# WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION S. Pindado, J. Meseguer, J. M. Perales, A. Sanz-Andres and A. Martinez Key words: Wind loads, bridge construction, yawing moment. Abstract. Within the last century the interest in wind-induced loads over civil engineering structures has become more and more important, the reason being that the development of new construction techniques and materials has allowed engineers and architects to design new structures far from the traditional concepts, and in many cases wind actions over these singular structures are not included in the existing codes of practice. In this paper the windinduced static loads over bridges constructed by the double cantilever method during erection stages are considered. The aerodynamic load over a double cantilever bridge under a yawing-angled wind produces a yawing (torsional) moment on the bridge deck, which can lead to undesirable rotation of the deck about the supporting pier. The effects of the wind yaw angle and the length of the deck are analysed. The wind action caused by the presence of sliding concrete forms at the ends of the deck is also studied.

2 1 INTRODUCTION As a result of the introduction of new construction techniques and materials in civil engineering, designers must face designs that are not covered by the applicable codes for calculating the wind actions. In these cases the support of wind tunnel testing is recommended for the estimation of the wind loads. This could be the case of bridges constructed by the double cantilever method where wind forces could cause the rotation of the deck. The double cantilever bridges are formed in the erection stages by the deck, which is progressively constructed at both extremes by sliding concrete forms, and a pier which supports the deck at the middle point (see figure 1). At this configuration a yawing moment over the deck can be induced by the wind due either to: 1) a yaw angle of the incident wind with respect to the bridge deck, 2) wind gusts. Fig. 1. Double cantilever bridge under a non-zero wind yaw angle, a. Wind velocity, U, and yawing moment over the bridge pier, M T, are also indicated. As far as we know this problem has not been analysed in depth in the literature, and only a few references dealing with wind loads on double cantilever bridges have been found. Dyrbye and Hansen 1 propose a method to calculate the maximum yawing moment produced by the wind on a double cantilever bridge (the method takes also into account the dynamic effects of the wind over the bridge when its yaw angle is zero). Mendes and Branco 2 apply the same method to calculate the wind forces on a bridge over Douro river (Portugal), including the effect of cantilevers bending. Most of the papers dealing with wind action over bridges are oriented to the dynamic interaction between the structure and the wind turbulence, and it is hard to find information on forces acting on such structures, even considering uniform, smooth flow. Available information in codes of practice is scarce and limited to very particular configurations. For instance, in Eurocodigo 7 3 a method to estimate the static wind loads on the bridge when the wind is either perpendicular or parallel to the bridge deck is only presented.

3 In this paper the wind action over a double cantilever bridge at different yaw angles is experimentally analysed by measuring in a wind tunnel the mean moment, M T, of a bridge deck model when subjected to a uniform flow. 2 EXPERIMENTAL PROCEDURES To perform the experiments on the yawing moment due to the wind acting on the deck of a bridge under construction, a set of three models of a very simplified bridge deck has been built-up. The deck section, as sketched in figure 2, consists of a platform a = 0.24 m in width and a/48 in thickness, supported by a beam a/3 in height, with its width varying linearly from a/3 at the beam bottom till a/2 at the beam top. Therefore, the area of the cross-section of this bridge-deck model is A = 23(a/12) 2, which has been used in the following as the reference area to make dimensionless the measured magnitudes. Three bridge-deck lengths, /,, have been considered, l\ = a, l 2 = 2a, and h = 3a. During all tests the bridge-deck is supported by a vertical rod, a/5 in diameter and 5a/4 in height, which in turn is anchored to a six-component straingauge balance. To simulate the sliding concrete forms of the deck bridge three different end-plate sets, whose dimensions are also defined in figure 2, have been considered. In case A the end-plates width is a/24 and in cases B and C the end-plates width is a/48. The different bridge deck configurations considered in the measurement of the yawing moment have been twelve: three bridge-deck lengths and for each of these four different endings (no plates, and the three types of plates sketched in figure 2). During the experiments the yawing moment on the bridge deck at different yaw angles ranging from 0 to 180 has been measured (see figure 1), together with the rolling moment, the pitching moment and the three components of the aerodynamic force acting on the deck (although these last five components of the aerodynamic load are out of the scope of this work and the results are not presented in the following). Measurements have been carried out in the A9 Wind Tunnel of IDR/UPM, whose test chamber is 1.5 m in width and 1.8 m in height. As already stated the bridge-deck model under testing is anchored to a six-component straingauge balance model EX by Midi Capteurs, S.A., which is mounted on a rotating platform NEWPORT RV120-PP-HL. This rotating platform allows the angular positioning of the model with respect to the wind tunnel axis (yaw angle) with enough accuracy, better than ±1. The balance and the rotating platform are placed inside a chamber located under the windtunnel floor. This chamber is connected to the wind-tunnel test chamber through a circular hole whose diameter is slightly larger than the diameter of the vertical rod which simulates the supporting pier of the bridge deck. With this arrangement only the vertical rod and the bridge

4 deck (plus the end plates, if any) are subjected to the air flow. Therefore, since the yawing moment due to the circular rod is practically negligible (formally this moment must be zero because of the symmetry of the rod with respect to the incident wind), the yawing moment measured by the balance is only due to the aerodynamic loads acting on the bridge deck., la la L ^ B-plates C-plates Fig.2. Testing model used in the wind experiments. The dynamic pressure inside the test chamber is measured directly by a calibrated Pitot tube Air Flow 048 connected to a pressure transducer Schaewitz Lucas P WG. Experiments have been performed in a low turbulence, uniform, air stream (the turbulence intensity being some 2.5 %), the wind speed being at least 20 m-s -1, which provides a

5 Reynolds number, based on the characteristic length a, higher than 3xl0 5. It must pointed out that even in the worst case (a h length bridge deck at 0 yaw angle), the frontal area of the model, including the rod that simulates the supporting column, is smaller than 4 % of the wind-tunnel cross-section, so that no provisions for blockage-correction of the measured results have been considered. No atmospheric boundary layer simulation was performed, since in this problem atmospheric boundary layer effects are negligible, provided the bridge deck is high enough over the ground, and the bridge deck is not too thick (so that the wind speed behaves as uniform close to the bridge deck). Experimental procedure is as follows: once the model (supporting rod, bridge deck and end plates) is fixed to the six-component balance, the rotating platform is set to the initial yaw angle. Then the wind tunnel is switched-on and when steady conditions are reached inside the wind-tunnel test chamber the measurement process starts. At each one of the selected values of the yaw angle electric signals coming from the balance are digitised and stored in a PC for further analysis; once a given set of data is stored the operator switches-on the rotating platform that rotates till a new yaw angle is reached, and then the new set of values generated by the balance are stored. 3 RESULTS AND DISCUSSION The measured yawing moment over the bridge deck, M T, has been made dimensionless using: where c M is the dimensionless yawing moment coefficient, q is the dynamic pressure (q = ^pu 2, being p and Uthe density and the velocity of the air stream, respectively), A is the area of the cross-section of the bridge deck, and /; its length. The dependence of the yawing-moment coefficient on the yaw angle for the different configurations tested is shown in figure 3. In these plots white-square symbols represent results corresponding to the bridge without any end plates, whereas the black-square, whitecircle and black-circle symbols correspond respectively to results of the bridge with A-plates, B-plates and C-plates allocated at both extremes of the deck.

6 U M No plates A- plates o B- plates C- plates H H 0 [o] C MP1 C MP2 L M a ^ Mtf.A Length l x a [degrees] a [degrees] Fig. 3. Variation of yawing moment coefficients, c M, measured on the three bridge decks as function of the wind yaw angle, a. White-square symbols represent results corresponding to bridge decks with no plates at the ends. Black-square, white-circle and black-circle symbols represent results corresponding to bridge decks with A-plates, B-plates and C-plates, respectively. The peaks of the coefficient, Cj^i and c M?2, are framed in squares and circles respectively. As it was expected, the behaviour of the aerodynamic load is anti-symmetrical about the yaw angle, a = 7T./2, that is C M (K/2-(X) = -c M (n/2+a). Due to this reason, from now on all explanations will only refer to yaw angles ranging from a = 0 to a = 90. With no plates placed at the ends of the bridge deck, the measured yawing moment coefficient presents a minimum near round a= 45 for the three decks tested. This peak, denoted as CMPI (framed in squares in the figure 3), decreases and slightly displaces towards a= 90 as the deck length is diminished. Also for all decks tested, the presence of the plates at the deck ends adds an extra yawing moment of an opposite sign from the one measured with no plates. This contribution displaces the position of the peak CMPI towards a= 0.

7 In all cases tested with plates at the deck ends, the behaviour of the yawing moment coefficient as function of the yaw angle presents a second peak, denoted as CMP2 (framed in circles in the figure 3). This second peak appears in the interval from a= 60 to a= 90 and diminishes with the length of the deck. It must be remarked that for a fixed deck length, the peak CM?2 tends to disappear and displaces from a= 60 towards a= 90 as the area of the plates is decreased. In figure 4 the peaks CMPI and CMP2 are shown as function of the length of the bridge. As it can be observed, the peak CM?2 tends to zero as the deck length is increased. Concerning the peak CMPI, a linear tendency with the deck length is also observed. This linear tendency implies a quadratic tendency of the yawing moment with this parameter, as it was made dimensionless with the length of the bridge, /;, to compute the yawing moment coefficient, see equation (1). 1 [j n 0.5 C MP1 [< n C MP ][ ^c" >] 2a h 3a 4a Fig. 4. Variation of the yawing moment coefficient peaks, c^ and 01^2, with the length of the bridge, / ;. Black-square, white-circle and black-circle symbols correspond to bridge decks with A-plates, B-plates and C- plates respectively. White-square symbols correspond to bridge decks with no plates. The mentioned influence of the plates allocated at the ends of the deck on the yawing moment is explained as follows: 1) Near a= 0 yaw angle plates behave as thin plates under small angles of attack. So lift and drag forces appear on the plates modifying the yawing moment over the bridge in comparison with the no plates case. See figure 5a. 2) For yaw angles near a = 90, not only extra forces are generated on the plates. The pressure distribution is now rather different from the no-plates case. As it is indicated in figure 5b, the position of the stagnation point is modified and now it is positioned on the most upstream plate and even more, just behind this plate a low-pressure zone appears as consequence of the wake formed. Also the presence of the downstream plate

8 modifies the pressure distribution over the bridge because a new high-pressure zone appears now just upstream this plate. a-2 Stagnationpoint b-2 Stagnation point T Low pressure zone High pressure zone Fig. 5. Sketch of the aerodynamic forces that appear on the bridge deck with plates. Summarising, the following conclusions are obtained: 1) In a double cantilever bridge under construction the maximum yawing moment over the deck caused by yaw angled wind grows quadratically with the bridge length. To prevent possible accidents this effect must be foreseen. 2) This maximum yawing moment is somehow alleviated by the presence of sliding concrete forms or other construction elements disposed at the ends of the deck. REFERENCES [1] Dyrbye, C. and Hansen, S.O.: Wind Effects on Structures, John Wiley & Sons, Inc., New York, [2] Mendes, P. A. and Branco, F. A.: "Unbalanced wind buffeting effects on bridges during double cantilever erection stages", Wind & Structures, Vol. 4, N. 1, pp , [3] Eurocodigo 1: Bases de proyecto y acciones en estructuras. Parte 2-4: Acciones en estructuras. Acciones del viento. UNE-ENV , AENOR, Madrid, 1998.

### Effects of seam and surface texture on tennis balls aerodynamics

Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 140 145 9 th Conference of the International Sports Engineering Association (ISEA) Effects of seam and surface texture on tennis

### THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

### DESIGN AND CHARACTERISTICS OF A LARGE BOUNDARY- LAYER WIND TUNNEL WITH TWO TEST SECTIONS

The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan DESIGN AND CHARACTERISTICS OF A LARGE BOUNDARY- LAYER WIND TUNNEL WITH TWO TEST SECTIONS Kai Chen 1, Xin-Yang

### Available online at Procedia Engineering 200 (2010) (2009) In situ drag measurements of sports balls

Available online at www.sciencedirect.com Procedia Engineering 200 (2010) (2009) 2437 2442 000 000 Procedia Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering

### THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC!

OUTLINE TACOMA NARROWS BRIDGE FLOW REGIME PAST A CYLINDER VORTEX SHEDDING MODES OF VORTEX SHEDDING PARALLEL & OBLIQUE FLOW PAST A SPHERE AND A CUBE SUMMARY TACOMA NARROWS BRIDGE, USA THE BRIDGE COLLAPSED

### 1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:

### STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS

ICAS 2000 CONGRESS STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS Kenichi RINOIE Department of Aeronautics and Astronautics, University of Tokyo, Tokyo, 113-8656, JAPAN Keywords: vortex flap,

### Wind loads investigations of HAWT with wind tunnel tests and site measurements

loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,

### Aerodynamic characteristics around the stalling angle of the discus using a PIV

10TH INTERNATIONAL SYMPOSIUM ON PARTICLE IMAGE VELOCIMETRY PIV13 Delft, The Netherlands, July 1-3, 2013 Aerodynamic characteristics around the stalling angle of the discus using a PIV Kazuya Seo 1 1 Department

### Wind Pressure Distribution on Rectangular Plan Buildings with Multiple Domes

Wind Pressure Distribution on Rectangular Plan Buildings with Multiple Domes Astha Verma, Ashok K. Ahuja Abstract Present paper describes detailed information of the experimental study carried out on the

### AE2610 Introduction to Experimental Methods in Aerospace AERODYNAMIC FORCES ON A WING IN A SUBSONIC WIND TUNNEL

AE2610 Introduction to Experimental Methods in Aerospace AERODYNAMIC FORCES ON A WING IN A SUBSONIC WIND TUNNEL Objectives The primary objective of this experiment is to familiarize the student with measurement

### Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Norbert Jendzelovsky 1,*, Roland Antal 1 and Lenka Konecna 1 1 STU in Bratislava, Faculty

### ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

ZIN Technologies PHi Engineering Support PHi-RPT-0002 CFD Analysis of Large Bubble Mixing Proprietary ZIN Technologies, Inc. For nearly five decades, ZIN Technologies has provided integrated products and

### FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN George Feng, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga, Ontario Vadim Akishin, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga,

Parasite Drag by David F. Rogers http://www.nar-associates.com Copyright c 2005 David F. Rogers. All rights reserved. How many of you still have a Grimes rotating beacon on both the top and bottom of the

### High Swept-back Delta Wing Flow

Advanced Materials Research Submitted: 2014-06-25 ISSN: 1662-8985, Vol. 1016, pp 377-382 Accepted: 2014-06-25 doi:10.4028/www.scientific.net/amr.1016.377 Online: 2014-08-28 2014 Trans Tech Publications,

### ScienceDirect. Aerodynamic body position of the brakeman of a 2-man bobsleigh

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 112 (2015 ) 424 429 7th Asia-Pacific Congress on Sports Technology, APCST 2015 Aerodynamic body position of the brakeman of

### External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs

External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs Authors: Bo Cui, Ph.D. Candidate, Clemson University, 109 Lowry Hall, Clemson, SC 9634-0911, boc@clemson.edu David O. Prevatt, Assistant

### Abstract. 1 Introduction

Developments in modelling ship rudder-propeller interaction A.F. Molland & S.R. Turnock Department of Ship Science, University of Southampton, Highfield, Southampton, S017 IBJ, Hampshire, UK Abstract A

### Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil

International Journal of Materials, Mechanics and Manufacturing, Vol. 3, No., February 2 Numerical and Experimental Investigations of Lift and Drag Performances of NACA Wind Turbine Airfoil İzzet Şahin

### THE CURVE OF THE CRICKET BALL SWING AND REVERSE SWING

Parabola Volume 32, Issue 2 (1996) THE CURVE OF THE CRICKET BALL SWING AND REVERSE SWING Frank Reid 1 It is a well known fact in cricket that the new ball when bowled by a fast bowler will often swing

### EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP

25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP F.M. Catalano PhD.( catalano@sc.usp.br ) *, G. L. Brand * * Aerodynamic

### Power efficiency and aerodynamic forces measurements on the Dettwiler-wind turbine

Institut für Fluiddynamik ETH Zentrum, ML H 33 CH-8092 Zürich P rof. Dr. Thomas Rösgen Sonneggstrasse 3 Telefon +41-44-632 2646 Fax +41-44-632 1147 roesgen@ifd.mavt.ethz.ch www.ifd.mavt.ethz.ch Power efficiency

### The Discussion of this exercise covers the following points:

Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

### EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF THE EFFECT OF BODY KIT USED WITH SALOON CARS IN BRUNEI DARUSSALAM

EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF THE EFFECT OF BODY KIT USED WITH SALOON CARS IN BRUNEI DARUSSALAM M.G., Yazdani, H. Ullah, T. Aderis and R. Zainulariffin, Faculty of Engineering, Institut

### UNIVERSITY OF HONG KONG LIBRARY. Hong Kong Collection

UNIVERSITY OF HONG KONG LIBRARY Hong Kong Collection CODE OF PRACTICE ON WIND EFFECTS HONG KONG-1983 BUILDING DEVELOPMENT DEPARTMENT HONG KONG PRINTED AND PUBLISHED BY THE GOVERNMENT PRINTER, HONG KONG

### Scissor Mechanisms. Figure 1 Torero Cabin Service Truck. Scissor Mechanism was chassis mounted and lifted the cabin to service aircraft

Scissor Mechanisms Scissor mechanisms are very common for lifting and stabilizing platforms. A variety of manlifts, service platforms and cargo lifts utilize this visually simple but structurally complex

### Wind action on small sky observatory ScopeDome

Wind action on small sky observatory ScopeDome A.Flaga a, G. Bosak a, Ł. Flaga b, G. Kimbar a, M. Florek a a Wind Engineering Laboratory, Cracow University of Technology, Cracow, Poland, LIWPK@windlab.pl

### THE INFLUENCE OF THE NOSE SHAPE OF HIGH SPEED TRAINS ON THE AERODYNAMIC COEFFICIENTS

THE INFLUENCE OF THE NOSE SHAPE OF HIGH SPEED TRAINS ON THE AERODYNAMIC COEFFICIENTS Heine Ch. and Matschke G. Deutsche Bahn AG, Research and Technology Centre Voelckerstrasse 5, D-80939 Munich, Germany

### International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

DESIGN AND ANALYSIS OF FEED CHECK VALVE AS CONTROL VALVE USING CFD SOFTWARE R.Nikhil M.Tech Student Industrial & Production Engineering National Institute of Engineering Mysuru, Karnataka, India -570008

### WIND LOADS / MOORING & FISH TAILING. Arjen Koop, Senior Project Manager Offshore Rogier Eggers, Project Manager Ships

WIND LOADS / MOORING & FISH TAILING Arjen Koop, Senior Project Manager Offshore Rogier Eggers, Project Manager Ships OVERVIEW Wind Loads Wind shielding Fish tailing? 2 WIND LOADS FOR OFFSHORE MARS TLP

### ScienceDirect. Rebounding strategies in basketball

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 823 828 The 2014 conference of the International Sports Engineering Association Rebounding strategies in basketball

### Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces

AIAA-24-5 Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces Hak-Tae Lee, Ilan M. Kroo Stanford University, Stanford, CA 9435 Abstract Miniature trailing edge effectors

### PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL

PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL S R Bhoi and G K Suryanarayana National Trisonic Aerodynamic Facilities, National Aerospace Laboratories,

### The validity of a rigid body model of a cricket ball-bat impact

Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 682 687 9 th Conference of the International Sports Engineering Association (ISEA) The validity of a rigid body model of a cricket

### An investigation on the aerodynamics of a symmetrical airfoil in ground effect

An investigation on the aerodynamics of a symmetrical airfoil in ground effect M.R. Ahmed a, *, S.D. Sharma b a Department of Engineering, The University of the South Pacific, Suva, Fiji b Department of

### EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER

EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER Yoichi Yamagishi 1, Shigeo Kimura 1, Makoto Oki 2 and Chisa Hatayama 3 ABSTRACT It is known that for a square cylinder subjected

### Wind Flow Validation Summary

IBHS Research Center Validation of Wind Capabilities The Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test facility provides opportunities to simulate natural wind conditions

### Wind pressures in canopies with parapets

Wind pressures in canopies with parapets A. Poitevin 1, B. Natalini 2, L. A. Godoy 3 1 Research Assistant, Department of Civil Engineering and Surveying, University of Puerto Rico, poite@msn.com 2 Prof.

### A Table Top Wind Tunnel You Can Build

A Table Top Wind Tunnel You Can Build Basic principles of aerodynamics can be studied in the classroom with this simple, inexpensive wind tunnel. All you need to build it is some cardboard boxes, glue,

### Improvement of an Artificial Stall Warning System for Sailplanes

Improvement of an Artificial Stall Warning System for Sailplanes Loek M. M. Boermans and Bart Berendsen Delft University of Technology, Faculty of Aerospace Engineering P.O.Box 5058, 2600 GB Delft, The

### EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT

Chapter-6 EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT 6.1 Introduction The gurney flap (wicker bill) was a small flat tab projecting from the trailing edge of a wing. Typically it

### Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su

THE RUDDER starting from the requirements supplied by the customer, the designer must obtain the rudder's characteristics that satisfy such requirements. Subsequently, from such characteristics he must

### STABILITY OF MULTIHULLS Author: Jean Sans

STABILITY OF MULTIHULLS Author: Jean Sans (Translation of a paper dated 10/05/2006 by Simon Forbes) Introduction: The capsize of Multihulls requires a more exhaustive analysis than monohulls, even those

### Available online at Procedia Engineering 200 (2010) (2009)

Available online at www.sciencedirect.com Procedia Engineering 200 (2010) (2009) 000 000 2413 2418 Procedia Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering

### Wind tunnel tests of a non-typical stadium roof

Wind tunnel tests of a non-typical stadium roof G. Bosak 1, A. Flaga 1, R. Kłaput 1 and Ł. Flaga 1 1 Wind Engineering Laboratory, Cracow University of Technology, 31-864 Cracow, Poland. liwpk@windlab.pl

### Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

### DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS L. Velázquez-Araque 1 and J. Nožička 1 1 Department of Fluid Dynamics and Power Engineering, Faculty of Mechanical Engineering

### AIRFLOW AROUND CONIC TENSILE MEMBRANE STRUCTURES

AIRFLOW AROUND CONIC TENSILE MEMBRANE STRUCTURES A. M. ElNokaly 1, J. C. Chilton 2 and R. Wilson 1 1 School of the Built Environment, University of Nottingham, Nottingham, NG7 2RD, UK 2 School of Architecture,

### APPLICATION OF PUSHOVER ANALYSIS ON EARTHQUAKE RESPONSE PREDICATION OF COMPLEX LARGE-SPAN STEEL STRUCTURES

APPLICATION OF PUSHOVER ANALYSIS ON EARTHQUAKE RESPONSE PREDICATION OF COMPLEX LARGE-SPAN STEEL STRUCTURES J.R. Qian 1 W.J. Zhang 2 and X.D. Ji 3 1 Professor, 3 Postgraduate Student, Key Laboratory for

### Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India)

International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 4ǁ April 2014ǁ PP.49-54 Aerodynamically Efficient Wind Turbine Blade S Arunvinthan

### Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

Lift for a Finite Wing all real wings are finite in span (airfoils are considered as infinite in the span) The lift coefficient differs from that of an airfoil because there are strong vortices produced

### Induced Drag Reduction for Modern Aircraft without Increasing the Span of the Wing by Using Winglet

International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:10 No:03 49 Induced Drag Reduction for Modern Aircraft without Increasing the Span of the Wing by Using Winglet Mohammad Ilias

### Computational fluid dynamics analysis of a mixed flow pump impeller

MultiCraft International Journal of Engineering, Science and Technology Vol. 2, No. 6, 2010, pp. 200-206 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2010 MultiCraft Limited.

### Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 435 440 The 2014 Conference of the International Sports Engineering Association Accuracy performance parameters

### CHAPTER 7 : SMOKE METERS AND THEIR INSTALLATIONS

CHAPTER 7 : SMOKE METERS AND THEIR INSTALLATIONS 1 Scope : This Chapter covers the requirements of smoke meters and their installation on engines for full load and free acceleration tests, mentioned in

### THE DESIGN OF WING SECTIONS

THE DESIGN OF WING SECTIONS Published in "Radio Control Model News" Issue Number 8 Winter 93 Aerofoil section design has advanced a great deal since great pioneers like Horatio Phillips experimented with

### Aerofoil Profile Analysis and Design Optimisation

Journal of Aerospace Engineering and Technology Volume 3, Issue 2, ISSN: 2231-038X Aerofoil Profile Analysis and Design Optimisation Kondapalli Siva Prasad*, Vommi Krishna, B.B. Ashok Kumar Department

### AC : FORCE BALANCE DESIGN FOR EDUCATIONAL WIND TUNNELS

AC 2010-393: FORCE BALANCE DESIGN FOR EDUCATIONAL WIND TUNNELS Martin Morris, Bradley University Martin Morris is a professor of Mechanical Engineering at Bradley University in Peoria, IL. He worked for

### A Study on the Effects of Wind on the Drift Loss of a Cooling Tower

A Study on the Effects of Wind on the Drift Loss of a Cooling Tower Wanchai Asvapoositkul 1* 1 Department of Mechanical Engineering, Faculty of Engineering, King Mongkut s University of Technology Thonburi

### NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE FLOWFIELD IN A BLOWDOWN WIND TUNNEL

ICAS 2002 CONGRESS NUERICAL AND EXPERIENTAL INVESTIGATION OF THE FLOWFIELD IN A BLOWDOWN WIND TUNNEL Ali Rebaine, ahmood Khalid, Cabot Broughton and Fred Ellis Institute for Aerospace Research, National

### Wind tunnel effects on wingtip vortices

48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-325 Wind tunnel effects on wingtip vortices Xin Huang 1, Hirofumi

### AIR POLLUTION DISPERSION INSIDE A STREET CANYON OF GÖTTINGER STRASSE (HANNOVER, GERMANY) NEW RESULTS OF THE ANALYSIS OF FULL SCALE DATA

AIR POLLUTION DISPERSION INSIDE A STREET CANYON OF GÖTTINGER STRASSE (HANNOVER, GERMANY) NEW RESULTS OF THE ANALYSIS OF FULL SCALE DATA Nicolás Mazzeo and Laura Venegas National Scientific and Technological

### AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE AERODYNAMIC CHARACTERISTICS AN OSCILLATORY PITCHING NACA0012 AEROFOIL

AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE AERODYNAMIC CHARACTERISTICS AN OSCILLATORY PITCHING NACA0012 AEROFOIL Ashim Yadav, Simon Prince & Jenny Holt School of Aerospace, Transport and Manufacturing,

### WAVE LOAD ACTING ON HORIZONTAL PLATE DUE TO BORE

Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

### Impact of anti-vortex blade position on discharge experimental study on the coefficient of morning glory spillway

Journal of Scientific Research and Development (7): 91-95, 015 Available online at www.jsrad.org ISSN 1115-7569 015 JSRAD Impact of anti-vortex blade position on discharge experimental study on the coefficient

### Available online at ScienceDirect. Procedia Engineering 126 (2015 )

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 126 (2015 ) 542 548 7th International Conference on Fluid Mechanics, ICFM7 Terrain effects on characteristics of surface wind

### DP Ice Model Test of Arctic Drillship

Author s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 11-12, 211 ICE TESTING SESSION DP Ice Model Test of Arctic Drillship Torbjørn Hals Kongsberg Maritime, Kongsberg, Norway Fredrik

### Chapter 3 PRESSURE AND FLUID STATICS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGraw-Hill

### Drag Divergence and Wave Shock. A Path to Supersonic Flight Barriers

Drag Divergence and Wave Shock A Path to Supersonic Flight Barriers Mach Effects on Coefficient of Drag The Critical Mach Number is the velocity on the airfoil at which sonic flow is first acquired If

### Welke daalhouding is het meest aerodynamisch?

Welke daalhouding is het meest aerodynamisch? Bert Blocken a,b a Faculteit Bouwkunde, Technische Universiteit Eindhoven, Nederland b Departement Burgerlijke Bouwkunde, KU Leuven, België Welke daalhouding

### Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure

Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases

### Wind tunnel calibration of cup anemometers. Ole Frost Hansen, WindSensor ApS Svend Ole Hansen, Svend Ole Hansen ApS Leif Kristensen

Wind tunnel calibration of cup anemometers Ole Frost Hansen, WindSensor ApS Svend Ole Hansen, Svend Ole Hansen ApS Leif Kristensen Wind Tunnel Calibration of Cup Anemometers Ole Frost Hansen, Svend Ole

### Wind Regimes 1. 1 Wind Regimes

Wind Regimes 1 1 Wind Regimes The proper design of a wind turbine for a site requires an accurate characterization of the wind at the site where it will operate. This requires an understanding of the sources

### The effect of the number of blades on wind turbine wake - a comparison between 2-and 3-bladed rotors

Journal of Physics: Conference Series PAPER OPEN ACCESS The effect of the number of blades on wind turbine wake - a comparison between 2-and 3-bladed rotors To cite this article: Franz Mühle et al 2016

### Study on the Shock Formation over Transonic Aerofoil

Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 113-118 Research India Publications http://www.ripublication.com/aasa.htm Study on the Shock Formation over

### Figure 1. Outer dimensions of the model trucks.

1 Standardisation of test method for salt spreader: Air flow experiments Report 3: Simulations of airflow patterns by Jan S. Strøm, Consultant Aarhus University, Engineering Centre Bygholm, Test and Development

### APPLICATION OF GPS RTK TECHNIQUE TO SHIP HULL TRAJECTORY DETERMINATION DURING LAUNCHING

POSTER PAPER SESSION APPLICATION OF GPS RTK TECHNIQUE TO SHIP HULL TRAJECTORY DETERMINATION DURING LAUNCHING Zofia Rzepecka, Alojzy Wasilewski Institute of Geodesy, University of Warmia and Mazury in Olsztyn

### TRAILING EDGE TREATMENT TO ENHANCE HIGH LIFT SYSTEM PERFORMANCE

28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES TRAILING EDGE TREATMENT TO ENHANCE HIGH LIFT SYSTEM PERFORMANCE Catalano F.M.*, Ceròn E.D.* Greco P.C. * Laboratory of Aerodynamics EESC-USP Brazil

### An Investigation into the Capsizing Accident of a Pusher Tug Boat

An Investigation into the Capsizing Accident of a Pusher Tug Boat Harukuni Taguchi, National Maritime Research Institute (NMRI) taguchi@nmri.go.jp Tomihiro Haraguchi, National Maritime Research Institute

### LONGITUDINAL AIR VELOCITY CONTROL IN A ROAD TUNNEL DURING A FIRE EVENT

- 27 - LONGITUDINAL AIR VELOCITY CONTROL IN A ROAD TUNNEL DURING A FIRE EVENT R. Borchiellini, V. Ferro, V. Giaretto Energy Department Politecnico di Torino Italy ABSTRACT Ventilation equipment is used

### FINAL REPORT. Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia

FINAL REPORT Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia Prepared for: Essendon Fields Pty Ltd Essendon Fields House Level 2, 7 English Street Essendon Fields

### Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2

Fluid Structure Interaction Modelling of A Novel 10MW Vertical-Axis Wind Turbine Rotor Based on Computational Fluid Dynamics and Finite Element Analysis Lin Wang 1*, Athanasios Kolios 1, Pierre-Luc Delafin

### . In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

### What Do You Think? GOALS

Activity 3 Slinkies and Waves GOALS In this activity you will: Make a people wave. Generate longitudinal and transverse waves on a Slinky. Label the parts of a wave. Analyze the behavior of waves on a

### Forces that govern a baseball s flight path

Forces that govern a baseball s flight path Andrew W. Nowicki Physics Department, The College of Wooster, Wooster, Ohio 44691 April 21, 1999 The three major forces that affect the baseball while in flight

### OPENINGS AND REINFORCEMENTS 26

ASME BPVC.VIII.1-2015 UG-35.2 UG-36 (4) It is recognized that it is impractical to write requirements to cover the multiplicity of devices used for quick access, or to prevent negligent operation or the

### Analysis of dilatometer test in calibration chamber

Analysis of dilatometer test in calibration chamber Lech Bałachowski Gdańsk University of Technology, Poland Keywords: calibration chamber, DMT, quartz sand, FEM ABSTRACT: Because DMT in calibration test

### Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology -

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - 21 TOSHIMITSU SUZUKI *1 RIKUMA SHIJO *2 KAORU YOKOYAMA *3 SYUNICHI IKESUE *4 HIROFUMI

### Sound scattering by hydrodynamic wakes of sea animals

ICES Journal of Marine Science, 53: 377 381. 1996 Sound scattering by hydrodynamic wakes of sea animals Dmitry A. Selivanovsky and Alexander B. Ezersky Selivanovsky, D. A. and Ezersky, A. B. 1996. Sound

### ScienceDirect. Aerodynamics of ribbed bicycle racing helmets

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 201 ) 91 9 The 201 conference of the International Sports Engineering Association Aerodynamics of ribbed bicycle racing

### Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers

Journal of Physics: Conference Series OPEN ACCESS Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers To cite this article: E Llorente et al 014 J. Phys.: Conf. Ser. 54 0101 View the article

### Design and Safety Document for the Vacuum Windows of the NPDGamma Liquid Hydrogen Target at SNS

Design and Safety Document for the Vacuum Windows of the NPDGamma Liquid Hydrogen Target at SNS Prepared: Checked: Approved: H. Nann W. Fox M. Snow The NPDGamma experiment is going to run at BL13 at SNS

### A STUDY OF SIMULATION MODEL FOR PEDESTRIAN MOVEMENT WITH EVACUATION AND QUEUING

A STUDY OF SIMULATION MODEL FOR PEDESTRIAN MOVEMENT WITH EVACUATION AND QUEUING Shigeyuki Okazaki a and Satoshi Matsushita a a Department of Architecture and Civil Engineering, Faculty of Engineering,

### I.CHEM.E. SYMPOSIUM SERIES NO. 97 BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES

BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES M. R. Marshall* and P. L. Stewart-Darling* A simple mathematical model for the buoyancy driven ventilation of an enclosed space, using a two-pipe

### Analysis of Lift and Drag Forces at Different Azimuth Angle of Innovative Vertical Axis Wind Turbine

International Journal of Energy and Power Engineering 2015; 4(5-1): 12-16 Published online August 31, 2015 (http://www.sciencepublishinggroup.com/j/ijepe) doi: 10.11648/j.ijepe.s.2015040501.12 ISSN: 2326-957X