THE 21 st CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "THE 21 st CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 2013"

Transcription

1 THE 21 st CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 2013 A Refinement of the Methods Used to Determine the Balance of a Sailing Vessel during the Design Phase, with Application to Sail Design and Subsequent Sail Selection and Sailing Operations Capt. Iver Franzen, Iver C. Franzen & Associates, Annapolis, MD ABSTRACT The thrust of this paper is, first, to attempt to define the relationship between the individual sails, both together and separately, and the hull with somewhat more precision, and secondly, to develop a calculation tool to better establish this relationship, and to better anticipate the vessel's over all sailing behavior. Because of those factors that effect balance including and beyond those addressed by the traditional design approach as taught by most current texts on sailboat balance, the need for the factor "lead" will never go away. However, by including, as will be demonstrated, an additional balance factor, specifically the longitudinal sheet positions, into the balance equations during the design phase, sailboat balance can be predicted with better accuracy. The primary objective of this refinement will be the ability to design sail profiles, especially the complement of headsails, which will result in the least (adverse) change of balance when changing from one headsail to another, and which can be applied to either new designs, or to existing boats in need of out-of-balance remedies. This would mean that each anticipated sail combination can be analyzed for its lead, and therefore adjusted during the design phase to insure that proper helm is maintained from one combination to the next. NOTATION AR AWA AWS CEg CEd C D C L CLP CLRg CLRd D GM GZ max L LOD Aspect Ratio = luff²/sa, per sail, averaged Apparent Wind Angle Apparent Wind Speed, knots Center of Effort, geometric Center of Effort, dynamic Drag Coefficient Lift Coefficient Center of Lateral Plane Center of Lateral Resistance, geometric Center of Lateral Resistance, true dynamic Aerodynamic Drag Metacentric Height Heel Angle of Maximum Righting Arm Aerodynamic Lift Length on Deck, ft. LWL Length Waterline, ft. SA Sail Area, sq.ft. S/VBP Sailing Vessel Behavior Prediction TWA True Wind Angle TWS True Wind Speed, knots V Boat Speed, knots VDC Vertical Distance between CLRg and CEg VPP Velocity Prediction Program WHSR Wind Heel Stiffness Ratio = AWS²/Heel Angle Air Density,.0024 lb sec 2 /ft 4 Displacement, pounds Heel Angle INTRODUCTION A number of well-known design texts, papers, and dissertations have over the years addressed that aspect of yacht design pertaining to the balance of a sailboat, and in so doing have made it clear that it's, well, not clear, to the extent that, in spite of this extensive and valuable work, establishing a proper "lead" for a given design requires either an exhaustive, exhausting amount of calculation, or reliance on educated guesswork to estimate the lead. Numerous influences on a sailboat's balance include, but are not limited to her tenderness or stiffness; her keel and underbody profile; her beam, draft, and displacement relative to her length; the fullness of her lines, especially forward; the aspect ratio of her rig and whether she's a single- or multi-masted rig; even the age and condition of her sails. And, of course, that she will be expected to sail properly in a wide variety of conditions further complicates her designer's efforts to correctly and accurately determine her "lead." Most competent sailors understand the concept, function and, indeed, the importance of balance on a sailboat. And that understanding, even if only visceral, generally extends to most of the various ingredients and factors that result in good balance. The traditional approach to determining balance during the design phase, however, typically concentrates only on the geometric relationship between the centers of effort (CEg) of the sails themselves (and including only the generic foretriangle instead of individual

2 headsails) relative to the center of lateral plane (CLP). The attempt to apply this traditional design approach to balance within the operational realities of achieving good balance in a variety of conditions has therefore made it necessary to arrive at a specific lead for a given boat only by estimating within a broad range known by experience to be successful for that boat's genre. This has led to a number of out-ofbalance designs requiring adjustment, and sometimes significant surgery, after sea trials. One variable not previously discussed, however, is the position of the longitudinal sheeting positions, i.e., where on the boat does the sail, by way of the sheet, actually transfer all or part of its load to the boat? What effect might this sheeting position have on balance? And, once that sail's position of influence is more accurately determined, what improvements to, or new procedures for, the prediction of "lead" might be possible? BACKGROUND Years ago, the author was delivering a 38' cruising sailboat from the Virgin Islands to Newport, Rhode Island, and, a few days into the passage, found himself in building winds and seas. Nothing alarming, but time to shorten sail. In changing from a genoa (about 140%) to a working jib (about 80%), he suddenly found that his previous weather helm had not only eased, but had actually become a slight lee helm. Some years later, this experience repeated itself on a different boat. The larger genoa was replaced with a smaller working jib, and the helm changed from weather to lee. Given the teachings discussed above, perplexing. Back at the drawing board, these two situations were drawn up roughly from memory and investigated from the point of view of comparing the various actual sail plans to the boats' underwater profiles. Design method leads were within the ranges one would expect. Taking the actual sail shapes involved, the smaller headsails coupled with their respective mains resulted in CEgs farther aft than those based on the larger headsails. Again, as one might expect. Yes, heel had been reduced which would explain some lessening of weather helm, but certainly not to the extent experienced. Given that the balance leads had been effectively shortened with a smaller jib, the expectation was for a small increase in weather helm, which in turn would hopefully be eased again by the reduction in heel due to reducing power. Such, however, was not the case. Having considered all the other variables that might have had a bearing on these situations, the only remaining variable that could explain this dichotomy was the sheeting positions themselves, and how they might change the geometry of balance. with the geometric CEg of the mainsail (and other sails if applicable) to determine the CEg of the entire sailplan, and indicated on an outboard profile drawing. The CLP of the underwater profile of the boat is also geometrically determined, and shown on the same drawing. The longitudinal positions of the CEg and the CLP are compared, and the horizontal distance between them, i.e. the lead (balance lead), is expressed as a percentage of the waterline length. As we know, CEg is with very rare exception always ahead of CLP. One should be reminded here, well explained by numerous texts and papers, that a distinction exists between CEg and CEd, or dynamic CE. A similar distinction exists between CLP, a geometric measurement, and CLR, the dynamic position of the center of lateral resistance as a boat is sailing. In both cases, these dynamic positions move forward of their parent geometric positions when sailing, the magnitude of their movements depending on many variables such as wind speed, angle of attack, depth of draft of the sail, longitudinal position of that draft, depth of keel, length of keel, cross-sectional shape of the keel, shape of the leading edge of the keel, etc. Since these dynamic positions are constantly shifting depending on conditions at the moment, it's therefore impossible to rely on these positions as arbiters of balance. But, since they both move forward more or less concurrently, their "lead" approximates that of the geometric lead, therefore justifying the continued use of CEg and CLP to estimate the boat's lead, especially in the design phase. THE GEOMETRY OF "LEAD" Figure 1 shows a typical balance diagram, variations of which have been in our lexicon for decades. To review, the area of the foretriangle is used to geometrically determine the generic CEg of the headsail(s). This CEg is combined Figure 1 Typical Balance Diagram

3 Having said that, an additional refinement to the CLP can and should be applied. Since this discussion is concerned primarily with upwind sailing, the CEg of the rig can remain in play. However, since the CLR moves forward of the CLP immediately upon forward motion, regardless of point of sail, then an establishment of its position must be made in order to better establish the relationship between the sails and the hull, and to address helm considerations to be discussed in depth below. A geometric version of this CLR position, shown on Figure 1, has been well established by a number of experts as lying on a "vertical" chord line of the keel 25% aft of the leading edge of the keel, and 40% down from the waterline to the bottom of the keel. (The forefoot and the rudder are considered as offsetting each other.) Since other factors influencing its longitudinal position (Monk moments, leading edge shapes, etc.) can move the CLR in either direction, this geometric position of the CLR (henceforth, the CLRg) will be taken as the most useful tightly estimated point from which to formulate the following analyses. MODIFIED GEOMETRY OF "LEAD" Figures 2a & b Balance Diagrams for Actual Sails Figure 2a is a balance diagram showing the geometric lead, in this case with the actual genoa headsail shape coupled with the main. Figure 2b shows the balance and lead condition with a reduced headsail. While departing from using the generic foretriangle, both are otherwise based on the traditional means of establishing CEg. It can be seen that, as the headsail is reduced in size, the overall sail plan CEg moves very little. Until now, this has in part been a justification for using the generic foretriangle as the headsail portion of the balance diagram. However, if the sail area is considered as coupling with the lead dimension to create a moment, then the lesser moment with the smaller headsail should theoretically have, in the anecdotal situations above, allowed the bow to round up more readily, i.e., a greater weather helm. However, the sails, especially the headsails, do not impart their load upon the boat directly under the CEg of that sail, as the traditional balance diagrams suggest. If the sail were to be sheeted to a position on the boat directly below its clew, such as a club-footed staysail, then yes, such would be the case. However, all other headsails by necessity have their sheets led a certain distance aft in order to maintain proper tension on both foot and leach. The magnitude of this distance is based primarily on the height of the clew above the deck. All sailors have experienced the dynamic loads on these sheets. The next step then is to incorporate some representation of these loads into the geometry of lead.

4 Figure 3 Modified Balance Geometry, #2 Genoa, 100%. Figure 3, based on the same boat and sail plan as Figure 2, proposes a geometric method for doing this. First, it requires that the generic foretriangle be abandoned, and that the actual proposed headsails be worked with instead. On the drawing, indicate a given sail's sheet and where it meets the deck (the sheet position). (Authorities vary as to the exact angle the sheet should travel from the sail. Some say to bisect the angle at the clew, others to split the difference between this bisector and the line from the sail's CEg to the clew, still others say to start at a point on the luff 40% of the hoist up from the tack and draw a line from that to the clew, the extension of which is the sheet. The right answer for a given sail is generally somewhere in between these variations, which will more closely coincide with higher clews and lower aspect ratios.) Once the sheeting position is located, draw a triangle the corners of which are the head and tack of the sail and the sheet position (ignoring the clew). Find the geometric center of this triangle in the normal fashion. This now becomes that sail's CEg, which will more closely approximate its actual influence on the boat. When coupling this sail with the rest of the sail plan (main, etc.) to establish the overall CEg, continue to use the sail's actual area, but with this modified position of its center of effort.

5 APPLICATION TO EXISTING VESSELS Figures 5 represents a fairly close approximation of the arrangements described in the anecdotes above. In this arrangement, the helm stayed slightly lee until about 18 knots of wind, above which it went weather. What becomes apparent is that this sailing vessel example, which showed a traditionally derived lead of 18%, now, with its #1 genoa, and accounting for the inclusion of the sheet's influence on the boat, shows a lead in Figure 4 of 14.3%. If the same modified process is applied to Figure 5, with the smaller headsail, then a lead of 14.9% is arrived at as shown. This is contrary to the virtually unchanged lead when using only the sails themselves to determine the lead. Figure 4 Sail Plan of the boat described in the anecdotal example, in this case with her #1 genoa.

6 Figure 5 Modified Balance Geometry, small working Jib It is perhaps now becoming apparent as to why, in the experiences described above, the smaller headsail induced a lee helm. Simply put, the sheet position for the smaller headsail was too far forward, creating a balance lead that differed significantly and detrimentally from that derived from the genoa. The correction for this vessel then, if it is assumed that the balance was correct for the genoa (i.e., the full sail plan), is that any smaller headsails should have profiles which, with their sheet positions included, would generate a similar or lesser lead. In this case, this would be accomplished by reshaping the smaller headsails with higher clews in order to move their sheet positions aft. Figure 6 shows how this might take shape, in that a small working jib of an area similar to the small jib in Figure 5 is reshaped with a higher clew so as to move the sheet position aft significantly. The resulting balance lead is 12.6%, less than the genoa's 14.3%, resulting in a reduced sail plan that continues to maintain acceptable balance, such that, while the helm still stays lee in light air, it becomes weather at a more useful lower wind speed of about 14 knots, or about when you'd want to reduce sail.

7 Figure 6 Reshaped small working jib to correct lead and helm. As a further illustration of how this approach might be applied to correcting an existing boat's performance, let's look at the case of a 31' fractionally rigged racer-cruiser whose weather helm with her 160+% genoa was annoyingly excessive. The clew of this sail was not particularly high, but high enough to put the sheet position quite far aft, at about the.8lod position. The owner of the boat, however, was particularly enamored of this sail, most likely due to the magnitude of the financial investment therein. After being the last boat at the windward mark with discouraging consistency, the crew rebelled, and insisted that the #2 jib be tried next time out. Next race (wind about 10kt), first to the mark, first to the finish line! In addition to quicker, more efficient tacking, this 110%, fairly low clewed, full hoist sail put its sheet position quite a bit farther forward at about the.5lod position. Applying the modified geometry described above, this sail increased the boat's balance lead and lessened the weather helm significantly. The foot came off the brake and the boat was allowed to sail as intended. Of course, lessening the heel helped as well, while still keeping plenty of power. The big genoa was still useful as an off-the-wind sail, so the owner was not entirely bereft. But the #2 became his #1 windward sail.

8 APPLICATION TO NEW DESIGN Therefore, if the primary headsail's contribution to the overall balance has been determined by design or proven by experience to be correct, and can therefore be taken as the "baseline" lead, then, by shaping all other headsails such that their sail+sheet position geometry yields similar or lesser balance leads, good overall balance should be easier to maintain throughout the suit of sails. It will appear that lead dimensions will be smaller using this method. But, if the boat sails properly with the slight weather helm known to produce the best windward performance, then so be it, these numbers might become our new benchmarks. This presents a new problem, however. If the effort is to establish a single indicator of how a boat is going to balance itself, as the traditional approach presently does, then having a distinct dimensional lead for each headsail is counter to that. To further investigate this issue, an additional factor must be introduced into the modified lead calculations. This was hinted at above in the discussion of Figures 2 and 3, but without the benefit of accounting for the effects of the sheeting positions. Now that those effects are being included, the idea of considering lead as a moment rather than a dimension becomes more important. For example, looking again at Figures 5 & 6, lead moments of lead x SA (assuming the same wind pressures for both) further confirm the adverse helm change with that particular smaller headsail. Even with this it will be necessary to approach this as a range of moments for a given boat, since we're dealing with multiple sail combinations, rather than a single foretriangle, making a new single indicator for the entire sail complement difficult. It might be possible, however, to minimize the magnitude of this range such that a firm sense of overall balance can be achieved, especially with the primary headsails. If the idea of balance is to compare the effects of competing entities, then the lead moment must be considered as offsetting another moment for this to have meaning. Since the lead moment is one which is meant to be a falling-off moment, it's function then can be seen as offsetting a rounding-up moment, or, more accurately, offsetting most of that rounding-up moment, since a small amount of it is considered beneficial. And the best indicator that the amount of residual rounding-up moment is correct is the amount of rudder angle required to offset that moment while keeping the boat on the most favorable windward course. The generally accepted range of optimum effective rudder angles to offset the rounding-up moment, while providing lift with minimum drag is 3-5 degrees. Therefore, part of the design process is to design the sails in such a way that the rudder angle for a given set of sails and conditions can be determined, as closely as practical. Then, if excessive weather or lee helms are calculated for a given sail combination within the range of wind strengths anticipated for that combination, then sail profile shapes and their associated sheet positions can be modified as necessary. One good way to test this application is to look at an existing boat considered by all to have been a very successful design. One such boat is the Cal 40, by C. William Lapworth, and for which he designed a full complement of headsails. Figure 7 is a simple profile sketch of this boat, showing both her traditionally derived lead of 18.5% relying on geometric centers only, and her lead of 9.2% based on her CEg as relating to her CLRg, or the geometrically derived CLR as discussed above. Figure 7 Profile of the Cal 40, showing traditional lead determination both from CLP, and from the CLRg. Also shown is the steering arm.

9 Figure 8 Cal 40, full main, #2 jib, moderate air, showing the Leads.

10 Figure 9 Determining the Lead dimension and the Transverse Offset dimension of the sail plan shown in Figure 8. The concept of solving for rudder angle to determine the final balance condition will require that the two competing balancing moments, Lead (Falling Off) and Luffing (Rounding Up), which can also be thought of as torques, be determined beforehand. First, for the arm components of these moments, the positions of the CEg and the CLRg relative to each other must be determined both horizontally and vertically, including accounting for the heel of the boat. Referring to Figures 8 & 9, the fore and aft Lead dimension between CEg and CLRg is shown in the normal fashion on Figure 8 and on the plan view of Figure 9. Also required is the total transverse offset of the sail plan, or the distance that the CEg is moved laterally off of the centerline due to both the camber/sheeting offset and the angle of heel. The range of these offsets, and the force components of the two moments in question will then be determined by the... S/V BEHAVIOR PREDICTION (S/VBP) TOOL With a few additional assumptions, sufficient and proper information is now available to utilize Figure 11 below, the S/V Behavior Prediction Tool spreadsheet, developed by the author for this paper. A typical condition calculated for is shown in Figures 8 and 9 above, and demonstrates the derivation of certain of the pre-entries required prior to final calculation, such as the lead dimension, the vertical distance between CLRg and CEg (VDC), and the initial camber offset sheeted closehauled. Additional foundation information required includes displacement, metacentric height (GM) derived from previously established stability information, sail area, beam, and main foot length (E). Also required will be rudder area and rudder arm, taken from the rudder's CEd to the CLRg. A plot of various curves, an example of which is shown below in Figure 12, will be created based on the output of these calculations. These curves will be plotted against a range of true wind speeds at a given apparent wind angle, in this case 30º. The assumptions for the specific Figure 11 calculation are a) apparent wind is 30º; b) AR-related lift and drag

11 coefficients and their associated ratios are derived from numerous sources and averaged into the Table B matrix as shown on Figure 11, c) boundary layer considerations will be ignored, and d) performance information has been established either by VPP or by underway experience, and indicated in Figure 10. In the S/VBP Tool, first enter, from condition parameters and from Figures 8 and 9, the following: TWS and AWS in knots, primary (reference) SA, actual SA for the condition being tested, AWA, GM, LWL, rudder area, rudder arm, VDC, horizontal distance CEg-CLRg (Lead), and the aspect ratio (P[or I]² / SA) per sail, averaged. Additional manual entries from prompts in the spreadsheet are: upright offset factor, lift coefficient, and Drag-Lift (D/L) ratio. The subsequent calculations first yield the profile drag heel angle and the resulting effective sail area. Table A in the S/VBP tool shows righting moments against heeling moments per degrees of heel. The pertinent used in the subsequent calculations is taken from the coincidence of the two moments for a given wind speed. Righting moment is taken as times GM (in this case estimated, as actual hull lines and stability information is unavailable) times. Heeling moment is wind pressure at the given AWS times the SA adjusted for heel times the VDC adjusted for heel. Table B indicates the lift and drag coefficients to be used, in this case parametrically estimated, which then yield the lift and drag forces, which in turn, by way of the standard forces/vectors diagrams shown, yield the angle between the lift and the resultant. Since lift is now known, the resultant is calculated. The angle between the resultant and the side force is now determined, which, along with the resultant, are used to calculate the thrust. That same pair of factors now also yields the side force. To this horizontal side force is added a downlift /downforce adjustment in the form of: sine² of the profile drag heel angle, times the side force. This Adjusted Side Force, together with the Thrust, comprise the forces that will be applied to the Lead and the Transverse Offset respectively to arrive at the Falling Off and Rounding Up moments. These moments can, and perhaps should, also be considered torques. The transverse offset is then calculated. The upright camber offset is determined by diagram as shown in the plan view of Figure 9, or by a predetermined fraction of the beam. This upright offset is then multiplied by the cosine of the heel angle to arrive at an adjusted camber offset. This is added to the offset caused by the boat's heel, which is found by multiplying VDC by the sine of the heel angle. The sum of these two offsets is the total transverse offset, based on the profile drag heel angle. Since the adjusted side force is greater than the profile drag, the profile drag heel angle is adjusted accordingly, becoming the side force (Adjusted) Heel Angle. This adjustment is applied to the transverse offset, becoming the Adjusted Transverse Offset. It is the outboard end of this transverse offset arm upon which the thrust force acts, thereby creating the Rounding Up moment/torque. Now that the Lead has been more precisely measured by incorporating the sheeting position and confirming the CLRg, and the side force established, multiplying one times the other yields the Falling Off moment/torque. These two opposing moments/torques can now be compared as shown, specifically by subtracting the Falling Off (Lead) Moment from the Rounding Up (Luffing) Moment to arrive at the Residual Steering Moment. A positive result indicates a weather helm, a negative result a lee helm. The magnitude of this residual moment needs to be offset by a similar steering moment in order to hold a desired course, which in turn, assuming the range of steering moments vs. rudder angles has been established as shown on Figure 11, yields the effective rudder angle required, in this case at 4º. A distinction needs to made here between effective rudder angle and actual rudder angle. Since a boat sailing to windward will be making a certain amount of leeway, the water flow approaching the rudder will not be parallel to the boat's centerline. Generally speaking, the angle of that flow into the rudder, the downwash angle, will be about half the leeway angle. If the leeway angle is often approximately 4 degrees, then the downwash angle will be about 2 degrees, and can be used as the correction for most normal sailing situations. Therefore, if the effective rudder angle is 4º, then the actual rudder angle will be 6º. At a true wind speed of 10 knots in this case, the resulting effective rudder angle from the calculations in Figure 11, at 4º, is essentially optimum. Considering the gradually increasing draft of aging sails, this is a good starting point, although something closer to 2.5-3º might be even better with new sails. Of note is that the modified method dimensional lead, at 3%, is very close to the main/genoa arrangement at 2.8%. Given that the #2 jib most closely approximates the foretriangle, one might consider this condition to be her benchmark condition. For a racer-cruiser like this boat, having this primary sail with a foot you can see under and not scoop water, while still low enough for good racing performance, is just right. For a true racer, this foot might be closer to the deck, with the rest of the CEg/CLRg/steering geometry designed such that similar results to Figure 8 are still achieved. The larger #1 can then be tailored to be a true deck-sweeper. For a world cruiser, a #2 with a slightly higher foot/clew might be advisable, with the rest of the configuration designed accordingly. Two items should be noted at this point: First, The HM derivation, described above as part of Table A, of wind

12 pressure at the given AWS times the heeled SA times the heeled VDC is essentially the same as the HM = HM0º x Cos² This construct is presently under review (Johnson, et al, 2013), especially for higher heel angles (>GZ max ). This S/VBP tool may need to be modified accordingly as this research progresses. Second, that this sail plan has been calculated up through winds much stronger than would normally be carried by this plan, as shown in the graph in Figure 12. A by-product of this S/VBP Tool may then in the future be the ability to also predict behavior when the boat is in extremis, not only in terms of both heel and helm response, but also downflooding. However, since neither lines nor stability information are available in this case, the effects of heel angles beyond GZ max have not yet been incorporated into the S/VBP Tool. GM in this case has been parametrically estimated. Figure 10 Performance data for the Cal 40 sailing to windward, assuming 30º apparent wind. Figure 10a Performance data obtained from showing estimated adjustments for 50% ± reduced sail, and sailing with 45 degrees of apparent wind.

13 Figure 11 - Construction of the Rounding Up (Fig. A) and Falling Off (Fig. B) Moments (Torques), in addition to the calculations to determine her Residual Steering Moment, and, finally, the rudder angle needed to hold a steady course. See also the Appendix for additional Rounding Up & Falling Off Moment/Torque constructions for other upwind points of sail.

14 Figure 12 Graphic Results derived from the S/VBP calculation procedures in Figure 11, Sail Plan #1, the reference plan. Figure 13 shows the Cal 40's S/VBP curves with her genoa. Applying the modified balance geometry shown above and the balance/helm calculations now results in very light to moderate weather helm up to about 10 knots of wind, becoming heavier to handle in the knot range, as one would expect for full sail. Experience has taught that weather helm in light air is generally very minimal, and occasionally becomes a tolerable lee helm. This condition is confirmed here. In extremis situations also now become more apparent. Figure 13 S/VBP results, Sail Plan #2, Full Sail.

15 As the wind freshens, shortened sail configurations at 45º apparent wind are shown in Figures 14 and 15. It is interesting to compare these two configurations, as they have somewhat similar sail areas, but Figure 14, Plan #6, is showing a double reefed main with a working jib, while Figure 15, Plan #8, has a single-reefed main with a storm jib. Their balance leads are 3.34' (11%) and 0.04' (0%) respectively, a significant difference. As might be expected, the weather helm for Plan #8 starts to get heavy fairly early at around knots of wind. Plan #6, on the other hand, is keeping a reasonable helm until about knots of wind, which most would consider preferable in these conditions, even at the expense of a lee helm at winds less than 12 knots. Figure 14 S/VBP results, Sail Plan #6, double-reefed main & working jib. Figure 15 S/VBP results, Sail Plan #8, single-reefed main & storm jib.

16 It is also interesting to note, however, that, while Plan #6 exhibits better helm behavior than #8, it also heels about 8-10% more than #8. Granted, the sail area for #6 is about 10% greater, but its VDC is about 5% less. So, yes, in this case the proper lead has everything to do with keeping a better helm, even in spite of a very small disadvantage in heel. For purposes of calculating these reduced sail scenarios, the boat speed information shown above in Figure 10a is adjusted downward assuming the sail area is reduced by approximately half, and whose approximation is shown in that Figure by the curve "1/2 sail area boat speed." By the way, getting back to the anecdotal situation in Figures 4 & 5, applying the S/VBP Tool to the full sail arrangement, including sheets, Figure 4 yields an optimum weather helm of about 3º in moderate conditions. But, as suspected, the smaller headsail (low clew, forward sheet position) actually reduced that helm to less than half, even in stronger conditions. (That it didn't go to a lee helm in the S/VBP as experienced is most likely due to the author's inadequate memory of the details of the boat's actual configuration.) As also suspected, when calculating for a small higher clewed jib (sheeting farther aft) of the same area, the resulting weather rudder angle increased back up to almost 3º. Clew height and sheet position do make a difference. The consistency of good balance results shown here throughout the Cal 40's sail plan complement would appear to lend some credence this approach, as well as indicating certain combinations that might be less than ideal (e.g., Figure 15). If so, it would then indicate that Mr. Lapworth had an excellent sense of how to arrange a suit of sails to best advantage. He, like all experienced sailors, knew the best shapes of sail profiles for the conditions those sails were expected to operate in. Granted, those profile shapes have always been driven by other factors as well, such as heavy weather visibility and keeping them out of the water. But his additional sense of maintaining good sailing balance throughout the complement of sails is apparent, as shown in Figure 17. Figure 17 The Cal 40 with all the headsails shown together as drawn by Mr. Lapworth. Note the relationship of the heights of their clews and the resulting relative coincidence of their sheeting positions. SPLIT RIGS The discussion to this point has focused on sloops. This proposed procedure, however, is just as applicable to ketches, yawls, schooners, and any other sailing craft of any rig, perhaps even more so. If, from the above study, one can assume that sail shapes can now be designed with somewhat more accuracy, then the inherent additional flexibility of split rigs lends itself well either to better fine-tuning of design development, or to the ability to more easily remedy existing balance and performance problems. An excellent example of the latter point is the pair of anecdotal situations described earlier. Yes, these boats balanced nicely with their highclewed genoas and their mains, and suffered when sailed with the small low-clewed jibs and the mains. What was not mentioned above, however, was that both these boats were ketches, and setting the mizzens in both cases immediately solved the lee helm problems. As is the case with many ketch rigs, they sailed nicely to windward in light/moderate conditions as sloops, with the mizzens not coming into play until other conditions and points of sail were encountered. However, as soon as the situation changed, and the balance changed, having the mizzens available became essential to get the balance back where it should be. Indeed, given the difficulty that the big genoas often presented for other reasons, sailing with the mizzen as a matter of course along with the smaller low-clewed jibs became the standard practice. And, where a sloop may have needed the expense of a new sail or two to correct the overall complement, not so with the ketches, at least not these two. OTHER OBSERVATIONS AND THOUGHTS Headsail roller-furling, in addition to being a very handy tool for sail handling (when done correctly), especially for short-handers, has introduced an interesting, and actually very useful wrinkle to the balance question. As the forgoing has demonstrated, smaller heavier-weather headsails do better for many reasons, including maintaining balance, when the clews of these sails rise as they get smaller. It so happens that, as a roller-furled headsail is rolled in, the clew does exactly that. Consequently, when they are "reefed," or rolled only part way so as to allow a smaller portion of the sail to remain, they behave not unlike the suit of sails shown in Figure 17 (albeit with lower aspect ratios). Balance is therefore less likely to go astray as the sail is reefed for the sailing conditions that require that reefing. The remaining caveat here then is that sails which are going to be used as such be carefully designed, built and reinforced in the key areas in order to limit the damage and poor sail shape (excess draft, etc.) that otherwise occurs when a standard sail is partially rolled up. Since these big roller-furling genoas are generally considered cruising sails only, their clews tend to be

17 higher to begin with, with their commensurate well-aft sheeting positions. A common sight, especially on bareboats in the Caribbean Christmas winds, is for those sailors, perhaps a bit spooked by handling a strange boat in those hefty winds, to simply roll out the genoa and sail under that alone. Yes, sail has been reduced, and the boat is more or less in control. The quality of seamanship thus displayed is perhaps best left for another discussion, although one aspect does stand out they seem to be sailing in reasonably good balance (and which they seem to like to brag about at the bar at the end of the day). Figures 18 and 19 may provide some insight as to why this can happen. This is the Cal 40 again, this time rigged for cruising with a typical big roller-furling genoa, sailing to windward (30º apparent wind) in "bareboat" mode. Applying the modified lead approach, it can be seen that, in normal Christmas winds, her helm becomes weather at a little over 14 knots of wind. This is one case where extra heel may work to advantage to a point! In stronger Christmas winds, weather helm can actually become a handful at about 24 knots of wind. Light air, lee helm as would be expected. And at broader apparent wind angles starting at about 45º, the helm becomes weather even in light winds. Figure 18 Cal 40 rigged for cruising, sailing with genoa only. S/VBP results: Figure 19 S/VBP curves for the Cal 40 sailing in "Bareboat Mode."

18 A variation on this phenomenon, which has been much used for many years, is the sail combination "jib and jigger." On many ketches and yawls, sailing with the big jib alone may result in a neutral or slight lee helm, which is then corrected by setting the mizzen. Back when genoas weren't quite so big, this was a fairly effective way of shortening sail, or perhaps just sailing in a more relaxed fashion, especially with a midship awning on a hot sunny day. CONCLUSION The idea of using moments to determine balance is certainly not new. It has become clear from the forgoing, however, that simply using the traditional geometric methods, especially the profile sail area x profile wind force (or even a more precisely calculated side force, for that matter) times the basic geometric lead to get the falling off moment would give an erroneously high result, and therefore a false lee helm. The thrust has always been calculated correctly, as has the offset arm due to heel, but if it's balanced against an over-simplified falling off moment, then its value is sabotaged for purposes of determining balance. The idea of showing the CEgs of the actual headsails rather than the foretriangle is also not new. Several sources have used actual headsail shapes for otherwise traditional balance discussions, as well as showing figures as to how the CEg moves fore and aft with different sail combinations. None would appear to have gone beyond this, though, and have spoken only generally of being careful with different combinations so as not to go out of balance. However, it would also appear that none have included the sheet positions as part of the geometry of establishing the CEg of headsails, something which now appears beneficial in establishing the sail's actual effect on the boat, especially when considering the falling off moment. The approach proposed herein to predetermining sailing balance is meant to augment the traditional approach to lead that has been in practice for many years, and, indeed, is still a good conceptual starting point today when working up a new design in the early going. With the understanding that the many factors discussed above that have complicated the traditional approach have not changed, this proposed refined approach is similarly constrained to a certain degree of approximation. Any "improvements" generated by this particular proposal are, well, probably only that improvements, refinements, adjustments. It is hoped, however, that these suggested procedures might a) be a useful tool for correcting existing balance problems and b) take at least some of the guesswork out of determining the proper shape of a boat's hull, and especially the arrangement of her appendages (also, by the way, fairly easily adjustable in the design process), her rig, and her complement of sails so as to achieve good sailing balance, particularly in the later stages of refining a design. And in time, perhaps some better agreement and narrowing of the often very wide ranges of suggested appropriate leads for a given genre of boats can be achieved. Finally, it should be noted from the results graphs that, with too much sail in too much wind, the result is not only too much heel, but, just as dangerously, rapidly increasing weather helm. Professor Bruce Johnson, Captain Jan Miles, et.al. have been doing excellent work over the course of several papers (Miles et al, 2007; Johnson et al, 2009 and 2013) in confirming this fact from a shipboard measurement approach. While establishing the WHSR as a useful measure of stiffness, they are also confirming that efforts by a helmsman to fall off during a gust, especially when close reaching, are wholly ill-advised, not only because it's counter to the idea of depowering when necessary, but also because, as seen from the graphed results herein, increasingly excessive weather helm will simply not allow it. REFERENCES Baader, J., "The Sailing Yacht," W.W. Norton & Company, New York, NY, Chapelle, H., "Yacht Designing and Planning," W.W. Norton & Company, New York, NY, Claughton, A. & Pemberton, R., "Hull Sailplan Balance, "Lead" for the 21 st Century," 22 nd International HISWA Symposium on Yacht Design & Yacht Construction, Amsterdam Edmunds, A., "Designing Power & Sail," Bristol Fashion Pub., Enola, PA, Gillmer, T. & Johnson, B., "Introduction to Naval Architecture," Naval Institute Press, Annapolis, MD, Johnson, B., Lasher, W., Miles, J., Curry, W., "Uncertainties in the Wind-Heel Analysis of Traditional Sailing Vessels," Proceedings of the 21 st Chesapeake Sailing Yacht Symposium, Annapolis, MD, March 12-13, Keuning, J.A. & Vermeulen, K.J., "On the Balance of Large Sailing Yachts," 17 th International HISWA Symposium on Yacht Design & Yacht Construction, Amsterdam Keuning, J.A. & Vermeulen, K.J., "Keel Rudder Interaction on a Sailing Yacht," 19 th International HISWA Symposium on Yacht Design & Yacht Construction, Amsterdam Larsson, L & Eliasson, R., "Principles of Yacht Design," International Marine, Camden, Maine, Marchaj, C.A., "Sailing Theory and Practice," Dodd, Mead & Company, New York, NY, Milgram, J.H., "Sail Force Coefficients for Systematic Rig Variations," Technical & Research Report R-10, SNAME, September, 1971.

19 Skene, N., "Elements of Yacht Design," Sheridan House, Dobbs Ferry, NY, website, "Swedish Sailing and Racing," APPENDIX:

S0300-A6-MAN-010 CHAPTER 2 STABILITY

S0300-A6-MAN-010 CHAPTER 2 STABILITY CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

More information

Navigation with Leeway

Navigation with Leeway Navigation with Leeway Leeway, as we shall use the term, means how much a vessel is pushed downwind of its intended course when navigating in the presence of wind. To varying extents, knowledge of this

More information

Multihull Preliminary Stability Estimates are Fairly Accurate

Multihull Preliminary Stability Estimates are Fairly Accurate Multihull Design (Rev. A) 45 APPENDIX A ADDITIONAL NOTES ON MULTIHULL DESIGN MULTIHULL STABILITY NOTES Multihull stability is calculated using exactly the same method as described in Westlawn book 106,

More information

Analysis of Hull Shape Effects on Hydrodynamic Drag in Offshore Handicap Racing Rules

Analysis of Hull Shape Effects on Hydrodynamic Drag in Offshore Handicap Racing Rules THE 16 th CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 2003 Analysis of Hull Shape Effects on Hydrodynamic Drag in Offshore Handicap Racing Rules Jim Teeters, Director of Research for

More information

Sailing Upwind. Section 14. Close-hauled. Starboard Tack. Port Tack Figure 14 1 Port Versus Starboard Tack. 14 Sailing Upwind 111

Sailing Upwind. Section 14. Close-hauled. Starboard Tack. Port Tack Figure 14 1 Port Versus Starboard Tack. 14 Sailing Upwind 111 14 ing Upwind 111 Section 14 ing Upwind Close-hauled. ing as close to the wind, or as directly into the wind, as possible. Also, on-the-wind or by-the-wind, beating. Cunningham (Rig). An arrangement of

More information

Agenda. How a sailboat works What are you looking at? Modes of sailing A few boat handling tips Some resources

Agenda. How a sailboat works What are you looking at? Modes of sailing A few boat handling tips Some resources Agenda How a sailboat works What are you looking at? Modes of sailing A few boat handling tips Some resources The Sail is a Wing Like a wing in principle, lift is generated by both the shape (camber) of

More information

Tuning C420 Sails By Brian Doyle and Dave Kirkpatrick

Tuning C420 Sails By Brian Doyle and Dave Kirkpatrick Tuning C420 Sails By Brian Doyle and Dave Kirkpatrick In the spring of 2003, the Club 420 Class sails were redesigned to provide a better competitive and useful lifespan. Now that several events have been

More information

Hydrostatics and Stability Prof. Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Prof. Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Prof. Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 23 Trim Calculations -

More information

Sail Trimming Guide for the Beneteau 343

Sail Trimming Guide for the Beneteau 343 INTERNATIONAL DESIGN AND TECHNICAL OFFICE Sail Trimming Guide for the Beneteau 343 June 2006 Neil Pryde Sails International 1681 Barnum Avenue Stratford, CONN 06614 Phone: 203-375-2626 Fax: 203-375-2627

More information

North Sails Seattle Thunderbird Tuning Guide

North Sails Seattle Thunderbird Tuning Guide Page 1 of 6 North Sails Seattle Thunderbird Tuning Guide Introduction The following tuning guide is meant as a good starting point in setting up your boat. Since not all Thunderbirds are exactly alike

More information

This lesson will be confined to the special case of ships at rest in still water. Questions of motions resulting from waves are not considered at

This lesson will be confined to the special case of ships at rest in still water. Questions of motions resulting from waves are not considered at STATIC STABILITY When we say a boat is stable we mean it will (a) float upright when at rest in still water and (b) return to its initial upright position if given a slight, temporary deflection to either

More information

PRODUCT KNOWLEDGE INFORMATION SHEETS PERFORMANCE FEATURES

PRODUCT KNOWLEDGE INFORMATION SHEETS PERFORMANCE FEATURES S PERFORMANCE FEATURES Caliber Yachts, Inc. reserves the right to modify or change these features, drawings, diagrams, written copy, etc., without notice. Caliber Yachts, Inc. will in no way whatsoever

More information

THE INFLUENCE OF HEEL ON THE BARE HULL RESISTANCE OF A SAILING YACHT

THE INFLUENCE OF HEEL ON THE BARE HULL RESISTANCE OF A SAILING YACHT THE INFLUENCE OF HEEL ON THE BARE HULL RESISTANCE OF A SAILING YACHT J. A. Keuning, and M. Katgert. Delft University of Technology NOMENCLATURE Lwl Bwl Tc LCB Cm Sc c φ Ri FH Cv Cf k ρ g Rn Waterline length

More information

The Physics of Water Ballast

The Physics of Water Ballast The Physics of Water Ballast Nick Newland recently wrote an informative article on water ballast for Water Craft magazine (Newland 2015). Following a discussion on the Swallow Boats Association Forum,

More information

Tall Ships America Safety Under Sail Forum: Sailing Vessel Stability, Part 2: MCA Squall Curves

Tall Ships America Safety Under Sail Forum: Sailing Vessel Stability, Part 2: MCA Squall Curves Tall Ships America Safety Under Sail Forum: Sailing Vessel Stability, Part 2: MCA Squall Curves Moderator: Captain Rick Miller, MMA Panelists: Bruce Johnson, Co-Chair Working Vessel Operations and Safety

More information

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE LIST OF TOPICS A B C D E F G H I J Hydrostatics Simpson's Rule Ship Stability Ship Resistance Admiralty Coefficients Fuel Consumption Ship Terminology Ship

More information

TECHNICAL DESCRIPTION MASTHEAD SLOOP:

TECHNICAL DESCRIPTION MASTHEAD SLOOP: NEW SAILOR TECHNICAL DESCRIPTION MASTHEAD SLOOP: What is a masthead sloop?.page 2 Parts and function of the masthead sloop sail... Page3 Parts and function of the masthead sloop rigging Page 4 Parts and

More information

Subj: Explanation of Upper Level Capacity and Stability Characteristics for Rolling Boat, Inc. Vessels.

Subj: Explanation of Upper Level Capacity and Stability Characteristics for Rolling Boat, Inc. Vessels. 23 Apr, 2009 From: Tullio Celano III P.E. To: Underwriters of Rolling Boat, Inc. Via: Phil Kazmierowicz, President, Rolling Boat, Inc. Subj: Explanation of Upper Level Capacity and Stability Characteristics

More information

Sail Trimming Guide for the Beneteau 40

Sail Trimming Guide for the Beneteau 40 INTERNATIONAL DESIGN AND TECHNICAL OFFICE Sail Trimming Guide for the Beneteau 40 October 2007 Neil Pryde Sails International 1681 Barnum Avenue Stratford, CONN 06614 Phone: 203-375-2626 Fax: 203-375-2627

More information

National Maritime Center

National Maritime Center National Maritime Center Providing Credentials to Mariners (Sample Examination) Page 1 of 8 Choose the best answer to the following Multiple Choice Questions. 1. In illustration D001SL, what is the edge

More information

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES TABLE OF CONTENTS 1 INTRODUCTION 3 2 SYSTEM COMPONENTS 3 3 PITCH AND ROLL ANGLES 4 4 AUTOMATIC

More information

Section III Principles of design and aerodynamics

Section III Principles of design and aerodynamics Section III Principles of design and aerodynamics 1 Principles of the Tasar rig a) Evolution The most significant advance in recent decades in the art of handling sailboats has been the use of tufts and

More information

Optimist Tuning Guide

Optimist Tuning Guide Optimist Tuning Guide Sail Care: To help you re new racing sail stay in top condition as long as possible here is some tips - Try not to crease your sail, some creases can cause MIT tears in your sail

More information

The Definite Guide to Optimist Trim

The Definite Guide to Optimist Trim The Definite Guide to Optimist Trim by Martin Gahmberg & the WB-Sails team The purpose of this tuning guide is to help you trim your WB sail optimally by learning the effects of the controls: How to change

More information

Understanding How Excessive Loading Lead to a Capsize with Loss of Life Can Help Avoid Future Tragedies

Understanding How Excessive Loading Lead to a Capsize with Loss of Life Can Help Avoid Future Tragedies Understanding How Excessive Loading Lead to a Capsize with Loss of Life Can Help Avoid Future Tragedies By Dave Gerr, CEng FRINA 2012 Dave Gerr fter sailing out to watch the fireworks on July 4th, 2012,

More information

OFFSHORE RACING CONGRESS World Leader in Rating Technology

OFFSHORE RACING CONGRESS World Leader in Rating Technology OFFSHORE RACING CONGRESS World Leader in Rating Technology ORC SY MEASUREMENT GUIDANCE 2017 1. INTRODUCTION This paper must be taken as guidance for the process of boat measurement to allow for the issuance

More information

Principles of Sailing

Principles of Sailing Principles of Sailing This is a PowerPoint set of charts presented by Demetri Telionis on March 21, 2015 at the Yacht Club of Hilton Head Island. The aim of this presentation was to help the audience understand

More information

Stability Is The Key Part 2

Stability Is The Key Part 2 Dave Gerr, CEng FRINA, Naval Architect www.gerrmarine.com Stability Is The Key Part 2 Understanding Stability and Sailboat Performance and Safety Reserve Stability By Dave Gerr, 2007 Dave Gerr In the previous

More information

Flow Control of the Kite

Flow Control of the Kite SAILING WORLD posted June 16, 2015 Flow Control of the Kite Symmetric spinnakers are often the most dynamic and challenging sail to trim perfectly. By understanding how they behave at different wind angles,

More information

Appendix 4. How to draw the patterns for the Jib Panels.

Appendix 4. How to draw the patterns for the Jib Panels. Appendix 4. How to draw the patterns for the Jib Panels. This is an attempt to explain how to draw the patterns to make the jibs of the split junk rig. I suggest you draw a scale drawing on an A4 page

More information

Sail Trimming Guide for the Beneteau 373

Sail Trimming Guide for the Beneteau 373 INTERNATIONAL DESIGN AND TECHNICAL OFFICE Sail Trimming Guide for the Beneteau 373 March 2004 Neil Pryde Sails International 354 Woodmont Road #18 Milford, CT 06460 Phone: 203-874-6984 Fax: 203-877-7014

More information

NORTH SAILS FAST COURSE MAINSAIL

NORTH SAILS FAST COURSE MAINSAIL NORTH SAILS FAST COURSE MAINSAIL Contents: Introduction. Step 1 Set twist with mainsheet tension. Step 2 Set depth with mast bend and outhaul tension. Step 3 Set draft position with luff tension. Step

More information

HIGHLANDER TUNING GUIDE

HIGHLANDER TUNING GUIDE HIGHLANDER TUNING GUIDE This document provides information on preparation, Quantum s sail tuning and technique, and other helpful tips to make sure you re ready to meet your challenge in today s competitive

More information

More Junk Sails...an illustrated autumn letter to the Yahoo JR group... (.. this is partly a follow-up letter of the Summer Letter dated

More Junk Sails...an illustrated autumn letter to the Yahoo JR group... (.. this is partly a follow-up letter of the Summer Letter dated (..photos from the Stavanger Junk Rig Rally 2008...) More Junk Sails.....an illustrated autumn letter to the Yahoo JR group... (.. this is partly a follow-up letter of the Summer Letter dated 20080715...)

More information

SAILING SHIP PERFORMANCE - CORRELATION OF MODEL TESTS WITH FULL SCALE

SAILING SHIP PERFORMANCE - CORRELATION OF MODEL TESTS WITH FULL SCALE SAILING SHIP PERFORMANCE - CORRELATION OF MODEL TESTS WITH FULL SCALE Barry Deakin, Wolfson Unit MTIA, UK SUMMARY Correlation of model and full scale data has been addressed by many researchers, but it

More information

Melges 24 Sailing Guide

Melges 24 Sailing Guide RACING GUIDES www.ullmansails.com Upwind Sailing Melges 24 Sailing Guide The Melges is most efficient when sailed as flat as possible. Excessive heel causes leeway which is slow. The skipper must work

More information

Sonar Tuning Guide. Jud Smith Tomas Hornos Send order forms to:

Sonar Tuning Guide. Jud Smith Tomas Hornos Send order forms to: Sonar Tuning Guide Jud Smith jsmith@doylesails Tomas Hornos tomas@doylesails.com Send order forms to: onedesign@doylesails..com Rig Tune We recommend checking your shroud tuning before going sailing. Start

More information

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 22 Righting Stability II We

More information

Performance Racing Trim by Bill Gladestone. Chapter 3 - Introduction to Trim

Performance Racing Trim by Bill Gladestone. Chapter 3 - Introduction to Trim Home Crew List Weather Forums Classifieds Race Manage Calendar News Boats For Sale About Us More Search www Site Most Popular Business Index Crew List Classifieds Race Manage Sailing Forums Tides and Currents»

More information

MAXIMUM SAIL POWER CHAPTER 7 MAINSAIL DETAILS FOR THE CRUISING SAILOR

MAXIMUM SAIL POWER CHAPTER 7 MAINSAIL DETAILS FOR THE CRUISING SAILOR MAXIMUM SAIL POWER CHAPTER 7 THE DEVIL IS IN THE DETAILS - Part 2 MAINSAIL DETAILS FOR THE CRUISING SAILOR It used to be simple. In the old days your sailmaker offered you one kind of mainsail and sailors

More information

Martin 242 Tuning Guide

Martin 242 Tuning Guide Martin 242 Tuning Guide The Martin 242 The Martin is a relatively easy boat to sail and the fleet has taken steps to make the boats as even as possible. This tuning guide was written as a reference to

More information

Reliable Speed Prediction: Propulsion Analysis and a Calculation Example

Reliable Speed Prediction: Propulsion Analysis and a Calculation Example Reliable Speed Prediction: Propulsion Analysis and a Calculation Example Donald M. MacPherson VP Technical Director HydroComp, Inc. ABSTRACT Speed prediction is more than just bare-hull resistance. Speed

More information

How to Sail Fast : Rig Tuning - by Bob Sterne

How to Sail Fast : Rig Tuning - by Bob Sterne How to Sail Fast : Rig Tuning - by Bob Sterne Bob Sterne is the Executive Secretary of the CRYA, and one of the top Radio Controlled Sailboat designers. He builds World Class boats and his sails are the

More information

Beneteau 36.7 Sail Development

Beneteau 36.7 Sail Development Beneteau 36.7 Sail Development North Sails began working with the 36.7 as soon as the first boat was launched in 2001. Since then we have built inventories for several of the European boats, the first

More information

Thanks to North Sails, who gave us these fast rigging tips.

Thanks to North Sails, who gave us these fast rigging tips. Mast Step Mast Rake Thanks to North Sails, who gave us these fast rigging tips. Congratulations on your purchase of North Club 420 sails. We have worked hard to design and produce the fastest, easiest

More information

Set Up for Epsilon, Z Spar, Needlespar & Goldspar Masts

Set Up for Epsilon, Z Spar, Needlespar & Goldspar Masts Winning in the 470 by Ullman Sails Overview The 470 is very sensitive to wind and sea conditions. Optimizing your 470 s performance requires considerable adjustments in mast rake and tuning. This guide

More information

STABILITY OF MULTIHULLS Author: Jean Sans

STABILITY OF MULTIHULLS Author: Jean Sans STABILITY OF MULTIHULLS Author: Jean Sans (Translation of a paper dated 10/05/2006 by Simon Forbes) Introduction: The capsize of Multihulls requires a more exhaustive analysis than monohulls, even those

More information

MSC Guidelines for Review of Rigging Systems for Sailing Vessels

MSC Guidelines for Review of Rigging Systems for Sailing Vessels S. E. HEMANN, CDR, Chief, Hull Division Table of Contents References... 1 Contact Information... 2 Applicability... 2 General Guidance... 2 Methodology... 3 Stability and Rigging System... 3 Hull Structure

More information

COURSE OBJECTIVES CHAPTER 9

COURSE OBJECTIVES CHAPTER 9 COURSE OBJECTIVES CHAPTER 9 9. SHIP MANEUVERABILITY 1. Be qualitatively familiar with the 3 broad requirements for ship maneuverability: a. Controls fixed straightline stability b. Response c. Slow speed

More information

T 10 Tacking Ver

T 10 Tacking Ver T 10 Tacking Assume sailing upwind in moderate conditions Ensure Jib sheets are clear both in the cockpit and forward. Ensure new course is clear of other boats, shipping, and navigation hazards. Ensure

More information

A Guide to Yacht Racing

A Guide to Yacht Racing Guide to Yacht Racing Congratulations on choosing to go racing with Equinox Sailing. Yacht racing is one of the most exciting team sports around, requiring skill and team work. One-design yacht racing

More information

Downwind Aero Moments & Forces

Downwind Aero Moments & Forces Downwind Aero Moments & Forces Fluid-Structure-Interaction (FSI) modeling of Downwind Sails Phase 2 Prepared for: SYRF November 2016! 1 !2 Contents List of Terms... 4 Executive Summary... 5 1. Project

More information

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su THE RUDDER starting from the requirements supplied by the customer, the designer must obtain the rudder's characteristics that satisfy such requirements. Subsequently, from such characteristics he must

More information

18 Boater s Pocket Reference: Chapter 1 Basic Terminology

18 Boater s Pocket Reference: Chapter 1 Basic Terminology 18 Boater s Pocket Reference: Chapter 1 Basic Terminology Flybridge Pilothouse or Wheelhouse Mast Salon or Cabin Portuguese Bridge Bow Stern Cleat Cockpit Freeboard Transom Gunwale Hull Draft Chine Hull

More information

Sail Trimming Guide for the Beneteau Oceanis 38

Sail Trimming Guide for the Beneteau Oceanis 38 I N T E R N A T I O N A L D E S I G N A N D T E C H N I C A L O F F I C E Sail Trimming Guide for the Beneteau Oceanis 38 2015 Neil Pryde Sails International 1681 Barnum Avenue Stratford, CONN 06614 Phone:

More information

Chapter 2 Hydrostatics and Control

Chapter 2 Hydrostatics and Control Chapter 2 Hydrostatics and Control Abstract A submarine must conform to Archimedes Principle, which states that a body immersed in a fluid has an upward force on it (buoyancy) equal to the weight of the

More information

SHIP FORM DEFINITION The Shape of a Ship

SHIP FORM DEFINITION The Shape of a Ship SHIP FORM DEFINITION The Shape of a Ship The Traditional Way to Represent the Hull Form A ship's hull is a very complicated three dimensional shape. With few exceptions an equation cannot be written that

More information

OFFSHORE RACING CONGRESS

OFFSHORE RACING CONGRESS World Leader in Rating Technology OFFSHORE RACING CONGRESS ORC Speed Guide Explanation 1. INTRODUCTION The ORC Speed Guide is a custom-calculated manual for improving performance for an individual boat.

More information

Section V Sailing off the wind

Section V Sailing off the wind Section V Sailing off the wind 1 Sail shapes and flow patterns - off the wind a) Principles When reaching, it is maximum thrust which is important, and here the leech ribbons come into their own. Fig.43a

More information

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves ABSTRACT Emre Kahramano lu, Technical University, emrek@yildiz.edu.tr Hüseyin Y lmaz,, hyilmaz@yildiz.edu.tr Burak

More information

Stability Regulation of Very Large Sailing Yachts

Stability Regulation of Very Large Sailing Yachts 10 th International Conference 171 Stability Regulation of Very Large Sailing Yachts Barry Deakin, Wolfson Unit MTIA, University of Southampton b.deakin@soton.ac.uk ABSTRACT The effects of size on the

More information

Now we get to the really fun part of cat sailing, but first you need to know about apparent wind.

Now we get to the really fun part of cat sailing, but first you need to know about apparent wind. Shelley Sailing Club Inc. Notes for informal catamaran training course, Alec Duncan, 14/3/2015 Part 4: Reaching and running Now we get to the really fun part of cat sailing, but first you need to know

More information

SAMPLE MAT Proceedings of the 10th International Conference on Stability of Ships

SAMPLE MAT Proceedings of the 10th International Conference on Stability of Ships and Ocean Vehicles 1 Application of Dynamic V-Lines to Naval Vessels Matthew Heywood, BMT Defence Services Ltd, mheywood@bm tdsl.co.uk David Smith, UK Ministry of Defence, DESSESea-ShipStab1@mod.uk ABSTRACT

More information

THE PROJECT The Spark:

THE PROJECT The Spark: THE PROJECT The Spark: The SBS Sailing Booster System was developed by Manoel Chaves and his team in 2015 and after a long list of jobs it was presented to the public during the Annapolis USA Sailboat

More information

The M242 is a relatively easy boat to sail and the fleet has taken steps to make the boats as even as possible.

The M242 is a relatively easy boat to sail and the fleet has taken steps to make the boats as even as possible. Tuning Guide October 2005 Dear M242 Sailors, The M242 is a relatively easy boat to sail and the fleet has taken steps to make the boats as even as possible. This tuning guide was written as a reference

More information

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh Lecture Note of Naval Architectural Calculation Ship Stability Ch. 8 Curves of Stability and Stability Criteria Spring 2016 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National

More information

ClubSwan 50 the revolution is here

ClubSwan 50 the revolution is here ClubSwan 50 ClubSwan 50 the revolution is here Nautor s Swan has always offered high performance racing yachts to complement its classic range of cruising Swans, yachts such as the 39, the 441 in Racing

More information

Knowing how to trim your sails properly will take your cruising to the next level to the next level of performance and comfort.

Knowing how to trim your sails properly will take your cruising to the next level to the next level of performance and comfort. How To Trim the Main Knowing how to trim your sails properly will take your cruising to the next level to the next level of performance and comfort. QUANTUM SAILS Posted MAY 18, 2016 Knowing how to trim

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) Unit D-1: Aerodynamics of 3-D Wings Page 1 of 5 AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics of 3-D Wings D-: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics

More information

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and NAVWEPS -81-8 and high power, the dynamic pressure in the shaded area can be much greater than the free stream and this causes considerably greater lift than at zero thrust. At high power conditions the

More information

Basic Keelboat Sailing Standard (ASA 101)

Basic Keelboat Sailing Standard (ASA 101) Basic Keelboat Sailing Standard (ASA 101) Prerequisites: None General Description: Description: Demonstrated ability to skipper a sloop-rigged keelboat of approximately 20 to 27 feet in length by day in

More information

Heavy Weather Sailing

Heavy Weather Sailing 17 Heavy Weather ing 135 Section 17 Heavy Weather ing Broach. Turn a boat broadside to wind or waves, subjecting it to possible capsizing. Knockdown. A temporary condition of excessive heel resulting from

More information

WATER-FREE IOM MEASUREMENT IOMICA, 2005 March 4

WATER-FREE IOM MEASUREMENT IOMICA, 2005 March 4 WATER-FREE IOM MEASUREMENT IOMICA, 2005 March 4 The IOM has grown to become the most broadly accepted radio sailing class worldwide. To a large degree that success can be attributed to a strong set of

More information

Measurements and repeat of website info on using RSS made sails for boats other than the intended

Measurements and repeat of website info on using RSS made sails for boats other than the intended Measurements and repeat of website info on using RSS made sails for boats other than the intended Weight and type of boat. These sails are the correct weight cloth for trailer boats held up by the weight

More information

Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe

Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe Marine Kit 4 Marine Kit 4 Sail Smooth, Sail Safe Includes Basic ship Terminologies and Investigation Check list Index 1. Ship Terminology 03 2. Motions of a Floating Body...09 3. Ship Stability.10 4. Free

More information

Tall Ships America Safety Under Sail Forum: Sailing Vessel Stability, Part 1: Basic Concepts

Tall Ships America Safety Under Sail Forum: Sailing Vessel Stability, Part 1: Basic Concepts Tall Ships America Safety Under Sail Forum: Sailing Vessel Stability, Part 1: Basic Concepts Moderator: Captain Rick Miller, MMA Panelists: Bruce Johnson, Co-Chair Working Vessel Operations and Safety

More information

Rhodes 19 Tuning Guide

Rhodes 19 Tuning Guide Rhodes 19 Tuning Guide Jud Smith jsmith@doylesails Tomas Hornos tomas@doylesails.com Send order forms to: onedesign@doylesails..com SETTING UP YOUR RHODES 19 FOR DOYLE SAILS BEFORE STEPPING THE MAST 1.

More information

PERFORMANCE PREDICTION

PERFORMANCE PREDICTION PERFORMANCE PREDICTION Design #622 First 35 with 2.3m Fin Keel For Chantiers Beneteau Farr Yacht Design, Ltd. Copyright May 7, 2012 PO Box 4964, Annapolis, MD 21403 USA Tel: +1 410 267 0780, Fax: +1 410

More information

PERFORMANCE PREDICTION

PERFORMANCE PREDICTION PERFORMANCE PREDICTION DESIGN #608 BENETEAU FIRST 40 WITH LEAD FIN AND CARBON MAST Farr Yacht Design, Ltd. Copyright (May 3, 2010) PO Box 4964, Annapolis, MD 21403 USA Tel: +1 410 267 0780, Fax: +1 410

More information

Your new Quantum asymmetrical. is designed and engineered to be. easy to set and trim. Fundamental. principals of asymmetrical trim are

Your new Quantum asymmetrical. is designed and engineered to be. easy to set and trim. Fundamental. principals of asymmetrical trim are Asymmetrical Trim Guide Your new Quantum asymmetrical is designed and engineered to be easy to set and trim. Fundamental principals of asymmetrical trim are outlined in this guide. For more detailed information,

More information

Taming the Kite! Wineglasses. Wineglasses occur when the top half of the kite fills before the bottom with a twist in the middle.

Taming the Kite! Wineglasses. Wineglasses occur when the top half of the kite fills before the bottom with a twist in the middle. Taming the Kite! What goes wrong? Wineglass when launching can happen in light or heavy weather Broaching on a reach usually in heavy weather Death rolls usually in heavy weather Gybing disasters worse

More information

Interceptors in theory and practice

Interceptors in theory and practice Interceptors in theory and practice An interceptor is a small vertical plate, usually located at the trailing edge on the pressure side of a foil. The effect is a completely different pressure distribution

More information

Marine Construction & Welding Prof. Dr. N. R. Mandal Department of Ocean Engineering & Naval Architecture Indian Institute of Technology, Kharagpur

Marine Construction & Welding Prof. Dr. N. R. Mandal Department of Ocean Engineering & Naval Architecture Indian Institute of Technology, Kharagpur Marine Construction & Welding Prof. Dr. N. R. Mandal Department of Ocean Engineering & Naval Architecture Indian Institute of Technology, Kharagpur Lecture No # 10 Fore & Aft End Construction (Refer Slide

More information

THE INTERNATIONAL SOLING CLASS by STU WALKER Jan Linge designed and built the first Soling in Three years later in the second of two trials,

THE INTERNATIONAL SOLING CLASS by STU WALKER Jan Linge designed and built the first Soling in Three years later in the second of two trials, THE INTERNATIONAL SOLING CLASS by STU WALKER Jan Linge designed and built the first Soling in 1964. Three years later in the second of two trials, its remarkable range of performance, easily controllable

More information

WB-Sails Europe trimguide. Contents. 0-2 m/s (0-4 kn) WB-Sails Ltd Oy

WB-Sails Europe trimguide. Contents. 0-2 m/s (0-4 kn) WB-Sails Ltd Oy Contents Europe Trimguide 0-2 m/s Europe Trimguide 3-4 m/s Europe Trimguide 5-6 m/s This trimguide is based on the expertise of Sari Multala, 2001 World champion. We ve divided it into seven wind strengths

More information

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds Preliminary design of a high-altitude kite A flexible membrane kite section at various wind speeds This is the third paper in a series that began with one titled A flexible membrane kite section at high

More information

APPENDIX IV DEVELOPMENT AND MEASUREMENT RULES OF THE INTERNATIONAL TEN SQUARE METER SAILING CANOE

APPENDIX IV DEVELOPMENT AND MEASUREMENT RULES OF THE INTERNATIONAL TEN SQUARE METER SAILING CANOE APPENDIX IV Development Canoe Rules APPENDIX IV DEVELOPMENT AND MEASUREMENT RULES OF THE INTERNATIONAL TEN SQUARE METER SAILING CANOE 1 GENERAL Class and measurement rules measurement forms may be obtained

More information

10 (Racing) TIPS FOR PATIN SAILORS

10 (Racing) TIPS FOR PATIN SAILORS 10 (Racing) TIPS FOR PATIN SAILORS 05 AUG 2007 NORTH SEA PATIN SAILORS BEACHCLUB DE WINDHAAN 1 1/ Course or Speed Scheme: (Figure 1) Correlation between wind direction, course and speed Example with a

More information

Bluenose Class Jib Trim by: Andreas Josenhans (North Sails Atlantic)

Bluenose Class Jib Trim by: Andreas Josenhans (North Sails Atlantic) Bluenose Class Jib Trim by: Andreas Josenhans (North Sails Atlantic) The current Bluenose Jib has been unchanged from 2006-2015. Over the years, a Bluenose headsail was changed to achieve the following.

More information

TUNE YOUR SAILS SPEED. Etchells Tuning Guide. Rev Q04

TUNE YOUR SAILS SPEED. Etchells Tuning Guide. Rev Q04 TUNE YOUR SAILS FOR OUTRIGHT SPEED Congratulation on your purchase of North One Design Etchells sails. The following tuning guide is meant to be a good starting point in setting your Etchells rig and sails.

More information

SOLUTIONS FOR TODAY S SAILORS J/88

SOLUTIONS FOR TODAY S SAILORS J/88 SOLUTIONS FOR TODAY S SAILORS J/88 Tuning Guide Contents Initial Headstay Set-up... 3 Onboard Headstay Adjustment... 5 J/88 Tuning Guide... 7 Sailing Setup... 8 North Sails Tips for J/88... 9 Jib Leech

More information

Safety practices related to small fishing vessel stability

Safety practices related to small fishing vessel stability 18 The vessel s centre of gravity (G) has a distinct effect on the righting lever (GZ) and consequently the ability of a vessel to return to the upright position. The lower the centre of gravity (G), the

More information

SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DECK WITH CENTRAL SLOT

SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DECK WITH CENTRAL SLOT The Seventh Asia-Pacific Conference on Wind Engineering, November 8-, 009, Taipei, Taiwan SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DEC WITH CENTRAL SLOT Le-Dong Zhu, Shui-Bing

More information

14 The Divine Art of Hovering

14 The Divine Art of Hovering 14 The Divine Art of Hovering INTRODUCTION Having learned the fundamentals of controlling the helicopter in forward flight, the next step is hovering. To the Hover! In many schools, hovering is one of

More information

Root Cause Determination of Excessive Hull Vibration On a First-In-Class Tugboat Design By Wylie Moreshead, P.E., Azima DLI

Root Cause Determination of Excessive Hull Vibration On a First-In-Class Tugboat Design By Wylie Moreshead, P.E., Azima DLI Root Cause Determination of Excessive Hull Vibration On a First-In-Class Tugboat Design By Wylie Moreshead, P.E., Azima DLI In August of 2002, Azima DLI was tasked to collect vibration data on a new tug

More information

Choosing a sailplan..finding a sailplan which suits the deck layout, the interior, the hull, and the intended use...

Choosing a sailplan..finding a sailplan which suits the deck layout, the interior, the hull, and the intended use... Chapter 3 (..of The Cambered Panel Junk Rig...) Choosing a sailplan..finding a sailplan which suits the deck layout, the interior, the hull, and the intended use... Note: All diagrams are shown in full-page

More information

Swan 42 TUNE YOUR RIG FOR OUTRIGHT SPEED. Swan 42 Tuning Guide Solutions for today s sailors

Swan 42 TUNE YOUR RIG FOR OUTRIGHT SPEED. Swan 42 Tuning Guide Solutions for today s sailors 1 Swan 42 TUNE YOUR RIG FOR OUTRIGHT SPEED 2 Swan 42 The information in this guide applies to North 3DL and 3Di Swan 42 Class sails only. The North Sails Swan 42 Tuning System is designed and regatta proven

More information

THE INTERACTION BETWEEN SAILING YACHTS IN FLEET AND MATCH RACING SITUATIONS

THE INTERACTION BETWEEN SAILING YACHTS IN FLEET AND MATCH RACING SITUATIONS THE INTERACTION BETWEEN SAILING YACHTS IN FLEET AND MATCH RACING SITUATIONS P.J. Richards, Yacht Research Unit, University of Auckland, New Zealand N. Aubin, École Navale, France D.J. Le Pelley, Yacht

More information