When my KR-2S project was in the "boat stage" in

Size: px
Start display at page:

Download "When my KR-2S project was in the "boat stage" in"

Transcription

1 When my KR-2S project was in the "boat stage" in 1994, I became interested in finding a better airfoil for the design. I was helping designer Larry French with his Lionheart prototype, a modern composite staggerwing airplane. This gave me a good feel for the design process, and I started thinking about doing a stability analysis on the KR-2S, a plane famous for its pitch sensitivity. Finding precious little design data (one page) on the KR's RAF48 airfoil, I called Stuart Robinson, who designed the KR-1 and -2 with Ken Rand in the 1970s, to see what information he had. Stu laughed and said he and Ken never had any design information on that airfoil. In building the KR-1 they borrowed heavily from the Taylor Monoplane, including its RAF48 airfoil. This when 1 decided to ditch the RAF48. At about the same time I began an conversation with an aerodynamicist who frequented the Internet newsgroup, rec.aviation.home built. He volunteered to feed the RAF48 into the "Eppler code," a computer program that extracts lift and drag coefficients (C\ and C D, respectively) from a set of airfoil coordinates. He reported that "the experimental data differs greatly from the theoretical results." It seems the Eppler code didn't match the C L and C D data from the one-page chart I had, and he didn't quite know what to make of it. He said the wind tunnels of the RAF48's era (the 1920s) were pretty bad, and he trusted the Eppler code more. He recommended that I find an airfoil with more accurate 71

2 numbers and pointed me toward a new airfoil, the NLF(1)0115. The NLF(1)0115 was designed for aircraft flying at Reynolds numbers higher than the KR's, but I had data for this airfoil and I was planning on going pretty fast myself. Larry French fed the NLF's data into his extensive stability analysis program, and out popped the incidence angles for the wing and tail and the expected cruise and stall speeds, among other things. Armed with this information I started building my wing spars. At this time we KR builders were corresponding by through AOL's KR forum. (KRNet, at net.org, is where we communicate now.) Having finished my wing tanks, I was singing the praises of my new lower drag wing. After reading my , Steve Eberhart decided to do a little design work of his own. He asked why I was using an airfoil that wasn't a perfect fit for the plane and why I didn't ask the NLF's designers to create an airfoil specifically for the KR-2S? Before I could answer, Steve said he lived near the University of Illinois at Urbana- Champagne (UIUC), home of the airfoil's designer. "Knock yourself out," I said. Not exactly holding my breath for his success, 1 did stop building my wing, just in case. Steve met with Dr. Michael Selig, who designed the NLF and many more laminar flow airfoils (and the man responsible for the very extensive UIUC airfoil site at ber.aae.uiul.eiht/~rn-selig/ails.htrnl). He said the NLF(1)0115 would work fine on the KR-2S, but he'd really like to run a wind-tunnel test on a model to make sure the calculated data matched reality. Selig was particularly concerned with how bug guts and rain would affect the lift the airfoil produced at stall speed. The University of Illinois has its own wind tunnel, but it stays booked for nearly a year in advance, doing airfoil research for the NASA Glenn Research Center, AeroVironment, Ford Motorsports, Farr Yacht Design, and others. Members of KR- Net had cooperatively financed a few other minor projects, and Steve thought maybe there were enough of us to finance the wind-runnel project. Within 24 hours of posting the 72

3 call for contributions on KRNet, we had $1,100 pledged for the windtunnel tests! Selig said that would do just fine. Other KRNet contributors paid for the carbon fiber, epoxy, and other materials needed to build the NLF(1)0115 wind-tunnel test specimen, KRNet's John Roffey machined its special 4130 spars, and Steve Eberhart built it. DOCTORAL DESIGN About the time Steve finished the tunnel specimen he visited Selig again. He learned that Selig had a doctoral candidate specializing in airfoil design who was looking for a fun project involving a general aviation aircraft. Designing an airfoil especially for the KR-2S would be just perfect! When he met the grad student, Ashok Gopalarathnam, Steve knew things would go well. Ashok was wearing an EAA T-shirt, was a pilot, and had worked on the design and development of light aircraft in India. (And in 1998, after the KR-2 airfoil project, Ashok took a summer job with Scaled Composites where, among other things, he designed the airfoils for Burt Rutan's new Boomerang II.) For the KR-2S Ashok first designed a 15-percent AS5045 airfoil, using a 180-mph cruise speed and a weight of 850 pounds. The preliminary iterations for this airfoil (the GA A) were displayed on the web. Joining them were comparisons of efficiency and speed improvements over the RAF48 and NLF(1)0115 used in the same KR-2S application. These comparisons are not trivial, and the proof is displayed in detail at kr2/airfoils/. Make sure you visit the links at the top and bottom of this site; they include airfoil refinements and actual wind-tunnel test results. While much of the data is for the GA A, data for the AS504x series is improved even more. Figure la compares the characteristics of both the AS5045 and the RAF48, and Figure Ib compares the power requirements for equivalent performance from each wing. Participating in the KRNet's airfoil dialogue, Dr. Richard Mole (Britain's Tony Bingelis) had this comment: "Since the C^ of Ashok's airfoil is so low, it would be worth trying for a thicker 18-percent airfoil to get the low drag advantages, but also because the increment in C L max due to flaps is also an increasing function of airfoil thickness, and the spars could be made lighter and stronger. Presto, an 18-percent AS5048 appeared! Being an avid CAD fan, I promptly superimposed the 15-percent airfoil onto the stock spars and determined that we needed a 16-percent airfoil for a truly perfect fit. A few days later we had the 16-percent AS5046! In Seattle, Mark Lougheed, a boat designer and mathematician, fed the new airfoil coordinates and characteristics into a highly massaged CFD (computational fluid dynamics) program, attached to a 3-D CAD model of a KR-2S. The results of his analysis, in conjunction with his stability analysis, pegged the wing and horizontal stabilizer incidences required for maximum efficiency and stability. This analysis also resulted in some spectacular images, like Figure 2, the AS5046 approaching stall at a 16-degree angle of attack. Naturally, we'd need a wind-tunnel test to verify the computer predictions, so we decided we shouldn't waste our precious tunnel time on the NLF and should test the AS5045 and AS5048 sections instead. Because our tunnel time was quickly approaching, Steve quickly ordered another set of spars from John Roffey and cannibalized the NLF specimen for its specially machined 4130 spars. The AS5045 test specimen would bring to tears a body man who specializes restoring fine old automobiles, absolutely perfect and in beautiful carbon-fiber black. In the tunnel the test specimens proved the results predicted by the computer analysis. A new airfoil was born! All we needed was a test pilot... AIRFOIL TEST PILOT After a forced landing on a farm road, Troy Petteway of Columbia, Tennessee, needed to build some new wings for his KR. When the Sun Race winner heard "higher speed," he started building the AS5046 airfoil on the stock KR-2 spar. A corporate pilot who flies a Citation Encore, Troy also is an airframe and powerplant mechanic and certificated flight instructor. He first flew the new wing in July 1999 and reported that his KR climbed and cruised at a higher speed, even without its wheelpants. The airplane was also "10 times 73

4 more stable" than it had been with the stock wing and the exact same center of gravity. But some of the improved stability no doubt came from increasing the horizontal stabilizer length 4 inches per side and from reducing elevator area. These improvements came without penalty. The KR's stall speed remained the same, with the power-off stall coming at 48 knots. It was gentle with no tendency to drop a wing. The increased climb-out speed (100 mph rather than the previous 80 mph) not only got the airplane to a safe altitude more quickly, it increased engine cooling at the time it needs it most, at full power. Another benefit the new wing provided, but no one had really noticed on paper, is that the airfoil actually has a slightly higher drag than the RAF48 at high wing incidences, such as landing and takeoff. This may not sound like an advantage, but when the KR is a few feet off the runway in ground effect, this increased drag is a welcome brake that reduces float. It increases the takeoff run slightly, but a KR's takeoff run is always two or three times shorter than its landing distance. Troy's plane is more stable and faster than before, but it's still not optimal. He should probably reduce his tail incidence slightly, and he hasn't put the KR's wheelpants back on yet, so it can only get better! As of January 2001, Troy has flown more than 100 test hours and was still quite happy with the new airfoil. He unintentionally flew it in a moderate rain shower and noticed no difference in flying qualities. At a 1999 KR gathering, Ashok was the keynote speaker at the "new airfoil" forum, where he explained how the laminar airfoil had been tested with "trip strips" in the wind tunnel to simulate the effect of rain and bug guts on the leading edge. Test results matched the theoretical calculations, and there was very little effect. ; Troy recently installed a stock C-85 engine in his plane, which gives him a straight-and-level top speed of more than 200 mph. He's convinced that the new airfoil performs better than the RAF48 it replaced in all respects, including fuel economy, because of decreased drag at high speeds. NEW WINGS FOR You? If you're already flying a KR, tearing the wings oft it to use the new airfoil doesn't make sense unless, of course, you need to replace your wings for some reason. But if you're still in the boat stage or haven't started building your wings, now is the time to consider the new airfoil. The new wing's planform and construction methods are exactly the same as the plans call for only the airfoil template shapes are different. You don't need any new plans, just the templates for the new airfoil (see ~langford/as504x.html for airfoil coordinates and template source). The biggest construction difference is that you need to raise the aft spar with respect to the fuselage to lower the wing incidence. This makes the new airfoil "happy" and puts the fuselage in level flight at cruise 74

5 speed, rather than nose down like the stock KRs. You can use the new airfoil three different ways. For new construction, using the 18-percent AS5048 at the root and tapering to the 15-percent AS5045 at the tip works best. This uses a main spar that is 8.19 inches tall at the root, making it 17- percent stronger than the stock spar. It also increases the wing tanks' capacity almost 20 percent. The materials required are the same as the plans call for, but the vertical spacers between the caps are slightly longer. If your spars are already built, the 16-percent AS5046 is almost a perfect match, requiring only a lamination of 1/8-inch spruce to the upper main spar cap to bring it up to proper dimension. One other change you should make is to reduce the horizontal stabilizer incidence to about -.75 degrees. I'll tell you for sure after my plane flies. It has an adjustable horizontal stabilizer, so 1 can "nail" that number. It will obviously work at zero, because that's where Troy's incidence is set, but that's probably not optimal. There are no wing skins available for the new airfoil, so you'll have to build your wings the old-fashioned way. I built my own skins for the AS5046 airfoil because my spars were already built to stock dimensions. (You can see them on my "Outboard Wings" construction page at They are about the same weight as plans-built wings, but the skins are several times stronger, even though I'm using very large flaps. This airfoil owes its origins to KR- Net and several folks working for a common goal. Were it not for the Internet, it would have never happened. And they say there's nothing on the web but smut! [Editor's Note: All the websites and links listed in this article are available on the EAA webaite at Click on the EAA Sport Aviation cover. Scott.] 75

Related Careers: Aircraft Instrument Repairer Aircraft Designer Aircraft Engineer Aircraft Electronics Specialist Aircraft Mechanic Pilot US Military

Related Careers: Aircraft Instrument Repairer Aircraft Designer Aircraft Engineer Aircraft Electronics Specialist Aircraft Mechanic Pilot US Military Airplane Design and Flight Fascination with Flight Objective: 1. You will be able to define the basic terms related to airplane flight. 2. You will test fly your airplane and make adjustments to improve

More information

Climbs, descents, turns, and stalls These are some of the maneuvers you'll practice, and practice, and practice By David Montoya

Climbs, descents, turns, and stalls These are some of the maneuvers you'll practice, and practice, and practice By David Montoya Climbs, descents, turns, and stalls These are some of the maneuvers you'll practice, and practice, and practice By David Montoya Air work stalls, steep turns, climbs, descents, slow flight is the one element

More information

Preliminary Analysis of Drag Reduction for The Boeing

Preliminary Analysis of Drag Reduction for The Boeing Preliminary Analysis of Drag Reduction for The Boeing 747-400 By: Chuck Dixon, Chief Scientist, Vortex Control Technologies LLC 07. 31. 2012 Potential for Airflow Separation That Can Be Reduced By Vortex

More information

Airfoil Selection. By: Bill Husa

Airfoil Selection. By: Bill Husa Airfoil Selection By: Bill Husa Recently there has been a rash of activity relating to the selection or design of wing airfoils. In this article, I will attempt to clarify some of the issues associated

More information

Big News! Dick Kline Inventor of the KF AirFoil Contacts rcfoamfighters.

Big News! Dick Kline Inventor of the KF AirFoil Contacts rcfoamfighters. Big News! Dick Kline Inventor of the KF AirFoil Contacts rcfoamfighters. (Copy of Email from Dick Kline to rcfoamfighters on 3/28/09) --------------------------------------------------------------------------------

More information

DOWNFORCE BALANCE. The Downforce Balance graph (shown at the left) illustrates which areas of the vehicle this product affects.

DOWNFORCE BALANCE. The Downforce Balance graph (shown at the left) illustrates which areas of the vehicle this product affects. OVERVIEW Spanning 67 (or 61) inches over its optimized 3D airfoil shape, the APR Performance GTC-300 Adjustable Wing supplies maximum downforce in sports and touring car applications. DOWNFORCE BALANCE

More information

Exploration Series. AIRPLANE Interactive Physics Simulation Page 01

Exploration Series.   AIRPLANE Interactive Physics Simulation Page 01 AIRPLANE ------- Interactive Physics Simulation ------- Page 01 What makes an airplane "stall"? An airplane changes its state of motion thanks to an imbalance in the four main forces acting on it: lift,

More information

Commentary on the Pietenpol Airfoil

Commentary on the Pietenpol Airfoil Commentary on the Pietenpol Airfoil By Michael Shuck, Copyright 2004 Airfoils are really cool things. They don t exist anywhere except on paper or on computer screens or on the profile of a real, three-dimensional

More information

X-29 Canard Jet. A Simple Depron Foam Build.

X-29 Canard Jet. A Simple Depron Foam Build. X-29 Canard Jet. A Simple Depron Foam Build. Two full sized X-29 s were built and the first flew in 1984. They were experimental aircraft, testing this unusual configuration of a canard jet with swept

More information

BASIC AIRCRAFT STRUCTURES

BASIC AIRCRAFT STRUCTURES Slide 1 BASIC AIRCRAFT STRUCTURES The basic aircraft structure serves multiple purposes. Such as aircraft aerodynamics; which indicates how smooth the aircraft flies thru the air (The Skelton of the aircraft

More information

TAKEOFF & LANDING IN ICING CONDITIONS

TAKEOFF & LANDING IN ICING CONDITIONS Original idea from Captain A. Wagner T TAKEOFF & LANDING IN ICING CONDITIONS here have been a number of accidents related to take-off in conditions in which snow and/or other forms of freezing precipitation

More information

Flying Wings. By Henry Cole

Flying Wings. By Henry Cole Flying Wings By Henry Cole FLYING WINGS REPRESENT THE THEORETICAL ULTIMATE IN AIRCRAFT DESIGN. USE THESE IDEAS, AVAILABLE AFTER A YEAR, OF RESEARCH, TO DEVELOP PRACTICAL MODELS. The rubber version of this

More information

Aerodynamics Principles

Aerodynamics Principles Aerodynamics Principles Stage 1 Ground Lesson 3 Chapter 3 / Pages 2-18 3:00 Hrs Harold E. Calderon AGI, CFI, CFII, and MEI Lesson Objectives Become familiar with the four forces of flight, aerodynamic

More information

Bench Trimming A Stunt Ship

Bench Trimming A Stunt Ship Bench Trimming A Stunt Ship by Brett Buck "Bench Trimming" - this refers to setting up the initial trim of the airplane in the shop prior to flight. Since people have been flying stunt in its current form

More information

The Metric Glider. By Steven A. Bachmeyer. Aerospace Technology Education Series

The Metric Glider. By Steven A. Bachmeyer. Aerospace Technology Education Series The Metric Glider By Steven A. Bachmeyer Aerospace Technology Education Series 10002 Photographs and Illustrations The author wishes to acknowledge the following individuals and organizations for the photographs

More information

First Flight Glossary

First Flight Glossary First Flight Glossary (for secondary grades) aeronautics The study of flight and the science of building and operating an aircraft. aircraft A machine used for flying. Airplanes, helicopters, blimps and

More information

Aerobatic Trimming Chart

Aerobatic Trimming Chart Aerobatic Trimming Chart From RCU - Chip Hyde addresses his view of Engine/Motor thrust. I run almost no right thrust in my planes and use the thottle to rudd mix at 2% left rudd. to throttle at idle.

More information

Aviation Merit Badge Knowledge Check

Aviation Merit Badge Knowledge Check Aviation Merit Badge Knowledge Check Name: Troop: Location: Test Score: Total: Each question is worth 2.5 points. 70% is passing Dan Beard Council Aviation Knowledge Check 1 Question 1: The upward acting

More information

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings The C-130 experiences a marked reduction of directional stability at low dynamic pressures, high power settings,

More information

"Aircraft setup is a constant process really. Every

Aircraft setup is a constant process really. Every The R/C Aircraft Proving Grounds - Aerobatics Setup Set Up for Success by: Douglas Cronkhite "Aircraft setup is a constant process really. Every time something is changed, there is the chance it will affect

More information

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture - 12 Design Considerations: Aerofoil Selection Good morning friends. The last lecture

More information

Beechcraft Duchess 76 Maneuver Notes

Beechcraft Duchess 76 Maneuver Notes Beechcraft Duchess 76 Maneuver Notes I. Maneuver notes for Performance (AOA V), Slow Flight and Stalls (AOA VIII), Emergency Operations (AOA X), and Multiengine Operations (AOA XI) a. Maneuvers addressed:

More information

Building Instructions ME 163 B 1a M 1:5 Turbine

Building Instructions ME 163 B 1a M 1:5 Turbine Building Instructions ME 163 B 1a M 1:5 Turbine Thank you for choosing our kit of the Me-163B. We ask you to read the instruction once in advance before building this kit in order to avoid mistakes. Make

More information

Gold Seal s Top Five Landing Mistakes

Gold Seal s Top Five Landing Mistakes Gold Seal s Top Five Landing Mistakes by Russell Still, MCFI Copyright 2017 by Atlanta Flight, Inc. Mistake #1 Excess Airspeed Almost all landing mistakes come from the same pool of pilot errors. Many

More information

Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design

Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design Aircraft Geometry (highlight any significant revisions since Aerodynamics PDR #1) Airfoil section for wing, vertical and horizontal

More information

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT CHAPTER 3 PRINCIPLES OF FLIGHT INTRODUCTION Man has always wanted to fly. Legends from the very earliest times bear witness to this wish. Perhaps the most famous of these legends is the Greek myth about

More information

Principles of glider flight

Principles of glider flight Principles of glider flight [ Lecture 2: Control and stability ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher GmbH &

More information

TECHNIQUES FOR OFF AIRPORT OPERATIONS

TECHNIQUES FOR OFF AIRPORT OPERATIONS Off Airport Ops Guide TECHNIQUES FOR OFF AIRPORT OPERATIONS Note: This document suggests techniques and procedures to improve the safety of off-airport operations. It assumes that pilots have received

More information

NORMAL TAKEOFF AND CLIMB

NORMAL TAKEOFF AND CLIMB NORMAL TAKEOFF AND CLIMB CROSSWIND TAKEOFF AND CLIMB The normal takeoff is one in which the airplane is headed directly into the wind or the wind is very light, and the takeoff surface is firm with no

More information

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber. Chapters 2 and 3 of the Pilot s Handbook of Aeronautical Knowledge (FAA-H-8083-25) apply to powered parachutes and are a prerequisite to reading this book. This chapter will focus on the aerodynamic fundamentals

More information

file://c:\program Files\Microsoft Games\Microsoft Flight Simulator X\FSWeb\lessons\Stud...

file://c:\program Files\Microsoft Games\Microsoft Flight Simulator X\FSWeb\lessons\Stud... Page 1 of 7 Lesson 2: Turns How Airplanes Turn Fly This Lesson Now by Rod Machado There are many misconceptions in aviation. For instance, there are pilots who think propwash is a highly specialized detergent.

More information

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and NAVWEPS -81-8 and high power, the dynamic pressure in the shaded area can be much greater than the free stream and this causes considerably greater lift than at zero thrust. At high power conditions the

More information

Bonanza/Debonair Pilots

Bonanza/Debonair Pilots Bonanza/Debonair Pilots Completing this worksheet is a great way to reinforce the proper speeds for operating your Bonanza or Debonair under varying operating conditions, and to understand the changes

More information

Takeoff Performance. A 1 C change in temperature from ISA will increase or decrease the takeoff ground roll by 10%.

Takeoff Performance. A 1 C change in temperature from ISA will increase or decrease the takeoff ground roll by 10%. The precise pilot does not fly by rules of thumb, axioms, or formulas. But there are times when knowledge of an approximate way to calculate things or knowledge of a simple rule can pay big dividends.

More information

Lesson: Pitch Trim. Materials / Equipment Publications o Flight Training Manual for Gliders (Holtz) Lesson 4.4 Using the Trim Control.

Lesson: Pitch Trim. Materials / Equipment Publications o Flight Training Manual for Gliders (Holtz) Lesson 4.4 Using the Trim Control. 11/18/2015 Pitch Trim Page 1 Lesson: Pitch Trim Objectives: o Knowledge o An understanding of the aerodynamics related to longitudinal (pitch) stability o Skill o Use of the pitch trim system to control

More information

Ottawa Remote Control Club Wings Program

Ottawa Remote Control Club Wings Program + Ottawa Remote Control Club Wings Program Guide line By Shahram Ghorashi Chief Flying Instructor Table of Contents Rule and regulation Quiz 3 Purpose of the program 4 Theory of flight Thrust 4 Drag 4

More information

External Tank- Drag Reduction Methods and Flow Analysis

External Tank- Drag Reduction Methods and Flow Analysis External Tank- Drag Reduction Methods and Flow Analysis Shaik Mohammed Anis M.Tech Student, MLR Institute of Technology, Hyderabad, India. G. Parthasarathy Associate Professor, MLR Institute of Technology,

More information

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds Preliminary design of a high-altitude kite A flexible membrane kite section at various wind speeds This is the third paper in a series that began with one titled A flexible membrane kite section at high

More information

Advanced Aerobatic Airplane Guidelines

Advanced Aerobatic Airplane Guidelines Note: The following information might upset career aerodynamicists because it does not also include explanations of Mean Aerodynamic Center, Decalage, Neutral Point, and more when describing how to achieve

More information

The canard. Why such a configuration? Credit : Jean-François Edange

The canard. Why such a configuration? Credit : Jean-François Edange The canard Why such a configuration? Credit : Jean-François Edange N obody doubtless knows that a great majority of light or heavy planes share a common design. Schematically, we find a fuselage, wings

More information

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 225 231 10th International Conference on Mechanical Engineering, ICME 2013 Investigation of the aerodynamic characteristics

More information

Outbound Progress Report

Outbound Progress Report Outbound Progress Report 7-11-17 Tank Install The new 20 plus gallon fuel tank is underway. In a matter of weeks we should be getting the first article and placing a first run order. The tank fits like

More information

PROCEDURES GUIDE CESSNA 172N SKYHAWK

PROCEDURES GUIDE CESSNA 172N SKYHAWK PROCEDURES GUIDE CESSNA 172N SKYHAWK THESE PROCEDURES ARE DESIGNED TO PROVIDE STANDARDIZED METHODS UNDER NORMAL CONDITIONS. AS CONDITIONS CHANGE, THE PROCEDURES WILL NEED TO BE ADJUSTED. PASSENGER BRIEFING

More information

XI.C. Power-Off Stalls

XI.C. Power-Off Stalls References: FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of stalls regarding aerodynamics,

More information

Compiled by Matt Zagoren

Compiled by Matt Zagoren The information provided in this document is to be used during simulated flight only and is not intended to be used in real life. Attention VA's - you may post this file on your site for download. Please

More information

Student Pilot s Flight Manual From First Flight to Pilot Certificate

Student Pilot s Flight Manual From First Flight to Pilot Certificate The Student Pilot s Flight Manual From First Flight to Pilot Certificate 10th Edition Original text by William K. Kershner Edited by William C. Kershner Aviation Supplies & Academics, Inc. Newcastle, Washington

More information

Lesson: Airspeed Control

Lesson: Airspeed Control 11/20/2018 Airspeed Control Page 1 Lesson: Airspeed Control Objectives: o Knowledge o An understanding of the aerodynamics related to airspeed control o Skill o The ability to establish and maintain a

More information

Front Cover Picture Mark Rasmussen - Fotolia.com

Front Cover Picture Mark Rasmussen - Fotolia.com Flight Maneuvers And Stick and Rudder Skills A complete learn to fly handbook by one of aviation s most knowledgeable and experienced flight instructors Front Cover Picture Mark Rasmussen - Fotolia.com

More information

No Description Direction Source 1. Thrust

No Description Direction Source 1. Thrust AERODYNAMICS FORCES 1. WORKING TOGETHER Actually Lift Force is not the only force working on the aircraft, during aircraft moving through the air. There are several aerodynamics forces working together

More information

Stability and Flight Controls

Stability and Flight Controls Stability and Flight Controls Three Axes of Flight Longitudinal (green) Nose to tail Lateral (blue) Wing tip to Wing tip Vertical (red) Top to bottom Arm Moment Force Controls The Flight Controls Pitch

More information

Build This World Record Fuselage Model

Build This World Record Fuselage Model Build This World Record Fuselage Model Here You Have Complete Instructions and Plans to Build a Plane of Sure-fire Performance that Established a World Record at the 1932 National Airplane Model Competition

More information

XI.B. Power-On Stalls

XI.B. Power-On Stalls XI.B. Power-On Stalls References: AC 61-67; FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge

More information

Parasite Drag. by David F. Rogers Copyright c 2005 David F. Rogers. All rights reserved.

Parasite Drag. by David F. Rogers  Copyright c 2005 David F. Rogers. All rights reserved. Parasite Drag by David F. Rogers http://www.nar-associates.com Copyright c 2005 David F. Rogers. All rights reserved. How many of you still have a Grimes rotating beacon on both the top and bottom of the

More information

Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, Figures

Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, Figures Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, 2012 Chapter 5 Wing Design Figures 1 Identify and prioritize wing design requirements (Performance, stability, producibility, operational

More information

A Performanced Based Angle of Attack Display

A Performanced Based Angle of Attack Display A Performanced Based Angle of Attack Display David F. Rogers, Phd, ATP www.nar-associates.com The Problem The current angle of attack displays basically warn you about the approach to stall with yellow

More information

LESSONS 1, 2, and 3 PRACTICE EXERCISES

LESSONS 1, 2, and 3 PRACTICE EXERCISES LESSONS 1, 2, and 3 PRACTICE EXERCISES The following items will test your grasp of the material covered in these lessons. There is only one correct answer for each item. When you complete the exercise,

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME) Volume 2, Issue 1 (214) ISSN 232 46 (Online) Experimental and Theoretical Investigation for the Improvement of the Aerodynamic

More information

Weighing your Seabee

Weighing your Seabee Weighing your Seabee Note: The following procedure must be supervised and signed off by a qualified A&P and the final paperwork must be included in the Aircraft Records. The actual weights must be included

More information

LAPL(A)/PPL(A) question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

LAPL(A)/PPL(A) question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080 PRINCIPLES OF FLIGHT 080 1 Density: Is unaffected by temperature change. Increases with altitude increase. Reduces with temperature reduction. Reduces with altitude increase. 2 The air pressure that acts

More information

Lesson 1: Introduction to Learning Aviation Science. by: Alex Stackhouse

Lesson 1: Introduction to Learning Aviation Science. by: Alex Stackhouse Lesson 1: Introduction to Learning Aviation Science by: Alex Stackhouse Important Info. Scientists believe that the brain recalls new information more efficiently if the new information is associated in

More information

Theory of Flight Stalls. References: FTGU pages 18, 35-38

Theory of Flight Stalls. References: FTGU pages 18, 35-38 Theory of Flight 6.07 Stalls References: FTGU pages 18, 35-38 Review 1. What are the two main types of drag? 2. Is it possible to eliminate induced drag? Why or why not? 3. What is one way to increase

More information

Transcript for the BLOSSMS Lesson. An Introduction to the Physics of Sailing

Transcript for the BLOSSMS Lesson. An Introduction to the Physics of Sailing [MUSIC PLAYING] Transcript for the BLOSSMS Lesson An Introduction to the Physics of Sailing Do you ever wonder how people manage to sail all the way around the world without a motor? How did they get where

More information

Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics

Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics 5.3.2 Choice of sweep ( ) 5.3.3 Choice of taper ratio ( λ ) 5.3.4 Choice of twist ( ε ) 5.3.5 Wing incidence(i w ) 5.3.6 Choice

More information

This isn t your daddy s 182

This isn t your daddy s 182 This isn t your daddy s 182 Text And Photography By Budd Davisson FOR THE MOST PART, FROM MY viewpoint at the controls, this could have been just another 182. Granted, this one was equipped like a mini-airliner,

More information

IN THE FIRST installment of this 3 part article, we discussed

IN THE FIRST installment of this 3 part article, we discussed By Don Hewes (EAA 32101) 12 Meadow Drive Newport News, VA 23606 IN THE FIRST installment of this 3 part article, we discussed primarily aerodynamic characteristics that could influence the flight behavior

More information

Black Stallion. The Stallion flies just about as slow as the Courier does, but it can also fly faster than the Courier can...

Black Stallion. The Stallion flies just about as slow as the Courier does, but it can also fly faster than the Courier can... Warbirds April 2004 4/8/04 11:52 AM Page 31 Black Stallion Tim Greene s Helio Stallion KIM ROSENLOF WB #549220 The Stallion flies just about as slow as the Courier does, but it can also fly faster than

More information

TABLE OF CONTENTS. Introduction Section 1, Limitations Section 2, Normal Procedures Section 3, Emergency/Malfunction Procedures...

TABLE OF CONTENTS. Introduction Section 1, Limitations Section 2, Normal Procedures Section 3, Emergency/Malfunction Procedures... TABLE OF CONTENTS TITLE PAGE NO. Introduction... 4 Section 1, Limitations... 4 Section 2, Normal Procedures... 4 Section 3, Emergency/Malfunction Procedures... 4 Section 4, Performance... 5 Section 5,

More information

This IS A DRAG IS IT A LIFT!!!!! Aerodynamics

This IS A DRAG IS IT A LIFT!!!!! Aerodynamics Problems in Technology This IS A DRAG OR IS IT A LIFT!!!!! Aerodynamics Our mission is to better understand the science and study of aerodynamics. Well, simply put aerodynamics is the way air moves around

More information

KLINE-FOGLEMAN AIRFOIL COMPARISON STUDY FOR SCRATCH- FOAM AIRPLANES

KLINE-FOGLEMAN AIRFOIL COMPARISON STUDY FOR SCRATCH- FOAM AIRPLANES [KF AIRFOIL EVALUATION BY RICH THOMPSON (KAOS2)] February 15, 2008 KLINE-FOGLEMAN AIRFOIL COMPARISON STUDY FOR SCRATCH- BUILT FOAM AIRPLANES There have been many claims about the performance traits of

More information

LEVEL FOUR AVIATION EVALUATION PRACTICE TEST

LEVEL FOUR AVIATION EVALUATION PRACTICE TEST Below you will find a practice test for the Level 4 Aviation Evaluation that covers PO431, PO432, PO436, and PO437. It is recommended that you focus on the material covered in the practice test as you

More information

CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate. Cessna 172 Maneuvers and Procedures

CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate. Cessna 172 Maneuvers and Procedures CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate Cessna 172 Maneuvers and Procedures This study guide is designed for the National Flight Academy Ground School. The information

More information

A Different Approach to Teaching Engine-Out Glides

A Different Approach to Teaching Engine-Out Glides A ifferent Approach to Teaching Engine-Out Glides es Glatt, Ph., ATP/CFI-AI, AGI/IGI When student pilots begin to learn about emergency procedures, the concept of the engine-out glide is introduced. The

More information

WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult.

WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult. GLIDER BASICS WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult. 2 PARTS OF GLIDER A glider can be divided into three main parts: a)fuselage

More information

CIRCLING THE HOLIGHAUS WAY -

CIRCLING THE HOLIGHAUS WAY - CIRCLING THE HOLIGHAUS WAY - OR DO YOU REALLY WANT TO KEEP THE YAW STRING CENTERED? BY RICHARD H. JOHNSON ANSWERS: 1. During Straight Flight - YES, that minimizes drag and maximizes the sailplane's performance.

More information

PERFORMANCE MANEUVERS

PERFORMANCE MANEUVERS Ch 09.qxd 5/7/04 8:14 AM Page 9-1 PERFORMANCE MANEUVERS Performance maneuvers are used to develop a high degree of pilot skill. They aid the pilot in analyzing the forces acting on the airplane and in

More information

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent Aerodynamics of : A Computational Fluid Dynamics Study Using Fluent Rohit Jain 1, Mr. Sandeep Jain, Mr. Lokesh Bajpai 1PG Student, Associate Professor, Professor & Head 1 Mechanical Engineering Department

More information

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. Flight Corridor The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. The subsonic Boeing 747 and supersonic Concorde have flight corridors

More information

Reduction of Skin Friction Drag in Wings by Employing Riblets

Reduction of Skin Friction Drag in Wings by Employing Riblets Reduction of Skin Friction Drag in Wings by Employing Riblets Kousik Kumaar. R 1 Assistant Professor Department of Aeronautical Engineering Nehru Institute of Engineering and Technology Coimbatore, India

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodynamics I UNIT C: 2-D Airfoils C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory AE301 Aerodynamics I : List of Subjects

More information

Aircraft - Very Heavy Lift at Very Low Cost

Aircraft - Very Heavy Lift at Very Low Cost Aircraft - Very Heavy Lift at Very Low Cost Stephen Funck This is a span loader for standard shipping containers. The design goal is the lowest cost per ton / mile. Low wing loading allows for low flight

More information

Chapter 3: Aircraft Construction

Chapter 3: Aircraft Construction Chapter 3: Aircraft Construction p. 1-3 1. Aircraft Design, Certification, and Airworthiness 1.1. Replace the letters A, B, C, and D by the appropriate name of aircraft component A: B: C: D: E: A = Empennage,

More information

How to survive an engine failure in a single engine aircraft

How to survive an engine failure in a single engine aircraft How to survive an engine failure in a single engine aircraft Don't Go In Pointed End First There you are 110 kts, 3,000 ft., enjoying being in the air and out of contact with all the folks on the ground;

More information

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-213 1 Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped

More information

PROCEDURES GUIDE. FLIGHT MANEUVERS for the SPORT PILOT

PROCEDURES GUIDE. FLIGHT MANEUVERS for the SPORT PILOT Page 1 of 10 PROCEDURES GUIDE FLIGHT MANEUVERS for the SPORT PILOT * Author s Note: Whereas this procedures guide has been written for a specific application, it can easily be modified to fit many different

More information

XI.D. Crossed-Control Stalls

XI.D. Crossed-Control Stalls References: FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should understand the dynamics of a crossed-control stall

More information

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car Structural Analysis of Formula One Racing Car Triya Nanalal Vadgama 1, Mr. Arpit Patel 2, Dr. Dipali Thakkar 3, Mr. Jignesh Vala 4 Department of Aeronautical Engineering, Sardar Vallabhbhai Patel Institute

More information

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics Indian Journal of Science and Technology, Vol 9(45), DOI :10.17485/ijst/2016/v9i45/104585, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 CFD Study of Solid Wind Tunnel Wall Effects on

More information

Homework Exercise to prepare for Class #2.

Homework Exercise to prepare for Class #2. Homework Exercise to prepare for Class #2. Answer these on notebook paper then correct or improve your answers (using another color) by referring to the answer sheet. 1. Identify the major components depicted

More information

BUILD AND TEST A WIND TUNNEL

BUILD AND TEST A WIND TUNNEL LAUNCHING INTO AVIATION 9 2018 Aircraft Owners and Pilots Association. All Rights Reserved. UNIT 2 SECTION D LESSON 2 PRESENTATION BUILD AND TEST A WIND TUNNEL LEARNING OBJECTIVES By the end of this lesson,

More information

A103 AERODYNAMIC PRINCIPLES

A103 AERODYNAMIC PRINCIPLES A103 AERODYNAMIC PRINCIPLES References: FAA-H-8083-25A, Pilot s Handbook of Aeronautical Knowledge, Chapter 3 (pgs 4-10) and Chapter 4 (pgs 1-39) OBJECTIVE: Students will understand the fundamental aerodynamic

More information

What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening?

What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening? What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening? The water (or air) speeds up. Since the same amount of water/air has to travel through a

More information

Model Aeronautics Association of Canada. Wings Program

Model Aeronautics Association of Canada. Wings Program Model Aeronautics Association of Canada Wings Program Table of Contents Purpose of the Program... 1 Flying Proficiency Levels.....1 General Rules and Conditions... 1 "A" Level Control.....2 "B" Level Control...

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) Unit D-1: Aerodynamics of 3-D Wings Page 1 of 5 AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics of 3-D Wings D-: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics

More information

Investigation and Comparison of Airfoils

Investigation and Comparison of Airfoils AENG 360 Aerodynamics Investigation and Comparison of Airfoils Rocie Benavent Chelseyann Bipat Brandon Gilyard Julian Marcon New York Institute of Technology Fall 2013 2 Executive Summary Airfoil design

More information

Theory of Flight Aircraft Design and Construction. References: FTGU pages 9-14, 27

Theory of Flight Aircraft Design and Construction. References: FTGU pages 9-14, 27 Theory of Flight 6.01 Aircraft Design and Construction References: FTGU pages 9-14, 27 Main Teaching Points Parts of an Airplane Aircraft Construction Landing Gear Standard Terminology Definition The airplane

More information

Student Pilot s Guide

Student Pilot s Guide Student Pilot s Guide The Cirrus SR22 is a remarkably simple, safe and easy aircraft to fly. Angelina Jolie flying her own Cirrus. Key Words 1. My Airplane or I ve got it - means to let go of all controls

More information

The Man Who Could Fly

The Man Who Could Fly The Man Who Could Fly Lt. Col. Joe Zinno USAF (Ret.) Designed, Built and Flew His Man-Powered Aircraft The N1ZB Olympian from Quonset Point Rhode Island This is the November 18, 2006 Providence Journal

More information

NSRCA Club or Novice Class. Maneuver Descriptions. And. Suggested Downgrades

NSRCA Club or Novice Class. Maneuver Descriptions. And. Suggested Downgrades NSRCA Club or Novice Class Maneuver Descriptions And Suggested Downgrades August 18, 2016 Purpose: The purpose of this guide is to furnish an accurate description of each maneuver of the NSRCA Club or

More information

The Wright Brother's Flyer

The Wright Brother's Flyer History of flight 1903 Orville and Wilbur Wright and the First Flight. Orville and Wilbur Wright were very deliberate in their quest for flight. First, they spent many years learning about all the early

More information