWERED CATAMARAN FISHING VESSEL IKAP Utama 1, PI Santosa

More information

Study on the shape parameters of bulbous bow of. tuna longline fishing vessel

Study on the shape parameters of bulbous bow of. tuna longline fishing vessel International Conference on Energy and Environmental Protection (ICEEP 2016) Study on the shape parameters of bulbous bow of tuna longline fishing vessel Chao LI a, Yongsheng WANG b, Jihua Chen c Fishery

More information

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE LIST OF TOPICS A B C D E F G H I J Hydrostatics Simpson's Rule Ship Stability Ship Resistance Admiralty Coefficients Fuel Consumption Ship Terminology Ship

More information

SHIP FORM DEFINITION The Shape of a Ship

SHIP FORM DEFINITION The Shape of a Ship SHIP FORM DEFINITION The Shape of a Ship The Traditional Way to Represent the Hull Form A ship's hull is a very complicated three dimensional shape. With few exceptions an equation cannot be written that

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

Resistance and effective power on various casco models of purse seiner

Resistance and effective power on various casco models of purse seiner Resistance and effective power on various casco models of purse seiner St Aisjah Farhum, Ilham Jaya and Karliani Faculty of Marine and Fisheries Sciences, Hasanuddin University, Makassar. Email: icha_erick@yahoo.com

More information

A HYDRODYNAMIC METHODOLOGY AND CFD ANALYSIS FOR PERFORMANCE PREDICTION OF STEPPED PLANING HULLS

A HYDRODYNAMIC METHODOLOGY AND CFD ANALYSIS FOR PERFORMANCE PREDICTION OF STEPPED PLANING HULLS POLISH MARITIME RESEARCH 2(86) 2015 Vol. 22; pp. 23-31 10.1515/pomr-2015-0014 A HYDRODYNAMIC METHODOLOGY AND CFD ANALYSIS FOR PERFORMANCE PREDICTION OF STEPPED PLANING HULLS Hassan Ghassemi, Assoc. Prof.

More information

for Naval Aircraft Operations

for Naval Aircraft Operations Seakeeping Assessment of Large Seakeeping Assessment of Large Trimaran Trimaran for Naval Aircraft Operations for Naval Aircraft Operations Presented by Mr. Boyden Williams, Mr. Lars Henriksen (Viking

More information

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Lecture - 17 Resistance of Advanced Marine vehicles - III (Refer Slide Time: 00:10) Now,

More information

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Lecture - 6 Bulbous Bow on Ship Resistance Welcome back to the class we have been discussing

More information

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No.# 01 Lecture No. # 01 Introduction Hello everybody.

More information

S0300-A6-MAN-010 CHAPTER 2 STABILITY

S0300-A6-MAN-010 CHAPTER 2 STABILITY CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

More information

Comparison of Motion Sickness Incidence (MSI) of three Crew Transfer Vessels with different hull forms. Héloïse Vignal

Comparison of Motion Sickness Incidence (MSI) of three Crew Transfer Vessels with different hull forms. Héloïse Vignal Comparison of Motion Sickness Incidence (MSI) of three Crew Transfer Vessels with different hull forms Héloïse Vignal University Supervisors : Prof. Zbigniew Sekulski, ZUT Prof. Florin Pacuraru, UGAL Industrial

More information

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance csnak, 2013 Int. J. Naval Archit. Ocean Eng. (2013) 5:161~177 http://dx.doi.org/10.2478/ijnaoe-2013-0124 Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

COMPARATIVE ANALYSIS OF CONVENTIONAL AND SWATH PASSENGER CATAMARAN

COMPARATIVE ANALYSIS OF CONVENTIONAL AND SWATH PASSENGER CATAMARAN COMPARATIVE ANALYSIS OF CONVENTIONAL AND SWATH PASSENGER CATAMARAN Serđo Kos, Ph. D. David Brčić, B. Sc. Vlado Frančić, M. Sc. University of Rijeka Faculty of Maritime Studies Studentska 2, HR 51000 Rijeka,

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

A methodology for evaluating the controllability of a ship navigating in a restricted channel

A methodology for evaluating the controllability of a ship navigating in a restricted channel A methodology for evaluating the controllability of a ship navigating in a restricted channel K. ELOOT A, J. VERWILLIGEN B AND M. VANTORRE B a Flanders Hydraulics Research (FHR), Flemish Government, Antwerp,

More information

EXPERIMENTAL STUDY ON HEAVE AND PITCH MOTION CHARACTERISTICS OF A WAVE-PIERCING TRIMARAN

EXPERIMENTAL STUDY ON HEAVE AND PITCH MOTION CHARACTERISTICS OF A WAVE-PIERCING TRIMARAN Karim Akbari Vakilabadi Mohammad Reza Khedmati Mohammad Saeed Seif ISSN 1333-1124 eissn 1849-1391 EXPERIMENTAL STUDY ON HEAVE AND PITCH MOTION CHARACTERISTICS OF A WAVE-PIERCING TRIMARAN Summary UDC 629.5.022.3:629.5.018.71

More information

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING TECHNOLOGY (IJDMT) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6995 (Print) ISSN

More information

Experimental and numerical studies on resistance of a catamaran vessel with non-parallel demihulls

Experimental and numerical studies on resistance of a catamaran vessel with non-parallel demihulls Scientia Iranica B (2014) 21(3), 600{608 Sharif University of Technology Scientia Iranica Transactions B: Mechanical Engineering www.scientiairanica.com Experimental and numerical studies on resistance

More information

Ocean Transits in a 50m, 45 knot Catamaran The Minimisation of Motions and Speed Loss

Ocean Transits in a 50m, 45 knot Catamaran The Minimisation of Motions and Speed Loss Ocean Transits in a 50m, 45 knot Catamaran The Minimisation of Motions and Speed Loss Edward Dudson, Ship Design Director, Nigel Gee and Associates Ltd, UK James Roy, Senior Naval Architect, Nigel Gee

More information

CFD Analysis for a Ballast Free Ship Design

CFD Analysis for a Ballast Free Ship Design Indian Journal of Geo-Marine Sciences Vol. 43(11), November 2014, pp. 2053-2059 CFD Analysis for a Ballast Free Ship Design Avinash Godey 1*, S.C.Misra 1 and O.P.Sha 2 1 Indian Maritime University (Visakhapatnam

More information

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su THE RUDDER starting from the requirements supplied by the customer, the designer must obtain the rudder's characteristics that satisfy such requirements. Subsequently, from such characteristics he must

More information

Ship waves in Tallinn Bay: Experimental and numerical study

Ship waves in Tallinn Bay: Experimental and numerical study Ship waves in Tallinn Bay: Experimental and numerical study Tomas Torsvik Bergen Center for Computational Science UNIFOB AS In collaboration with Tarmo Soomere Wave Engineering Centre for Nonlinear studies

More information

TRIMARAN HULL DESIGN FOR FAST FERRY APPLICATIONS

TRIMARAN HULL DESIGN FOR FAST FERRY APPLICATIONS TRIMARAN HULL DESIGN FOR FAST FERRY APPLICATIONS Stefano Brizzolara, Marco Capasso, Marco Ferrando, Carlo Podenzana Bonvino Dept. of Naval Architecture and Marine Technologies, Univ. of Genova, Italy;

More information

FAST SUPPLY INTERVENTION and CREW TRANSFER VESSEL M P 6 2 5

FAST SUPPLY INTERVENTION and CREW TRANSFER VESSEL M P 6 2 5 FAST SUPPLY INTERVENTION and CREW TRANSFER VESSEL M P 6 2 5 MAIN PARTICULARS LENGTH OVER ALL 60.68 m LENGTH WATER LINE 59.35 m BREADTH MAX 20.80 m DRAUGHT MAX 3.10 m DEPTH 6.70 m MAX SPEED 37.0 knots @

More information

THE EFFECT OF HEEL ANGLE AND FREE-SURFACE PROXIMITY ON THE PERFORMANCE AND STRUT WAKE OF A MOTH SAILING DINGHY RUDDER T-FOIL

THE EFFECT OF HEEL ANGLE AND FREE-SURFACE PROXIMITY ON THE PERFORMANCE AND STRUT WAKE OF A MOTH SAILING DINGHY RUDDER T-FOIL 3 rd High Performance Yacht Design Conference Auckland, 2-4 December, 2008 THE EFFECT OF HEEL ANGLE AND FREE-SURFACE PROXIMITY ON THE PERFORMANCE AND STRUT WAKE OF A MOTH SAILING DINGHY RUDDER T-FOIL Jonathan

More information

Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing

Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing csnak, 2014 Int. J. Nav. Archit. Ocean Eng. (2014) 6:392~405 http://dx.doi.org/10.2478/ijnaoe-2013-0187 pissn: 2092-6782, eissn: 2092-6790 Hydrodynamic optimization of twin-skeg LNG ships by CFD and model

More information

TOWMASTER. User Manual. Version : 1.0.0

TOWMASTER. User Manual. Version : 1.0.0 TOWMASTER User Manual Version : 1.0.0 Date : 23-November-2014 License Information TOWMASTER TOWMASTER software and source code are property of Technomak Offshore & Marine Consultancy. The software along

More information

WOODFIBRE LNG VESSEL WAKE ASSESSMENT

WOODFIBRE LNG VESSEL WAKE ASSESSMENT Woodfibre LNG Limited WOODFIBRE LNG VESSEL WAKE ASSESSMENT Introduction Woodfibre LNG Limited (WLNG) intends to build a new LNG export terminal at Woodfibre, Howe Sound, British Columbia. WLNG has engaged

More information

Application and Development of Multi-Hulls

Application and Development of Multi-Hulls April 20, 204 Application and Development of Multi-Hulls a) Balt Techno Prom, St.Petersburg, Russia Victor A. Dubrovsky, a,* *Corresponding author: multi-hulls@yandex.ru Paper History Received: 8-January-204

More information

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Lecture - 7 Air and Wind Resistance Dimensional Analysis I Coming back to the class, we

More information

Wave Resistance Prediction of Hard-Chine Catamarans through

Wave Resistance Prediction of Hard-Chine Catamarans through Wave Resistance Prediction of Hard-Chine Catamarans through Xuan P. Pham Research Student Dept. of Naval Architecture & Ocean Engineering Australian Maritime College PO Box 986, Launceston, TAS 7250, Australia.

More information

Australian Journal of Basic and Applied Sciences. Pressure Distribution of Fluid Flow through Triangular and Square Cylinders

Australian Journal of Basic and Applied Sciences. Pressure Distribution of Fluid Flow through Triangular and Square Cylinders AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Pressure Distribution of Fluid Flow through Triangular and Square Cylinders 1 Nasaruddin

More information

Sinkage and Trim of a Fast Displacement Catamaran in Shallow Water

Sinkage and Trim of a Fast Displacement Catamaran in Shallow Water Journal of Ship Research, Vol. 52, No. 3, September 2008, pp. 175 183 Sinkage and Trim of a Fast Displacement Catamaran in Shallow Water Tim Gourlay Centre for Marine Science and Technology, Curtin University,

More information

Study on Marine Propeller Running in Bubbly Flow

Study on Marine Propeller Running in Bubbly Flow Third International Symposium on Marine Propulsors smp 13, Launceston, Tasmania, Australia, May 2013 Study on Marine Propeller Running in Bubbly Flow Chiharu Kawakita Mitsubishi Heavy Industries, Ltd.,

More information

Conventional Ship Testing

Conventional Ship Testing Conventional Ship Testing Experimental Methods in Marine Hydrodynamics Lecture in week 34 Chapter 6 in the lecture notes 1 Conventional Ship Testing - Topics: Resistance tests Propeller open water tests

More information

ITTC - Recommended Procedures and Guidelines

ITTC - Recommended Procedures and Guidelines 7.5 Page 1 of 5 Table of Contents 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 4. DOCUMENTATION... 4 5. REFERENCES... 4 3. PARAMETERS... 4 Updated by Approved Manoeuvring Committee of

More information

An Investigation into the Capsizing Accident of a Pusher Tug Boat

An Investigation into the Capsizing Accident of a Pusher Tug Boat An Investigation into the Capsizing Accident of a Pusher Tug Boat Harukuni Taguchi, National Maritime Research Institute (NMRI) taguchi@nmri.go.jp Tomihiro Haraguchi, National Maritime Research Institute

More information

Design and optimization of a 50 sailing catamaran

Design and optimization of a 50 sailing catamaran CHALMERS Design and optimization of a 50 sailing catamaran By Clémentine Perret January 2005 Report No. X-05/160 Department of Shipping and Marine Technology Chalmers University of Technology Chalmers

More information

New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options

New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options By Dag Friis Christian Knapp Bob McGrath Ocean Engineering Research Centre MUN Engineering Overview : Introduction

More information

Numerical analysis of influence of streamline rudder on screw propeller efficiency

Numerical analysis of influence of streamline rudder on screw propeller efficiency POLISH MARITIME RESEARCH 2(65) 2010 Vol 17; pp. 18-22 10.2478/v10012-010-0013-4 Numerical analysis of influence of streamline rudder on screw efficiency Tomasz Abramowski, Ph. D. akub Handke, M. Sc. Tadeusz

More information

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments By Dag Friis Christian Knapp Bob McGrath Ocean Engineering Research Centre MUN Engineering 1 Overview:

More information

PROJECT and MASTER THESES 2016/2017

PROJECT and MASTER THESES 2016/2017 PROJECT and MASTER THESES 2016/2017 Below you ll find proposed topics for project and master theses. Most of the proposed topics are just sketches. The detailed topics will be made in discussion between

More information

COMPARATIVE STUDY OF HYBRID CATAMARAN VERSUS DIESEL MONOHULL BOAT AS FERRY FOR SHORT DISTANCE ROUTES.

COMPARATIVE STUDY OF HYBRID CATAMARAN VERSUS DIESEL MONOHULL BOAT AS FERRY FOR SHORT DISTANCE ROUTES. COMPARATIVE STUDY OF HYBRID CATAMARAN VERSUS DIESEL MONOHULL BOAT AS FERRY FOR SHORT DISTANCE ROUTES. * 1 Ferry, M., 1 WB.Wan Nik, 1 MFAhmad, 2 Gaspersz, F. and 2 Manuputty, M. 1 Faculty of Maritime Studies

More information

...introducing Hull Vane

...introducing Hull Vane ...introducing Hull Vane Fuel saving devices for ships, sometimes called energy saving devices, are considered as something new, but some of them have been around for quite a while. Perhaps the most widespread

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 11 Table of Contents... 2 1. PURPOSE... 2 2. TERMS AND DEFINITIONS... 2 3. RESPONSIBILITIES... 3 4. ANALYSIS PROCEDURE... 3 4.1 Measured and observed data prior to the trials... 3 4.2 Data on

More information

Int. J. of Marine Engineering Innovation and Research, Vol. 1(1), Dec (ISSN: ) 32

Int. J. of Marine Engineering Innovation and Research, Vol. 1(1), Dec (ISSN: ) 32 Int. J. of Marine Engineering Innovation and Research, Vol. 1(1), Dec. 2016. 31-37 (ISSN: 2541-5972) 32 Analysis and Optimation Hydrofoil Supported Catamaran (HYSUCAT) Size 25 Meter Based on CFD Method

More information

Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved performance

Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved performance csnak, 2013 Int. J. Naval Archit. Ocean Eng. (2013) 5:302~312 http://dx.doi.org/10.3744/jnaoe.2013.5.2.302 Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved

More information

Resistance Prediction for Asymmetrical Configurations of High-Speed Catamaran Hull Forms

Resistance Prediction for Asymmetrical Configurations of High-Speed Catamaran Hull Forms Resistance Prediction for Asymmetrical Configurations of High-Speed Catamaran Hull Forms by Srikanth Asapana Bachelor of Technology Naval Architecture and Ocean Engineering Indian Maritime University 2013

More information

Experimental and Simulation Studies on Fast Delft372 Catamaran Maneuvering and Course Stability in Deep and Shallow Water

Experimental and Simulation Studies on Fast Delft372 Catamaran Maneuvering and Course Stability in Deep and Shallow Water 11 th International Conference on Fast Sea Transportation FAST 211, Honolulu, Hawaii, USA, September 211 Experimental and Simulation Studies on Fast Delft372 Catamaran Maneuvering and Course Stability

More information

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh Lecture Note of Naval Architectural Calculation Ship Stability Ch. 8 Curves of Stability and Stability Criteria Spring 2016 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National

More information

MANOEUVRING BOOKLET V1.06

MANOEUVRING BOOKLET V1.06 MANOEUVRING BOOKLET V1.6 Mathematical model of Integrated Tug Barge 45 Version: v9 Dll Version: 2.31.558 According to: Solas II-1, regulation 28.3 St. Petersburg 26 1. GENERAL DESCRIPTION 1.1. Ships particulars

More information

Hydrodynamic Trends in Ferry Design

Hydrodynamic Trends in Ferry Design 11 th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Hydrodynamic Trends in Ferry Design John S. Richards 1, Oliver Reinholz 1 1 Hamburg Ship Model

More information

Ventilated marine propeller performance in regular and irregular waves; an experimental investigation

Ventilated marine propeller performance in regular and irregular waves; an experimental investigation Ventilated marine propeller performance in regular and irregular waves; an experimental investigation G. K. Politis Department of Naval Architecture & Marine Engineering, National Technical University

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Parametric analysis of hull structure of mono- and catamaran-type inland vessels T. Jastrzebski & Z. Sekulski Faculty ofmaritime Technology, Technical University of Szczecin, AL Piastow 41, 71-065 Szczecin,

More information

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,

More information