# QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

Save this PDF as:

Size: px
Start display at page:

Download "QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;"

## Transcription

1 QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms -2, Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; (2) the vertical velocity v y of the ball versus time, for the duration of its flight. (4 marks) On the same axes, sketch graphs to show the horizontal speed and the vertical velocity versus time if air resistance has a significant effect on the flight of the ball. Label each graph clearly to distinguish it from the previous graph.

2 QUESTION 2 On each of the two projectile trajectories depicted below, draw vectors to show the directions and relative magnitudes of the velocity and the acceleration of the projectile at each of the points A, B & C. (3 marks) (3 marks)

3 QUESTION 3 A tennis player hits a ball horizontally at 35 ms -1 when it is 1.6 m above the ground. (a) How long is it before the ball hits the ground?,... (b) If the ball is hit 11.0 m from the net, will the ball clear the net which is 0.90 m high? If the ball is launched at a height of 1.6 m above the ground and the net is 0.90 m above the ground, we are trying to calculate the horizontal distance the ball will travel in this time at a height of 0.70 m.,... The horizontal range covered by the projectile in this time is: (3 marks).. (.) The net is 11.0 m away. The ball will travel 13.3 m. The ball will clear the net!

4 QUESTION 4 The multiple image photograph on the right shows the motion of two balls that are released at the same time from the same height above the surface. Ball A falls freely while ball B is projected horizontally. (1) Draw and label the horizontal component of velocity for the ball on the right (2) Explain why both balls will still hit the ground at the same time in spite of one covering a greater horizontal distance Both ball are released from the same height above the ground (S v ). Each is affected by the same acceleration due to gravity (g). (1 mark) Given the formula: \$, if these variables are the same for both balls, the balls will fall with the same period and therefore hit the ground at the same time (3) Explain how we can use the diagram to deduce that the velocity of ball A increases during its fall. By measuring the distance between consecutive images, it is possible to show that the vertical distance between each image is increasing. If this distance is (1 mark) increasing, so too is the magnitude of the vertical velocity

5 QUESTION 5 A parcel is to be dropped from an aeroplane to a boat at sea. The aeroplane is flying with a speed of 100 ms -1 at a fixed altitude of 120 m above sea level. (1) Calculate the vertical distance that the parcel has fallen in the first two seconds..(.). (2) Calculate: (a) the vertical velocity of the parcel after two seconds v u + at v (2) v 19.6 ms -1 down (b) the velocity of the parcel after two seconds 100 ms -1 % & '. %. ( ). ) % 19.6 ms -1 ). *+, +-+ (4 marks) (3) Explain what happens to the two components of the velocity of the parcel as it falls to the water. The horizontal velocity stays constant as there is no force horizontally. The vertical velocity will increase as the force of gravity acts vertically.

6 (4) What time, from the moment that it is released, does it take for the parcel to hit the water., rearranges to give: \$... (5) Determine the maximum horizontal distance achieved by the projectile... (.)

7 QUESTION 6 At a point on the upward path of a projectile the velocity of the projectile is 18 ms -1 at 40 above the horizontal, as shown in the diagram. (1) Find the horizontal and vertical components of the velocity at this point. +). +. )... (. ( (4 marks) (2) Describe how (and explain why) these components of velocity will change over the rest of the flight. V H will not change as there is no force horizontally. V v will change continuously due to the downwards force of gravity. (4 marks) (3) What is the velocity of the projectile at point X? At X, velocity is 13.8 ms -1 as the V v is zero at X.

8 QUESTION 7 A gun, aimed horizontally, fires a bullet with a speed of 900 ms -1. The gun is 2.0 m above ground level. The time of flight of the bullet is 0.64s. (1) Find the range of the bullet... (.) (2) Find the velocity with which the bullet hits the ground. ' '.... (, down 900 ms -1 % 6.27 ms -1 % & '. %. ( (4 marks)

9 QUESTION 8 A mortar shell is fired from ground level (at point A on the diagram) with a velocity V ms -1 at an angle of 80 above the horizontal. (1) Calculate the horizontal and vertical components of the velocity of the shell at the instant it is fired. +) + ).. (. ( (4 marks) (2) Calculate the vertical component of the velocity: (i) one second after firing '.'(.).. ( (ii) thirteen seconds after firing. '.'(.).. ( (. (,0+,)

10 (3) Calculate the resultant velocity of the shell after 13 seconds. % &.. '. %. ( )..... ) *+, +-+ ) % 17.4 ms ms -1 (4 marks) (4) What is the velocity of the shell at point B? V H horizontally 17.4 ms -1 horizontal (1 mark) (5) What is the magnitude and direction of the acceleration of the shell at point B? a g 9.8 ms -2 down (6) Determine the maximum height achieved by the shell. Maximum height v 2 u 2 + 2as 0 (98.5) 2 + 2(-9.8)s s 495m (3 marks)

11 QUESTION 9 (1) If a body is dropped from a height of 40 m and falls freely, how long does it take before it hits the ground?, rearranges to give: \$... A stone of mass 200 g is thrown with a velocity of V 0 30 ms -1 horizontally from the observation deck of a lighthouse. At the moment of release the stone is 40 m above sea level. (2) What is the vertical velocity of the stone on impact with the water? V V 0 + at V (2.86) V 28.0 ms -1

12 (4) What is the velocity of the stone on impact with the water? % &. '. %.. ( ).... ). *+, +-+ ) % 30.0 ms ms -1 (4 marks) (5) How far does the stone travel horizontally from the point of projection before it hits the water?.. (.)

13 QUESTION 10 A golfer hits a ball from an elevated tee, at a height of 20 m above the green. The ball is hit with a velocity of 50 ms -1 at an angle of 20 to the horizontal. The time of flight of the ball is 4.4 s. (1) Find the horizontal and vertical components of the initial velocity. +) + ).. (. ( (4 marks) (2) Find the distance that the ball travels horizontally before it hits the green (.) (3) Find the velocity of the ball when it hits the green. Vertical velocity on impact V V 0 + at 47.0 ms -1 V (-9.8) (4.4) V 26.0 ms -1 ) % 26.0 ms -1 % &.. '. %. ( (4 marks) ).... ) *+, +-+

14 QUESTION 11 Water leaves a hose at a speed of V ms -1, at an angle of 45 above the horizontal. The nozzle is 1.2m above ground level. The time of flight of a water droplet is 2.96s. (1) (a) Determine the horizontal distance from the nozzle to the point where the water hits the ground. (. +.)... (.) (b) What will be the effect on the range if the angle between the nozzle and the horizontal is slightly increased? Explain your answer. The range will be reduced As the angle increases, the magnitude of the horizontal velocity decreases. The horizontal velocity is directly proportional to the range. As the horizontal velocity decreases, the range will decrease proportionally (c) What will be the effect on the range if the angle between the nozzle and the horizontal is slightly decreased? Explain your answer. As the angle decreases, the magnitude of the horizontal velocity increases. The horizontal velocity is directly proportional to the range. As the horizontal velocity increases, the range will increase proportionally (2marks)

15 (2) (a) Find the maximum height of the water above ground level. v 2 u 2 + 2as 0 (2.0 x sin45 ) 2 + 2(-9.8)s 1 ( ) m above ground level m (3 marks) (b) What will be the effect on the maximum height if the angle between the nozzle and the horizontal is slightly increased? Explain your answer. The maximum height will be increased if the angle is increased. This is because the vertical component of the initial velocity will increase. Vertical component of velocity is directly proportional to max. height. (c) What will be the effect on the maximum height if the angle between the nozzle and the horizontal is slightly decreased? Explain your answer. The maximum height will be decreased if the angle is decreased. This is because the vertical component of the initial velocity will decrease. (2marks) Vertical component of velocity is directly proportional to max. height.

16 QUESTION 12 A cannonball is fired at an angle of 45 to the horizontal, thus achieving its maximum range of 290 m on horizontal ground. The cannon ball has a flight time of 7.693s. Assume that the cannonball is projected from ground level. (1) Find the horizontal component of the velocity of the cannon-ball during its flight ( (2) Find the initial velocity of the cannonball. V H V cos 45 V 37.7 cos 45 V 53.3 ms -1 (3 marks) (3) What is the initial vertical velocity of the cannonball? 37.7 ms -1 (1 mark) (4) What is the speed of the cannonball at the top of its flight path? 37.7 ms -1, horizontal (to the right) (1 mark)

17 (5) Find the time taken for the cannonball to reach its maximum height. Maximum height at half the time of flight s (3 marks) (6) In another identical firing of this cannon, the cannonball encounters a horizontal headwind (i.e. there is no effect on its vertical velocity, only the horizontal speed is reduced). Explain what effect this wind will have on (i) the time of flight and (ii) the range of the cannonball. (i) No effect on the time of flight as it is dependent on the vertical component of velocity. (v u + at) (ii) The range will be reduced. Range V H x t R V H reduce V H, reduce range.

18 QUESTION 13 In an investigation into projectile motion, students projected a golf ball from ground level with the same initial speed but at different angles to the horizontal. At their first attempt the ball was projected at 45 to the horizontal and the range was noted. In subsequent attempts, the angle of projection was progressively increased. Explain what effect (if any) increasing the angle of projection has on: (1) the ball's time of flight. The time of flight t is given by 8 9(: ;, where V v V 134< Substitution gives < (: ; This shows that t 134< If we increase <, 134< increases (3 marks) If 134< increases, the time of flight increases. (2) the horizontal component of the ball's initial velocity. V H 9 >1< if we increase <, >1< decreases Thus V H decreases proportionally (3 marks) (3) the range of the ball. The range will decrease as V H decreases 45 gives the maximum range.

19 QUESTION 14 An athlete, competing in a shot put event, throws a shot of mass 60 kg with an initial speed of 13 ms -1 at an angle of 40 to the horizontal. Calculate the horizontal distance that the shot travels and its velocity when it hits the ground if it leaves the athlete's hand at a height of 2.0 m above ground level. The time of flight of the shot is 1.9 s. +) +. ).. (. (... (.) Vertical velocity on impact V V 0 + at V (-9.8)(1.9) V ms -1 % &. '. %.. ( )... ) *+, ms -1 ) % 13.0 ms -1

20 QUESTION 15 Two baseball players are throwing a ball to each other as shown at right. The ball is released and caught at the same height above ground level. Taking the upward direction to be positive, on the axes below, sketch graphs of the following (a) the horizontal velocity of the ball whilst in flight; (b) the acceleration of the ball whist in flight;

### QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g = +9.8ms

### time v (vertical) time

NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

### Kinematics-Projectiles

1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

### 1. downward 3. westward 2. upward 4. eastward

projectile review 1 Name 11-DEC-03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical

### TEACHER ANSWER KEY December 10, Projectile Review 1

Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]

### (2) An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s.

1. Linear motion Define the term acceleration. An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s. The motion of the object may be

### b. What is the x-distance from the foot of the cliff to the point of impact in the lake?

PROJECTILE MOTION An object launched into space without motive power of its own is called a projectile. If we neglect air resistance, the only force acting on a projectile is its weight, which causes its

### Motion, Vectors, and Projectiles Review. Honors Physics

Motion, Vectors, and Projectiles Review Honors Physics The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. The shaded area under the

### AP Physics 1 - Test 04 - Projectile Motion

P Physics 1 - Test 04 - Projectile Motion Score: 1. stone thrown from the top of a tall building follows a path that is circular made of two straight line segments hyperbolic parabolic a straight line

### The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction.

1. A baseball is thrown at an angle of 40.0 above the horizontal. The horizontal component of the baseball s initial velocity is 12.0 meters per second. What is the magnitude of the ball s initial velocity?

### Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

### 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?

Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched

### REVIEW : KINEMATICS

1 REVIEW 5-4-16: KINEMATICS Kinematics-Defining Motion 1 A student on her way to school walks four blocks east, three blocks north, and another four blocks east, as shown in the diagram. Compared to the

### Unit 2 Review: Projectile Motion

Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

### Higher Projectile Motion Questions

Higher Projectile Motion Questions 1. a) Name the two components of motion in projectiles. b) What is the acceleration on Earth for each of these two components. 2. A pencil case is dropped vertically

### Practice Test: Vectors and Projectile Motion

ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

### Angle Projectiles Class:

Angle Projectiles Class: Name: Date: 1. The diagram here represents a ball being kicked by a foot and rising at an angle of 30 from the horizontal. The ball has an initial velocity of 5.0 meters per second.

### Physics Acceleration and Projectile Review Guide

Physics Acceleration and Projectile Review Guide Name: Major Concepts 1-D motion on the horizontal 1-D motion on the vertical Relationship between velocity and acceleration https://www.khanacademy.org/science/physics/one-dimensional-motion/acceleration-tutorial/a/acceleratio

### PHYSICS 12 NAME: Kinematics and Projectiles Review

NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

### Two dimensional kinematics. Projectile Motion

Two dimensional kinematics Projectile Motion 1. You throw a ball straight upwards with a velocity of 40m/s. How long before it returns to your hand? A. 2s B. 4s C. 6s D. 8s E. 10s 1.You throw a ball straight

### You drop a package from a plane flying at constant speed in a straight line. Without air resistance, the package will:

Question 4.2 You drop a package from a plane flying at constant speed in a straight line. Without air resistance, the package will: Dropping a Package a) quickly lag behind the plane while falling b) remain

### Honors/AP Physics 1 Homework Packet #2

Section 3: Falling Objects Honors/AP Physics 1 Homework Packet #2 1. A ball is dropped from a window 10 m above the sidewalk. Determine the time it takes for the ball to fall to the sidewalk. 2. A camera

### 6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter.

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in

### Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

### CHAPTER 3 TEST REVIEW

AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

### Page 1. ConcepTest Clicker Questions Chapter 4. Physics, 4 th Edition James S. Walker

1 ConcepTest Clicker Questions Chapter 4 Physics, 4 th Edition James S. Walker Question 4.1a A small cart is rolling at constant velocity on a flat track. It fires a ball straight up into the air as it

### Vector Practice Problems

Vector Practice Problems Name: Use the diagram below to answer Questions #1-3. Each square on the diagram represents a 20-meter x 20- meter area. 1. If a person walks from D to H to G to C, then the direction

### 1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 2. A car is travelling at a constant speed of 26.0 m/s down a slope which is 12.0 to the horizontal. What

### Physics Final Exam Review Fall 2013

Physics Final Exam Review Fall 2013 The lines on the graph represent displacement vectors for the route along which a person moves. Use the figure to answer problems 1 2. 1. What is the total distance

### Draw a graph of speed against time on the grid provided.

1. A car accelerates from rest to a speed of 26 m s 1. The table shows how the speed of the car varies over the first 30 seconds of motion. time/ s 0 5.0 10.0 15.0 20.0 25.0 30.0 speed/ m s 1 0 16.5 22.5

### Projectile Motion. Regardless of its path, a projectile will always follow these rules:

Projectile Motion What is a projectile? Regardless of its path, a projectile will always follow these rules: 1. A horizontally launched projectile moves both horizontally and vertically and traces out

### Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

### Unit 4: Projectiles ( Angled Projectiles )

Unit 4: Projectiles ( Angled Projectiles ) When dealing with a projectile that is not launched/thrown perfectly horizontal, you must start by realizing that the initial velocity has two components: an

### Exercise on Projectile Motion (Unit-III)

Engineering Mechanics Exercise on Projectile Motion (Unit-III) 1 A projectile is fired with velocity 620 m/s at an angle of 40 with horizontal ground. Find the range, time of flight, maximum height attained

### Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

### CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

### ConcepTest PowerPoints

ConcepTest PowerPoints Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

### D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

### TWO DIMENSIONAL KINEMATICS

PHYSICS HOMEWORK #11 TWO DIMENSIONAL [Remember that ALL vectors must be described by BOTH magnitude and direction!] 1. You walk 250. steps North and then 400. steps East. What is your displacement? (Distance

### j~/ ... FIGURE 3-31 Problem 9.

9. () An airplane is traveling 735 kmlh in a direction 41S west of north (Fig. 3-31). (a) Find the components of the velocity vector in the northerly and westerly directions. (b) How far north and how

### Page 2. Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement

Q1.(a) Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement vector scalar (b) A tennis ball is thrown vertically downwards

### 1. ConcepTest 3.1a Vectors I

1. ConcepTest 3.1a Vectors I If two vectors are given such that A + B = 0, what can you say about the magnitude and direction of vectors A and B? 1) same magnitude, but can be in any directio 2) same magnitude,

### 5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE

Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls

### 1) What is the magnitude of the momentum of a kg baseball traveling at 45.0 m/s?

Momentum review 6) Two friends are standing on opposite ends of a canoe that is initially at rest with respect to a frictionless lake. The person in the front throws a very massive ball toward the back,

### Projectile Motion Problems Worksheet

Projectile Motion Problems Worksheet For all questions, ignore the effects of air resistance unless otherwise stated. 1. One of the landing gears falls off a plane that is flying horizontally with a constant

### Conceptual Questions PM.notebook October 21, Projectile Motion Conceptual Questions

Projectile Motion Conceptual Questions 1 A cart is rolling at a constant velocity on a flat track. It fires a ball vertically as it moves. After it is fired, what happend to the ball? A It depends on how

### C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

### Projectile Motion applications

Projectile Motion applications 1. A stone is thrown horizontally at a speed of 10.0 m/s from the top of a cliff 78.4 m high. a. How long does it take the stone to reach the bottom of the cliff? b. How

### SF016: PAST YEAR UPS QUESTIONS

CHAPTER 2: KINEMATICS OF LINEAR MOTION Session 205/206. (a)(i) If the object has zero acceleration, what happen to its velocity? Explain your answer. (ii) A car is initially at rest at =0. It then accelerates

### Cutnell/Johnson Physics

Cutnell/Johnson Physics Classroom Response System Questions Chapter 3 Kinematics in Two Dimensions Interactive Lecture Questions 3.1.1. A truck drives due south for 1.2 km in 1.5 minutes. Then, the truck

### Chapter 4: 2-D Kinematics

PHY 5 Ch 4. Solution Dr. Hael Shehadeh. Chapter 4: -D Kinematics Answers to Conceptual Questions. The component of velocit is first positive and then negative in a smmetric fashion. As a result, the average

### a. Determine the sprinter's constant acceleration during the first 2 seconds. b. Determine the sprinters velocity after 2 seconds have elapsed.

AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

### October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components

Honors Physics Chapter 4 Scalar Vector Resultant Components 1 When we take two vectors and ADD them, the thing we get is called the RESULTANT, or VECTOR SUM. It is also possible to take a single vector

### Projectiles Shot up at an Angle

Projectile Motion Notes: continued Projectiles Shot up at an Angle Think about a cannonball shot up at an angle, or a football punt kicked into the air, or a pop-fly thrown into the air. When a projectile

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A mosquito flying at 3 m/s that encounters a breeze blowing at 3 m/s in the same direction

### 1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time.

1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time. v/m s 1 B C 0 A D E H t/s F G (a) Describe the motion of the train in the following regions

### Physics P201 D. Baxter/R. Heinz

Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 20, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

### Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m

Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10-kilogram object at rest at point A. The object accelerates uniformly from point A to point B in

### Big Ideas 3 & 4: Kinematics 1 AP Physics 1

Big Ideas 3 & 4: Kinematics 1 AP Physics 1 1. A ball is thrown vertically upward from the ground. Which pair of graphs best describes the motion of the ball as a function of time while it is in the air?

### 2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds?

Name: Date: 1. Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.9 s, what is the magnitude

### A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity.

1991 Q31 A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity. The ball just passes over the net which is 0.6 m high and 6 m away from her. (Neglect air friction.)

### PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1

Term: 161 Thursday, October 27, 2016 Page: 1 *Read the following (20) questions and choose the best answer: 1 The motion of a swimmer during 30.0 minutes workout is represented by the graph below. What

### Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

### Name: 1. A car moves m/s north at a constant velocity. What is the car's displacement after 2.0 hours?

Name: e-mail: Applied Physics I Fall 2007 Multiple Choice ( 6 Points ): 1. A car moves 26.82 m/s north at a constant velocity. What is the car's displacement after 2.0 hours? a.) 40 miles north b.) 120

### Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram.

MECHANICS: MOTION QUESTIONS High Jump (2017;2) Sarah, a 55.0 kg athlete, is competing in the high jump where she needs to get her body over the crossbar successfully without hitting it. Where she lands,

### Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

### Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10.

Practice exam semester 1 physics Walk this Way Activity, Graph Sketching and Recognition, Sonic Ranger Lab: Use the graph to the right for q s 1-3 1. Which object(s) is (are) not moving? 2. Which change

### Honors Assignment - Vectors

Honors Assignment - Vectors Reading Chapter 3 Homework Assignment #1: Read Chap 3 Sections 1-3 M: #2, 3, 5 (a, c, f), 6-9 Homework Assignment #2: M: #14, 15, 16, 18, 19 Homework Assignment #3: Read Chap

### Unit 3 ~ Learning Guide Name:

Unit 3 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

### Assignment 3.2: Projectile Motion

(Conceptual Questions): 1. What equation would you use to describe the horizontal acceleration of a ball being thrown? 2. Give an example of an object that would have horizontal acceleration? 3. The horizontal

### General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey

General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey Name (print): I hereby declare upon my word of honor that I have neither given nor received unauthorized help on this work. Signature:

### 3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m

Page 1 of 5 Sub work 10-10-02 Name 12-OCT-03 1. A car travels a distance of 98 meters in 10. seconds. What is the average speed of the car during this 10.-second interval? 1. 4.9 m/s 3. 49 m/s/ 2. 9.8

### Chapter 2 Two Dimensional Kinematics Homework # 09

Homework # 09 Pthagorean Theorem Projectile Motion Equations a 2 +b 2 =c 2 Trigonometric Definitions cos = sin = tan = a h o h o a v =v o v =v o + gt =v o t = o + v o t +½gt 2 v 2 = v 2 o + 2g( - o ) v

### Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures.

Q1.The diagram below shows an electric two-wheeled vehicle and driver. (a) The vehicle accelerates horizontally from rest to 27.8 m s 1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider

### Worksheet 1.1 Kinematics in 1D

Worksheet 1.1 Kinematics in 1D Solve all problems on your own paper showing all work! 1. A tourist averaged 82 km/h for a 6.5 h trip in her Volkswagen. How far did she go? 2. Change these speeds so that

### Eg.#1 A diver steps off a 10. m. high diving board with an initial vertical velocity of zero and experiences an average acceleration 2

1.3.1 Acceleration due to Gravity Defined as: For many years, it was thought that higher mass objects fall towards the Earth more quickly than lower mass objects. This idea was introduced in approximately

### Los Altos High School Physics -Two Dimensional Kinematics Workbook Problems

1. Consider a United States Coast Guard plane flying a rescue mission 300 Km West of the Faraloon Islands. The mission requires the plane's crew to deliver a 50 kg package of emergency supplies to the

### 7 O^^rMx^, 136. Note that the question below only has three choices.

136. Note that the question below only has three choices. 138. The diagram below shows a student throwing a baseball horizontally at 25 metei's per second from a dtff 4^ m^fers above il^e. level ground.

### Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a).

Ch3 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch3 Supplemental Due: 6:59pm on Monday, February 13, 2017 To understand how points are awarded, read the Grading

### Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors Questions 1. One car travels due east at 40 km h, and a second car travels north at 40 km h. Are their velocities equal? Explain. 2. Can you give several

### Physics 122 Projectile Motion Unit

Physics 122 Projectile Motion Unit In your assigned group of students (4-6 students) you will be responsible for researching the concepts, teaching each other, discussing questions and checking problems.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Hang from a pair of gym rings and the upward support forces of the rings will always

### PHYSICS 218 EXAM 1 Monday, September 24, 2007

PHYSICS 218 EXAM 1 Monday, September 24, 2007 NAME: SECTION: 525 526 527 528 529 530 531 532 Note: 525 Recitation Thurs 2:20 529 Recitation Tues 9:35 526 Recitation Thurs 3:55 530 Recitation Tues 12:45

### Review - Kinematic Equations

Review - Kinematic Equations 1. In an emergency braking exercise, a student driver stops a car travelling at 83 km/h [W] in a time of 4.0 s. What is the car s acceleration during this time? (The answer

### A child places a car of mass 95 g on the track. She adjusts the controller to a power of 4.2 W so the car accelerates from rest for 0.40 s.

1 The picture shows a track for racing toy electric cars. A guide pin fits in a groove in the track to keep the car on the track. A small electric motor in the car is controlled, with a hand-controller,

### LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code

LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code PHY131H1S Term Test 1 version 1 Tuesday, February 1, 2011 Duration: 80 minutes Aids allowed: A pocket calculator

### AP Physics 1 Multiple Choice Questions - Chapter 3

1 Resolve a speed vector of 25 m/s @ 55 above the horizontal into x and y components. a 8.25i + 7.55j b 7.55i + 8.25 j c 14.33i + 20.48j d 20.48i + 14.33j e None of the above 2 Resolve a momentum vector

### (a) Calculate the speed of the sphere as it passes through the lowest point of its path.

1991 Q33 A sphere of mass 3 kg on the end of a wire is released from rest and swings through a vertical distance of 0.4 m. (Neglect air friction.) (a) Calculate the speed of the sphere as it passes through

### PHYSICS 218 EXAM 1 Thursday, September 24, 2009

PHYSICS 218 EXAM 1 Thursday, September 24, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:10-10:00 526 Recitation Wed 11:30-12:20 527 Recitation Wed 1:50-2:40 528 Recitation Mon 11:30-12:20

### NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Force The ability to cause a change in a state of motion of an object (Vector) The only thing that can cause an object to accelerate is a Force An object at rest will remain at

### Name: SOLUTIONS MIDTERM 2, Spring 2019

Name: SOLUTIONS MIDTERM 2, Spring 2019 Solutions in bold. Print your name clearly above, and write and bubble in your student 800 number on the provided scantron. There are 20 equally-weighted problems

### NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided.

NAME:.... SCHOOL: DATE:... LINEAR MOTION INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1. Two forces that act on a moving cyclist are the driving force and the resistive

### Projectile Motion. A projectile may also start at a given level and then move upward and downward again as does a football that has been

Projectile Motion Vocsiary Projectile: An object that moves through space acted upon only by the earth s gravity. A projectile may start at a given height and move toward the ground in an arc. For example,

### (1) In the following diagram, which vectors are the components, and which vector is the resultant?

Homework 2.1 Vectors & Vector Addition (1) In the following diagram, which vectors are the components, and which vector is the resultant? C A B (2) Give the magnitude and direction (angle) of all three

### Project 1 Those amazing Red Sox!

MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Spring Semester, 2005 Project 1 Those amazing Red

### VECTORS Important Questions from CBSE point of view

VECTORS Important Questions from CBSE point of view LEVEL-1 1. Two forces have their resultant equal to either. At what angle are they inclined? 2. Add a velocity of 30 m/s eastwards to a velocity of 40

### CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT 1. Vector mechanics apply to which of the following? A. displacement B. velocity C. speed D. both displacement and velocity 2. If velocity is constant, then