Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected)
|
|
- Britton Bates
- 1 years ago
- Views:
Transcription
1 Supplement Wind, Fetch and Waves Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected) Coriolis not important Turbulent wind stress & wave sea surface interaction, formation Convective thunderstorm cells Meso-scale sea-breeze circulations, coastal fronts Coriolis important Synoptic-scale major storms Large > important, seasonal thermodynamic factors circulations Temporal variability of wind speeds. 1. Due to the combination of different scales of motion, winds are rarely, if ever, constant for any prolonged interval of time. a. Because of this, it is important to recognize the averaging interval (explicit or implicit) of any data used in applications. b. For example, some winds represent fastest mile estimates, some winds represent averages over small, fixed time intervals (typically from 1 to 30 min), and some estimates (such as those derived from synoptic pressure fields) can even represent average winds over intervals of several hours. Design and planning considerations require different averages for different purposes. Individual gusts may contribute to the failure mode of some small structures or of certain structural elements on larger structures. For other structures, 1-min (or even longer) average wind speeds may be more related to critical structural forces. 2. When dealing with wave generation in water bodies of differing sizes, different averaging intervals may also be appropriate. a. Small lakes/ reservoirs/ riverine areas (fetch-limited): a 1- to 5-min wind speed may be all that is required the fastest 1- to 5-min wind speed will produce the largest waves, and thus be the appropriate choice for design and planning considerations. b. Large lakes/ oceanic regions: wave generation process tends to respond to average winds over a 15- to 30-min interval. 3. Figure II-2-1 can be used to convert extremal estimates of wind speeds from one averaging interval to another. a. For example, this graph shows that a 100-sec extreme wind speed is expected to be 1.2 times as high as a 1-hr extreme wind speed. This means that the highest average wind speed in 36 samples of 100-sec duration is expected to be 1.2 times higher than the average for all 36 samples added together. 4. Figure II-2-2 can be used to estimate the averaging time based on the fastest-mile wind speeds (where the averaging time is the time required for the wind to travel a distance of 1 mile).
2 5. Figure II-2-3 can be used to estimate the time to achieve fetch-limited conditions as a function of wind speed and fetch length (Resio, D. T., and Vincent, C. L A Comparison of Various Numerical Wave Prediction Techniques, Proc. 11th Annual Offshore Technology Conf., Houston, TX, pp ). The proper averaging time for design and planning considerations varies dramatically as a function of these parameters. a. The duration required to achieve fetch-limited conditions is a function of wind speed due to the nonlinear coupling among waves in a wind-generated wave spectrum. t(s) U t /U 3600 averaging time in seconds ratio of wind speed averaged at t seconds to 1-hr (3600-sec) averaged wind speed Example use of Figure II-2-1 FIND: 1-hr average winds for wave prediction GIVEN: 10-, 50-, and 100-year values of observed winds at a buoy located in the center of a large lake (U 10 = 20.3 m/s, U 50 = 24.8 m/s, U 100 = 28.2 m/s). It is also known that the averaging interval for the buoy winds is 5 min. SOLUTION: Using Figure II-2-1, the ratio of the fastest 5-min wind speed to the average 1-hr wind speed is approximately Using this as a constant conversion factor, the 10-, 50-, and 100-year, 1-hr wind speeds are estimated as U' 10 =18.6 m/s, U' 50 =22.8 m/s, and U' 100 =25.9 m/s.
3 Fastest-Mile Wind Speed vs. Duration
4 Fetch, Duration and Wind Speed Example use of Figure II-2-3 FIND: The appropriate 100-year wind speed for a basin with a fetch length of 10 km. GIVEN: A 100-year wind speed of 19.9 m/s, derived from 3-hr synoptic charts. SOLUTION: Figure II-2-3 requires knowledge of both wind speed and fetch distance; however, reasonable accuracy is gained by simply using the original wind speed and the appropriate fetch. In this case from Figure II-2-3, the appropriate wind-averaging interval is approximately 90 min. Using information from Figure II-2-1, the ratio of the highest 90-min wind speed to the highest 3-hr wind speed is given by the relationship U5400/U10800 = [-0.15 log10 (5400) ]/[-0.15 log10(10800) ] = / = Thus, the appropriate wind speed should be times 19.9 m/sec, or 20.8 m/sec.
5 Wind estimates based on information from pressure fields and weather maps. A primary driving force of synoptic-scale winds above the boundary layer is produced by horizontal pressure gradients. Figure II-2-9 is a simplified surface chart for the north Pacific Ocean. The area labeled L in the right center of the chart and the area labeled H in the lower left corner of the chart are low- and high-pressure areas. The pressures increase moving outward from L (isobars 972, 975, etc.) and decrease moving outward from H (isobars 1026, 1023, etc.). Synoptic-scale winds at latitudes above about 20 deg tend to blow parallel to the isobars, with the magnitude of the wind speed being inversely proportional to the spacing between the isobars. Scattered about the chart are small arrow shafts with a varying number of feathers. The direction of a shaft shows the direction of the wind, with each one-half feather representing a unit of 5 kt (2.5 m/s) in wind speed. (c) Historical pressure charts are available for many oceanic areas back to the end of the 1800 s. This is a valuable source of wind information when the pressure fields and available wind observations can be used to create marine wind fields. However, the approach for linking pressure fields to winds can be complex, as discussed in the following paragraphs.
6
7
8
Meteorology. Circle the letter that corresponds to the correct answer
Chapter 6 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) A steep pressure gradient: a. produces light winds. b. produces strong winds. c. is only possible in
Air Pressure and Wind
Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The
Wave Generation. Chapter Wave Generation
Chapter 5 Wave Generation 5.1 Wave Generation When a gentle breeze blows over water, the turbulent eddies in the wind field will periodically touch down on the water, causing local disturbances of the
ATMS 310 Tropical Dynamics
ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any
Chapter. Air Pressure and Wind
Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure
Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)
Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from
18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer
18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.
Atmospheric and Ocean Circulation Lab
Atmospheric and Ocean Circulation Lab name Key Objectives: The main goal of this lab is to learn about atmospheric and oceanic circulation and how these two processes are strongly inter-dependent and strongly
McKnight's Physical Geography 11e
Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure
Waves Part II. non-dispersive (C g =C)
Waves Part II Previously we discussed Surface Gravity Waves Deep Water Waves Shallow Water Waves C g T 2 C g h dispersive (C g =C/2) Definitions: phase speed C= /T= /k non-dispersive (C g =C) group speed
MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces
MET 200 Lecture 11 Local Winds Last Lecture: Forces Scales of Motion Eddies Sea Breeze Mountain-Valley Circulations Chinook - Snow Eater Drainage Wind - Katabatic Wind 1 2 Review of Forces 1. Pressure
CHAPTER 6 DISCUSSION ON WAVE PREDICTION METHODS
CHAPTER 6 DISCUSSION ON WAVE PREDICTION METHODS A critical evaluation of the three wave prediction methods examined in this thesis is presented in this Chapter. The significant wave parameters, Hand T,
HIGH RESOLUTION WIND AND WAVE MEASUREMENTS FROM TerraSAR-X IN COMPARISON TO MARINE FORECAST
SAR Maritime Applications German Aerospace Center (DLR) Remote Sensing Technology Institute Maritime Security Lab HIGH RESOLUTION WIND AND WAVE MEASUREMENTS FROM TerraSAR-X IN COMPARISON TO MARINE FORECAST
Review of Equivalent Neutral Winds and Stress
Review of Equivalent Neutral Winds and Stress Mark A. Bourassa Center for Ocean-Atmospheric Prediction Studies, Geophysical Fluid Dynamics Institute & Department of Earth, Ocean and Atmospheric Science
JCOMM Technical Workshop on Wave Measurements from Buoys
JCOMM Technical Workshop on Wave Measurements from Buoys Val Swail Chair, JCOMM Expert Team on Wind Waves and Storm Surges Neville Smith Vincent Cardone Peter Janssen Gerbrand Komen Peter Taylor WIND WAVES
3 Global Winds and Local Winds
CHAPTER 15 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?
LONG TERM OCEAN WAVE FORECASTING ALONG INDIAN COAST
J. Indian Water Resour. Journal Soc., of Indian Vol. 33, Water No. Resources, April, Society, 3 Vol 33, No., April, 3 LONG TERM OCEAN WAVE FORECASTING ALONG INDIAN COAST R.P. Dubey and Bitanjaya Das ABSTRACT
3 Global Winds and Local Winds
CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?
3 Global Winds and Local Winds
CHAPTER 6 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?
Exploring the Wind and Wave Climate in the Great Lakes
Exploring the Wind and Wave Climate in the Great Lakes R.E. Jensen USACE ERDC Coastal and Hydraulics Laboratory 14 th Waves Workshop 8-13 November 2015 Key West, FL Setting / Motivation North America US:
Atmospheric & Ocean Circulation- I
Atmospheric & Ocean Circulation- I First: need to understand basic Earth s Energy Balance 1) Incoming radiation 2) Albedo (reflectivity) 3) Blackbody Radiation Atm/ Ocean movement ultimately derives from
EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology
EVE 402/502 Air Pollution Generation and Control Chapter #3 Meteorology Introduction Meteorology is the study and forecasting of weather changes resulting from large-scale atmospheric circulation Characteristics
Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering
Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Andrew Kennedy Dept of Civil and Coastal Engineering 365 Weil Hall University of Florida Gainesville, FL 32611 phone:
3.6 Magnetic surveys. Sampling Time variations Gradiometers Processing. Sampling
3.6 Magnetic surveys Sampling Time variations Gradiometers Processing Sampling Magnetic surveys can be taken along profiles or, more often, on a grid. The data for a grid is usually taken with fairly frequent
Global Winds and Local Winds
Global Winds and Local Winds National Science Education Standards ES 1j What is the Coriolis effect? What are the major global wind systems on Earth? What Causes Wind? Wind is moving air caused by differences
Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure
Air Pressure and Wind Goal: Explain the formation of wind based on differences in air pressure What is Air Pressure? Reminder: Air pressure is thickest near Earth s surface and becomes thinner as we move
Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens
Lecture Outlines PowerPoint Chapter 15 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors
Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D
Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D vestas.com Outline The atmospheric modeling capabilities
Undertow - Zonation of Flow in Broken Wave Bores
Nearshore Circulation Undertow and Rip Cells Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay
Conditions for Offshore Wind Energy Use
Carl von Ossietzky Universität Oldenburg Institute of Physics Energy Meteorology Group Detlev Heinemann Conditions for Offshore Wind Energy Use Detlev Heinemann ForWind Carl von Ossietzky Universität Oldenburg
Jackie May* Mark Bourassa. * Current affilitation: QinetiQ-NA
Jackie May* Mark Bourassa * Current affilitation: QinetiQ-NA Background/Motivation In situ observations (ships and buoys) are used to validate satellite observations Problems with comparing data Sparseness
4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2.
Warm Up 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2. Objectives Find rates of change and slopes. Relate a constant rate of change to the slope of
Wind Regimes 1. 1 Wind Regimes
Wind Regimes 1 1 Wind Regimes The proper design of a wind turbine for a site requires an accurate characterization of the wind at the site where it will operate. This requires an understanding of the sources
Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management
Energy Output for Wind Power Management Spring 215 Variability in wind Distribution plotting Mean power of the wind Betz' law Power density Power curves The power coefficient Calculator guide The power
Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10
Exam 1 Review Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Location on Earth (L04) Latitude & Longitude great circles, prime meridian, time zones, cardinal points, azimuth
MET Lecture 8 Atmospheric Stability
MET 4300 Lecture 8 Atmospheric Stability Stability Concept Stable: Ball returns to original position Neutral: Ball stays wherever it is placed Unstable: Displacement grows with time. Atmospheric Stability
Measurement of Coastal & Littoral Toxic Material Tracer Dispersion. Dr. Robert E. Marshall T41 NSWCDD
Measurement of Coastal & Littoral Toxic Material Tracer Dispersion Dr. Robert E. Marshall robert.e.marshall@navy.mil T41 NSWCDD Mouth of the Piankatank River Chesapeake Bay Model this for CB defense? Ground
Standard atmosphere Typical height (m) Pressure (mb)
Standard atmosphere Pressure (mb) Typical height (ft) Typical height (m) 1013.25 0 0 1000 370 110 850 4780 1460 700 9880 3010 500 18280 5570 300 30050 9160 Whiteman 2000 Pressure decreases exponentially
Outline. Wind Turbine Siting. Roughness. Wind Farm Design 4/7/2015
Wind Turbine Siting Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 andrew-kusiak@uiowa.edu Tel: 319-335-5934 Fax: 319-335-5669 http://www.icaen.uiowa.edu/~ankusiak Terrain roughness Escarpments
Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted
Capillary Waves, Wind Waves, Chapter 10 Waves Anatomy of a Wave more like a real wave Tsunamis, Internal waves big waves huge waves rogue waves small waves more like a sine wave Wave direction Wave wave
Chapter 10 Lecture Outline. The Restless Oceans
Chapter 10 Lecture Outline The Restless Oceans Focus Question 10.1 How does the Coriolis effect influence ocean currents? The Ocean s Surface Circulation Ocean currents Masses of water that flow from one
The oceans are vast not only in size, but also in their ability to store and release energy.
WHAT ENERGIES ARE ASSOCIATED WITH EARTH S OCEANS? The oceans are vast not only in size, but also in their ability to store and release energy. Scientists recognize various forms of energy in nature. Many
Atmospheric Forces and Force Balances METR Introduction
Atmospheric Forces and Force Balances METR 2021 Introduction In this lab you will be introduced to the forces governing atmospheric motions as well as some of the common force balances. A common theme
Generalized Wave-Ray Approach for Propagation on a Sphere and Its Application to Swell Prediction
Generalized Wave-Ray Approach for Propagation on a Sphere and Its Application to Swell Prediction D. Scott 1, D. Resio 2, and D. Williamson 1 1. & Associates 2. Coastal Hydraulic Laboratory, U.S. Army
2.4. Applications of Boundary Layer Meteorology
2.4. Applications of Boundary Layer Meteorology 2.4.1. Temporal Evolution & Prediction of the PBL Earlier, we saw the following figure showing the diurnal evolution of PBL. With a typical diurnal cycle,
A Little Math. Wave speed = wave length/wave period C= L/T. Relationship of Wave Length to Depth of Wave Motion
Ocean Waves 1 2 1 A Little Math Wave speed = wave length/wave period C= L/T 3 Relationship of Wave Length to Depth of Wave Motion 4 2 Motion of Water as Wave Passes Water in the crest of the wave move
What are Waves? Earthquake. Waving flags. Vocal Cords Vibrate
Waves Ch. 10 What are Waves? All waves are movement of energy through a medium (air, rock, water) Series of vibrations or undulations in a medium Wave types: ocean, sound, light, seismic Vocal Cords Vibrate
Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds
Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds Understanding Air Pressure: -pressure exerted by the weight
Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT
Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT Grade Level: 9-10 Social Studies Curriculum Topic Standards: Subject Keywords:
Wake effects at Horns Rev and their influence on energy production. Kraftværksvej 53 Frederiksborgvej 399. Ph.: Ph.
Wake effects at Horns Rev and their influence on energy production Martin Méchali (1)(*), Rebecca Barthelmie (2), Sten Frandsen (2), Leo Jensen (1), Pierre-Elouan Réthoré (2) (1) Elsam Engineering (EE)
Atmospheric Circulation
Atmospheric Circulation Why do we say Earth's temperature is moderate? It may not look like it, but various processes work to moderate Earth's temperature across the latitudes. Atmospheric circulation
WSRC-MS mdf r An Observational Study of Turbulence in the SPBL
WSRC-MS-97-0385 mdf- 770760--r An Observational Study of Turbulence in the SPBL by R. Kurzeja Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 A document prepared for
Isaac Newton ( )
Introduction to Climatology GEOGRAPHY 300 Isaac Newton (1642-1727) Tom Giambelluca University of Hawai i at Mānoa Atmospheric Pressure, Wind, and The General Circulation Philosophiæ Naturalis Principia
Introduction to Waves. If you do not have access to equipment, the following experiments can be observed here:
Introduction to Waves If you do not have access to equipment, the following experiments can be observed here: http://tinyurl.com/lupz3dh 1.1 There is a tray with water in it. This can model throwing a
Observed Roughness Lengths for Momentum and Temperature on a Melting Glacier Surface
5 Observed Roughness Lengths for Momentum and Temperature on a Melting Glacier Surface The roughness lengths for momentum and temperature are calculated on a melting glacier surface. Data from a five level
Ocean Currents Unit (4 pts)
Name: Section: Ocean Currents Unit (Topic 9A-1) page 1 Ocean Currents Unit (4 pts) Ocean Currents An ocean current is like a river in the ocean: water is flowing traveling from place to place. Historically,
Regional Analysis of Extremal Wave Height Variability Oregon Coast, USA. Heidi P. Moritz and Hans R. Moritz
Regional Analysis of Extremal Wave Height Variability Oregon Coast, USA Heidi P. Moritz and Hans R. Moritz U. S. Army Corps of Engineers, Portland District Portland, Oregon, USA 1. INTRODUCTION This extremal
Homework 2 Bathymetric Charts [based on the Chauffe & Jefferies (2007)]
1 MAR 110 HW-2 - Bathy Charts Homework 2 Bathymetric Charts [based on the Chauffe & Jefferies (2007)] 2-1. BATHYMETRIC CHARTS Bathymetric charts are maps of a region of the ocean used primarily for navigation
Ocean Waves and Surf Forecasting: Wave Climate and Forecasting
Overview Ocean Waves and Surf Forecasting: Wave Climate and Forecasting Ocean regions Characterizing and describing ocean waves Wave theory, propagation, and dispersion Refraction, shadowing, and bathymetry
Are Advanced Wind Flow Models More Accurate? A Test of Four Models
Are Advanced Wind Flow Models More Accurate? A Test of Four Models Philippe Beaucage, PhD Senior Research Scientist Michael C. Brower, PhD Chief Technical Officer Brazil Wind Power Conference 2012 Albany
Nearshore Wind-Wave Forecasting at the Oregon Coast. Gabriel García, H. Tuba Özkan-Haller, Peter Ruggiero November 16, 2011
Nearshore Wind-Wave Forecasting at the Oregon Coast Gabriel García, H. Tuba Özkan-Haller, Peter Ruggiero November 16, 2011 What is Wave Forecasting? An attempt to predict how the ocean surface is going
CHAPTER 6 EXTREME WAVE CONDITIONS IN BRITISH AND ADJACENT WATERS
CHAPTER 6 EXTREME WAVE CONDITIONS IN BRITISH AND ADJACENT WATERS LAURENCE DRAPER NATIONAL INSTITUTE OF OCEANOGRAPHY Wormley, Godalming, Surrey, Great Britain. ABSTRACT Information on extreme wave conditions
LAB 1 THERMODYNAMIC DIAGRAMS 100 points Part 2 Date Due
LAB 1 THERMODYNAMIC DIAGRAMS 100 points Part 2 Date Due Thermodynamic diagrams allow for analysis of temperature, moisture, pressure and wind in the atmosphere. These vertical measurements, or soundings,
Modelling and Simulation of Environmental Disturbances
Modelling and Simulation of Environmental Disturbances (Module 5) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007
IN THE TABLE OF CONTENTS AND ON THE NEXT CLEAN PAGE, TITLE IT: WIND NOTES WIND!
IN THE TABLE OF CONTENTS AND ON THE NEXT CLEAN PAGE, TITLE IT: WIND NOTES WIND! Wind 8.10A recognize that the Sun provides the energy that drives convection within the atmosphere and oceans, producing
On the use of a high resolution wind forcing in the operational coastal wave model WW3
On the use of a high resolution wind forcing in the operational coastal wave model WW3 A. Dalphinet (1), L. Aouf (1), C. Bataille (1), H. Michaud (2) (1) Météo-France (2) SHOM Île de Sein (Brittany) 05/02/2014
THE RESPONSE OF THE GULF OF MAINE COASTAL CURRENT SYSTEM TO LATE-SPRING
THE RESPONSE OF THE GULF OF MAINE COASTAL CURRENT SYSTEM TO LATE-SPRING NORTHEASTERLY WIND FORCING Neal R Pettigrew and Huijie Xue School of Marine Sciences University of Maine, Orono ME 04469 The Gulf
Basis of Structural Design
Basis of Structural Design Course 10 Actions on structures: Wind loads Other loads Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Wind loading: normative references
Lesson: Ocean Circulation
Lesson: Ocean Circulation By Keith Meldahl Corresponding to Chapter 9: Ocean Circulation As this figure shows, there is a connection between the prevailing easterly and westerly winds (discussed in Chapter
Numerical modeling of refraction and diffraction
Numerical modeling of refraction and diffraction L. Balas, A. inan Civil Engineering Department, Gazi University, Turkey Abstract A numerical model which simulates the propagation of waves over a complex
Atmospheric & Ocean Circulation-
Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds
The Wave Climate of Ireland: From Averages to Extremes. Sarah Gallagher, Met Éireann
The Wave Climate of Ireland: From Averages to Extremes Sarah Gallagher, Met Éireann IMS One Day Conference: The Perfect Storm, 28th March 2015 Motivation & Introduction Methodology - How can we Model Waves?
Real Life Turbulence and Model Simplifications. Jørgen Højstrup Wind Solutions/Højstrup Wind Energy VindKraftNet 28 May 2015
Real Life Turbulence and Model Simplifications Jørgen Højstrup Wind Solutions/Højstrup Wind Energy VindKraftNet 28 May 2015 Contents What is turbulence? Description of turbulence Modelling spectra. Wake
Chapter 7: Circulation And The Atmosphere
Chapter 7: Circulation And The Atmosphere Highly integrated wind system Main Circulation Currents: series of deep rivers of air encircling the planet Various perturbations or vortices (hurricanes, tornados,
TRIAXYS Acoustic Doppler Current Profiler Comparison Study
TRIAXYS Acoustic Doppler Current Profiler Comparison Study By Randolph Kashino, Axys Technologies Inc. Tony Ethier, Axys Technologies Inc. Reo Phillips, Axys Technologies Inc. February 2 Figure 1. Nortek
Gravity waves and bores. Material kindly provided by Dr. Steven Koch GSD NOAA (Boulder, CO)
Gravity waves and bores Material kindly provided by Dr. Steven Koch GSD NOAA (Boulder, CO) Presented at Iowa State University 11 April 2005 What is a gravity wave? An oscillation caused by the displacement
Water circulation in Dabob Bay, Washington: Focus on the exchange flows during the diurnal tide transitions
Water circulation in Dabob Bay, Washington: Focus on the exchange flows during the diurnal tide transitions Jeong-in Kang School of Oceanography University of Washington (206) 349-7319 nortiumz@u.washington.edu
Lesson: Atmospheric Dynamics
Lesson: Atmospheric Dynamics By Keith Meldahl Corresponding to Chapter 8: Atmospheric Circulation Our atmosphere moves (circulates) because of uneven solar heating of the earth s surface, combined with
FINAL REPORT. Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia
FINAL REPORT Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia Prepared for: Essendon Fields Pty Ltd Essendon Fields House Level 2, 7 English Street Essendon Fields
Scales of Atmospheric Motion
Lecture 12 Local Wind Systems Scales of Atmospheric Motion Small turbulent eddies (swirls) A synoptic eddy 1 Coriolis Effect The larger the scale, the longer the life time. Wind shear and turbulent eddy
Ch. 2 & 3 Velocity & Acceleration
Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.
Wind Power. Kevin Clifford METR 112 April 19, 2011
Wind Power Kevin Clifford METR 112 April 19, 2011 Outline Introduction Wind Turbines Determining Wind Power Output The Price of Wind Power Wind Power Availability across the World and US California Wind
SESSION THREE: FACTORS THAT INFLUENCE WEATHER IN SOUTH AFRICA
SESSION THREE: FACTORS THAT INFLUENCE WEATHER IN SOUTH AFRICA KEY CONCEPTS: In this section we will focus on the following aspects: Factors determining the weather of South Africa Influence of the oceans
Monsoon. Arabic word mausim means season. Loose definition: a wind/precipitation pattern that shifts seasonally
Monsoon Arabic word mausim means season Loose definition: a wind/precipitation pattern that shifts seasonally Classical criteria (Ramage 1971) Prevailing wind shifts 120 o between Jan & July Average frequency
CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute
CEE 452/652 Week 3, Lecture 1 Mass emission rate, Atmospheric Stability Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Review homework Review quiz Mass emission
Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere
GRADE 11 GEOGRAPHY SESSION 3: GLOBAL AIR CIRCULATION Key Concepts In this lesson we will focus on summarising what you need to know about: The mechanics present to create global wind and pressure belts
Chapter. The Dynamic Ocean
Chapter The Dynamic Ocean An ocean current is the mass of ocean water that flows from one place to another. 16.1 The Composition of Seawater Surface Circulation Surface Currents Surface currents are movements
Traveling on a Rotating Sphere
Traveling on a Rotating Sphere Table of Contents Page Click the titles below to jump through the lesson 2 Spin-offs of a Rotating Sphere 3 What Do You Know? 3 Heated Fluid Circulation 4 Where Do The Trade
Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis
Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis David A. Rahn and René D. Garreaud Departamento de Geofísica, Facultad de Ciencias Físicas
Adrift A Classroom Activity for Ocean Gazing Episode 18: The princeʼs predictions: Part II
Adrift A Classroom Activity for Ocean Gazing Episode 18: The princeʼs predictions: Part II Written by: Liesl Hotaling (CIESE at Stevens Institute of Technology), Daniel Griesbach (Homdel High School),
Dynamic Stability of Ships in Waves
Gourlay, T.P. & Lilienthal, T. 2002 Dynamic stability of ships in waves. Proc. Pacific 2002 International Maritime Conference, Sydney, Jan 2002. ABSTRACT Dynamic Stability of Ships in Waves Tim Gourlay
Homework 2a Bathymetric Charts [based on the Chauffe & Jefferies (2007)]
14 August 2008 MAR 110 HW-2a: ex1bathymetric Charts 1 2-1. BATHYMETRIC CHARTS Homework 2a Bathymetric Charts [based on the Chauffe & Jefferies (2007)] Nautical charts are maps of a region of the ocean
1.5 THE LAND BREEZE CHARACTERISTICS IN ISRAEL DURING THE SUMMER BY THE MM5 MODEL
1. THE LAND BREEZE CHARACTERISTICS IN ISRAEL DURING THE SUMMER BY THE MM MODEL S. Berkovic and Y. Feliks Department of Mathematics, Israel Institute for Biological Research P.O.B 19, Ness-Ziona, Israel
Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.
Assessment Chapter Test B The Movement of Ocean Water USING KEY TERMS Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.
SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines
Southeast Asian Fisheries Development Center Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines Anond Snidvongs Department od Marine Science, Chulalongkorn University, Bangkok
Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM
Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM Nikolaos Stergiannis nstergiannis.com nikolaos.stergiannis@vub.ac.be
Stefan Emeis
The Physics of Wind Park Optimization Stefan Emeis stefan.emeis@kit.edu INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Photo: Vattenfall/C. Steiness KIT University of the State of Baden-Wuerttemberg and
Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method)
Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) L. W. Braile and S. J. Braile (June, 2000) braile@purdue.edu http://web.ics.purdue.edu/~braile Walk