How Does A Wind Turbine's Energy Production Differ from Its Power Production? 1

Size: px
Start display at page:

Download "How Does A Wind Turbine's Energy Production Differ from Its Power Production? 1"

Transcription

1 Siting Wind Power: Wind Power Curves & Community Considerations (Teacher Notes) (Assessing the Feasibility of Wind Power for Pennsylvania) Notes on Part 1 A Beaufort scale is included on the next page that may be copied onto transparency film to be used as an overhead. Notes on Part 2 The power curves section of this lesson comes recommended by the designer at KidWind for students who have had a significant introduction to wind energy. The ideal circumstance would be after they have built and tested their own small wind turbines and done some power output testing. See KidWind Blade Design Lesson ( to get an idea about constructing your own turbines and running some experiments like this. The following section helps to describe the purpose of the wind power curve activity and was accessed from the American Wind Energy Association s website: How Does A Wind Turbine's Energy Production Differ from Its Power Production? 1 While wind turbines are most commonly classified by their rated power at a certain rated wind speed, annual energy output is actually a more important measure for evaluating a wind turbine's value at a given site. Energy = Power x Time This means that the amount of time a wind turbine produces a given power output is just as important as the level of power output itself. And wind turbine operators don't get paid for producing a large amount of power for a few minutes (except in rare circumstances.) They get paid by the number of kilowatt-hours (kwh) their turbines produce in a given time period. The best crude indication of a wind turbine's energy production capabilities is its rotor diameter--which determines its swept area, also called the capture area. A wind turbine may have an impressive "rated power" of 100 kw, but if its rotor diameter is so small that it can't capture that power until the wind speed reaches 40 mph (18 m/s), the wind turbine won't rack up enough time at high power output to produce a reasonable annual energy output. Expected energy output per year can be reliably calculated when the wind turbine's capacity factor at a given average annual wind speed is known. The capacity factor is simply the wind turbine's actual energy output for the year divided by the energy 1 American Wind Energy Association. accessed 8 July Siting Wind Power Teacher Notes 1

2 output if the machine operated at its rated power output for the entire year. A reasonable capacity factor would be 0.25 to A very good capacity factor would be NOTE: Capacity factor is very sensitive to the average wind speed. When using the capacity factor to calculate estimated annual energy output, it is extremely important to know the capacity factor at the average wind speed of the intended site. Lacking a calculated capacity factor, the machine's power curve can actually provide a crude indication of the annual energy output of any wind turbine. Using the power curve, one can find the predicted power output at the average wind speed at the wind turbine site. By calculating the percentage of the rated power (RP) produced at the average wind speed, one can arrive at a rough capacity factor (RCF) for the wind turbine at that site. And by multiplying the rated power output by the rough capacity factor by the number of hours in a year, (8,760), a very crude annual energy production can be estimated. For example, for a 100 kw turbine producing 20 kw at an average wind speed of 15 mph, the calculation would be: 100 kw (RP) x.20 (RCF) = 20 kw x 8760 hours = 175,200 kwh Actually, because of the effect of the cubic power law, the annual energy output will probably be somewhat higher than this figure at most windy sites. This is determined by the wind power distribution, which shows the percentage of time the wind blows at various wind speeds over the course of an average year. Lacking precise data on a given site, there are two common wind distributions used to make energy calculations for wind turbines: the Weibull distribution and a variant of the Weibull called the Rayleigh distribution that is thought to be more accurate at sites with high average wind speeds. Notes on Part 3 There are a number of factors that go into siting large wind farms and small wind turbines. Some major factors include: Wind Speed Wind Direction Wind Turbulence Proximity to Power Lines, Houses and Load Type of Turbine State and Federal Incentives Local Zoning Codes & Ordinances The following PowerPoint presentations are great resources to build a lecture that suits the needs of your students. o Powerinthewind.ppt o Siting Activities.ppt o Kidwindbasicwind.ppt Siting Wind Power Teacher Notes 2

3 Source: Siting Wind Power Teacher Notes 3

4 Additional Resources Websites: More information on analyzing wind power curves. Detailed with a number of tips at looking at the data. More information on analyzing wind power curves. Detailed with a number of tips at looking at the data. Software and power curve files for excel for a number of turbine manufacturers. (Neat data for HS students). Glossary: Turbine Manufacturer Data: (These links have been compiled by the designer at KidWind and will take you to some specification sheets from a variety of small turbine manufacturers. You can examine their output curves and read more about the characteristics of small wind turbines.) Some major manufacturers of small and large wind turbines include: Bergey Windpower Southwest Windpower Proven Windpower GE Windpower Vestas Suzlon Gamesa (The turbines featured in the Bear Creek videos are manufactured by this company). These are some direct links to specification sheets from KidWind: Siting Wind Power Teacher Notes 4

5 Wind Power Curves in a Nutshell This is a quick look at the basics behind a wind power output curve. For a deeper analysis you can examine some of the documents in the resource section and take a peek at the PowerPoint presentation put together by Walt Musial, a senior engineer. Wind power curves describe how much power a particular wind turbine can extract from the wind at a variety of different wind speeds and regimes. While these curves have a similar shape, they are specific to a particular turbine and offer insights when choosing a wind turbine for a individual location. Above is a basic wind power output curve for a Bergey XL 1 small wind turbine. From these types of curves you can tell a great deal about the characteristics of a particular turbine such as when it will start making power, the maximum power output, and in what type of wind regime it will comfortably generate power. Cut In Speed This is the wind speed where the wind transfers enough force to the blades to rotate the generator shaft. This number takes into account how smoothly the generator operates, blade design and number and if there are any gears or other friction in the drive shaft. Start Up Wind Speed At the start up wind speed the wind turbine blades are moving fast enough and with enough torque that the turbine will start to generate electricity. While these numbers are pretty close to the cut in speed they are not the same. On a Bergey XL1 the cut in speed is around 5.5 MPH, but the start up wind speed is a little over 6.5 MPH. While the wind turbine may be generating some electricity at 5.5 MPH it may not be enough, or it may not be even enough, to charging batteries or to sustain a connection to the electrical grid. Maximum Power Output The maximum amount of power the turbine can produce. This is the peaking part of the curve. On this turbine the maximum amount of power it can produce around 1200 watts (1.2 kw) at about 29 MPH. The Rated Power (or Name Plate Output) for this turbine is 1000 watts (1 kw) and as you can see from the Siting Wind Power Teacher Notes 5

6 graph this happens at around 24 MPH. Why are these different? I can t exactly say, although I would guess that the rated power is where the turbine is optimally functional and while it could generate higher output it may be cause stress on the components if sustained for a long time. Furling Speed Small wind turbines cannot actively slow themselves down by actively changing blade pitches or using brakes. This can be a problem in winds that are extreme (40+MPH). At these speeds the generator may spin too fast and can cause electrical or mechanical problems. To combat this problem small wind turbine manufacturers have developed a number of methods to dump off excess wind or govern their rotational speed. Some turbines have designed blades to change shape in high winds to cause blade stall, others are designed with the entire generator on a spring that moves up or to the side as wind speeds go over a particular velocity. On the Bergey XL1 the tail vane slowly starts to move perpendicular to the wind as the speed moves above around 29 MPH. You can tell when a turbine has reached its limit on the wind power curve because the power output starts to decrease or flattens out after this point. This is due to the fact that blades are starting to move out of a direct path with the wind. What else can you see? Wind power curves also show how important wind speed is when deciding on where to place your wind turbine. At low wind speeds you generate very little power, but also notice how quickly power output ramps up as wind speeds move above 16 MPH. Siting Wind Power Teacher Notes 6

7 A simple equation for the Power in the Wind is described below. _ = Density of the Air r = Radius of your swept area V = Wind Velocity P = 1/2 _ r You can see from this equation that while power output relies on how big your turbine is and is very dependent on how fast the wind is blowing! You may have heard that if you double your wind speed your power output will increases eight times as much. The simple math below, and the wind power curve also show that this is true. Due to this incredible increase in power by increasing wind speed you can see why people like to site wind turbines in the windiest locations possible. 2 V = 8 4 = 64 On the curve above the Bergey XL1 makes around 50 watts at 8MPH. At 16MPH it is generating around 400 watts (8x as much power with a 2x the wind speed!) 3 Theoretical vs. Actual As we all know there is theory and then there is practice. Well the same is true for wind turbines. The equation described above tells you how much power you could get from the wind if you built a turbine to extract 100% of that resource. Do you think we can do that? We can t and if we did we would have something less like a wind turbine an more like a wall! The above curve has two lines. One shows how much power would be found in a cylinder of wind 2.5 meters in diameter at a variety of wind speeds. The other you are already familiar with, it is shows much power is generated by the Bergey XL1. Siting Wind Power Teacher Notes 7

8 Notice how different they are, especially at high wind speeds. What is going on here!? Well due to a number of factors such as the Betz limit, generator and blade efficiency and other losses we can at best extract 20%40% of the power in the wind. That is even with a bunch of PhDs locked in room full of computers doing some fancy math and engineering. Wind Power Curve Lesson Extensions If you have already built or are planning to build and test you own small wind turbines you can generate your own wind power curves and see if they look similar to a commercially made wind power curve. You need to record a variety of different voltage and amperage readings for a variety of wind speeds and plot on this data on a graph. The graph to the right was generated by a 5 th grade student named Kathryn who built and tested a pretty astounding small wind turbine. My project was to find if different rotors make a difference and if so which rotors worked best. I used airplane propellers mounted backwards. I compared several pitches of two blade props, one three blade prop, and one blade from a desk fan. I used a hobby motor from Radio Shack for the generator. We tested it by mounting it out in front of my dad's car. You ll notice right away that Kathryn s curves do not look like the ones we have analyzed. This is due to the fact that she was using a hobby motor and even though she tested in some pretty high winds we probably have not reached peak RPM. Her curves are starting to flatten out and maybe if she went up to 60 or 70 MPH we would see changes but then on the other hand we might start to see structural failures in other parts of the turbine! Siting Wind Power Teacher Notes 8

9 Part 2: Wind Power Curve Answer Key The above power curve is for a Southwest Wind Whisper H40. The data used to generate this graph were obtained on Paul Gipe s wind energy website. Use the graph above to answer these questions. 1. What is the cut in speed? Between 4 8 MPH 2. At what speed does this turbine have its maximum output? 28 MPH 3. Why does the output decrease after 28 MPH? The output decreases because the wind turbine is starting to furl out of the wind. 4. Why might it dip at 36 MPH and increase after that? Tough question maybe the increased wind speed is overcoming the effect of the furl. Below is some data that we observed for a KidWind18 Turbine. On a separate piece of graph paper generate use this data to make you own wind power curve. Wind Speed Power Output (MPH) (watts) What is the cut in speed of this turbine? 0-4 MPH 6. What is the maximum output of this turbine? 1900 watts 7. At what wind speed does the turbine start to furl? How many watts does this turbine make at 14 MPH? How many watts does this turbine make at 30MPH? Compare this to the curve above. Does it look right? This curve rises too fast does not seem to follow the cube law for velocity. Siting Wind Power Teacher Notes 9

10 11. This graph shows power curves for three different turbines. Answer these questions. based on the data shown above. a. Which turbine has the lowest cut-in speed? How can you tell? They all seem to cut in between 4-8 MPH so it is hard to tell if we could see closer up or see actual data then we could better tell. b. Which turbine has the highest maximum power output overall? The Proven 2.5XL c. Which one these turbines do you think has the largest diameter blades? Why? The power equation has two main variable wind velocity and blade area. If a turbine makes more power than another at the same wind velocity then it probably is bigger. Other things may come into effect like blade design or generator efficacy so this is not always true. d. Which turbine would have the least amount of power output loss when it started to furl out of the wind or reduces its wind speed? It looks like the either the Whisper H40 actually increases in output after the furl. The Proven curve looks pretty flat after it start to self govern as well. e. Why do all the curves peak then move downward? I thought more wind means more power? The turbines begin to govern themselves by furling or other means. f. If you had a limited amount of money and needed a turbine that produced a maximum of watts which turbine would you choose? I d probably pick the Bergey XL1 as it makes just enough, but not too much. Don t pay for more than you need. Siting Wind Power Teacher Notes 10

How is wind created?

How is wind created? Siting Wind Power: Wind Power Curves & Community Considerations (Student Handout) (Assessing the Feasibility of Wind Power for Pennsylvania) Name Part 1: Refresh your memory with a question that may be

More information

Siting Wind Power: Wind Power Curves & Community Considerations (Student Handout) (Assessing the Feasibility of Wind Power for Pennsylvania)

Siting Wind Power: Wind Power Curves & Community Considerations (Student Handout) (Assessing the Feasibility of Wind Power for Pennsylvania) Siting Wind Power: Wind Power Curves & Community Considerations (Student Handout) (Assessing the Feasibility of Wind Power for Pennsylvania) Name Part 1: Refresh your memory with a question that may be

More information

Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management

Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management Energy Output for Wind Power Management Spring 215 Variability in wind Distribution plotting Mean power of the wind Betz' law Power density Power curves The power coefficient Calculator guide The power

More information

Small Scale Wind Technologies Part 2. Centre for Renewable Energy at Dundalk IT CREDIT

Small Scale Wind Technologies Part 2. Centre for Renewable Energy at Dundalk IT CREDIT Small Scale Wind Technologies Part 2 Centre for Renewable Energy at Dundalk IT CREDIT 1 Part 2 Small and large scale wind turbine technologies 2 Overview of small scale grid connected system Wind Turbine

More information

Wind Turbines. Figure 1. Wind farm (by BC Hydro)

Wind Turbines. Figure 1. Wind farm (by BC Hydro) Wind Turbines Figure 1. Wind farm (by BC Hydro) Purpose Observe the operation of a wind turbine at different wind speeds Contextualize the size of an industrial wind turbine Introduction and Theory Humans

More information

Farm Energy IQ. Farms Today Securing Our Energy Future. Wind Energy on Farms

Farm Energy IQ. Farms Today Securing Our Energy Future. Wind Energy on Farms Farm Energy IQ Farms Today Securing Our Energy Future Wind Energy on Farms Farm Energy IQ Wind Energy on Farms Ed Johnstonbaugh, Penn State Extension Objectives of this Module At the conclusion of this

More information

Wind Project Siting and Permitting Blaine Loos

Wind Project Siting and Permitting Blaine Loos Wind Project Siting and Permitting Blaine Loos Energy Project Analyst Center for Wind Energy at James Madison University Wind Project Siting and Permitting The Energy in Wind Resource Assessment (Macro-siting)

More information

LECTURE 18 WIND POWER SYSTEMS. ECE 371 Sustainable Energy Systems

LECTURE 18 WIND POWER SYSTEMS. ECE 371 Sustainable Energy Systems LECTURE 18 WIND POWER SYSTEMS ECE 371 Sustainable Energy Systems 1 HISTORICAL DEVELOPMENT The first wind turbine used to generate electricity was built by La Cour of Denmark in 1891 2 HISTORICAL DEVELOPMENT

More information

Wind Energy Technology. What works & what doesn t

Wind Energy Technology. What works & what doesn t Wind Energy Technology What works & what doesn t Orientation Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical Axis Horizontal Axis Vertical Axis Turbines

More information

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Nicolas BRUMIOUL Abstract This thesis deals with the optimization of the aerodynamic design of a small

More information

As the Rotor Turns: Wind Power & You (Student Handout) (An Investigation of Wind Power as an Energy Resource in Pennsylvania)

As the Rotor Turns: Wind Power & You (Student Handout) (An Investigation of Wind Power as an Energy Resource in Pennsylvania) As the Rotor Turns: Wind Power & You (Student Handout) (An Investigation of Wind Power as an Energy Resource in Pennsylvania) Part 1: How is wind created? 1. Use the scale above to make an observation

More information

Exercise 3. Power Versus Wind Speed EXERCISE OBJECTIVE DISCUSSION OUTLINE. Air density DISCUSSION

Exercise 3. Power Versus Wind Speed EXERCISE OBJECTIVE DISCUSSION OUTLINE. Air density DISCUSSION Exercise 3 Power Versus Wind Speed EXERCISE OBJECTIVE When you have completed this exercise, you will know how to calculate the power contained in the wind, and how wind power varies with wind speed. You

More information

Rural Small Wind Energy:

Rural Small Wind Energy: Rural Small Wind Energy: Resource Overview and System Components Phil Hofmeyer, Ph.D. Asst. Professor of Renewable Energy Morrisville State College MVCC Small Wind Energy Conference June 27, 2009 Hi, I

More information

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b 06 International Conference on Mechanics Design, Manufacturing and Automation (MDM 06) ISBN: 978--60595-354-0 Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a,

More information

Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330 kw and 7,500 kw

Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330 kw and 7,500 kw World Transactions on Engineering and Technology Education Vol.11, No.1, 2013 2013 WIETE Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330

More information

CACTUS MOON EDUCATION, LLC

CACTUS MOON EDUCATION, LLC CACTUS MOON EDUCATION, LLC ENERGY FROM THE WIND WIND ENERGY TECHNOLOGIES EDUCATION MODULE www.cactusmooneducation.com TEACHER S NOTES (wnd01tn) _ Cactus Moon Education, LLC. ENERGY FROM THE WIND WIND ENERGY

More information

Wind farm performance

Wind farm performance Wind farm performance Ali Marjan Wind Energy Submission date: June 2016 Supervisor: Lars Sætran, EPT Norwegian University of Science and Technology Department of Energy and Process Engineering Wind

More information

V MW Versatile megawattage

V MW Versatile megawattage V80-1.8 MW Versatile megawattage This system features microprocessors that rotate the blades around their longitudinal axes, thus ensuring continuous adjustment to maintain optimal blade angles in relation

More information

Outline. Wind Turbine Siting. Roughness. Wind Farm Design 4/7/2015

Outline. Wind Turbine Siting. Roughness. Wind Farm Design 4/7/2015 Wind Turbine Siting Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 andrew-kusiak@uiowa.edu Tel: 319-335-5934 Fax: 319-335-5669 http://www.icaen.uiowa.edu/~ankusiak Terrain roughness Escarpments

More information

Fontes Renováveis Não-Convencionais. Parte II

Fontes Renováveis Não-Convencionais. Parte II Fontes Renováveis Não-Convencionais Parte II Prof. Antonio Simões Costa Prof. Tom Overbye, U. of Illinois Power in the Wind Consider the kinetic energy of a packet of air with mass m moving at velocity

More information

Fundamentals of Wind Energy

Fundamentals of Wind Energy Fundamentals of Wind Energy Alaska Wind Energy Applications Training Symposium Bethel, Alaska E. Ian Baring-Gould National Renewable Energy Laboratory TOPICS Introduction Energy and Power Wind Characteristics

More information

Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared by: Mia Devine

Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared by: Mia Devine 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.aidea.org/wind.htm Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared

More information

Job Sheet 1 Blade Aerodynamics

Job Sheet 1 Blade Aerodynamics Job Sheet 1 Blade Aerodynamics The rotor is the most important part of a wind turbine. It is through the rotor that the energy of the wind is converted into mechanical energy, which turns the main shaft

More information

Wind Resource Assessment for NOME (ANVIL MOUNTAIN), ALASKA Date last modified: 5/22/06 Compiled by: Cliff Dolchok

Wind Resource Assessment for NOME (ANVIL MOUNTAIN), ALASKA Date last modified: 5/22/06 Compiled by: Cliff Dolchok 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org SITE SUMMARY Wind Resource Assessment for NOME (ANVIL MOUNTAIN), ALASKA Date last modified:

More information

TOPICS TO BE COVERED

TOPICS TO BE COVERED UNIT-3 WIND POWER TOPICS TO BE COVERED 3.1 Growth of wind power in India 3.2 Types of wind turbines Vertical axis wind turbines (VAWT) and horizontal axis wind turbines (HAWT) 3.3 Types of HAWTs drag and

More information

Farm Energy IQ. Wind Energy on Farms. Objectives of this Module. How windy is it? How windy is it? How windy is it? 2/16/2015

Farm Energy IQ. Wind Energy on Farms. Objectives of this Module. How windy is it? How windy is it? How windy is it? 2/16/2015 Farms Today Securing Our Energy Future Ed Johnstonbaugh, Penn State Extension Objectives of this Module At the conclusion of this module, you should: Understand wind requirements for power generation Be

More information

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio Spark 101 Educator Resource Copyright 2013 Defining Key Concepts What is wind power?

More information

Kodiak, Alaska Site 1 Wind Resource Report for Kodiak Electric Association

Kodiak, Alaska Site 1 Wind Resource Report for Kodiak Electric Association Kodiak, Alaska Site 1 Wind Resource Report for Kodiak Electric Association Report written by: Douglas Vaught, V3 Energy LLC, Eagle River, AK Date of report: August 23, 2006 Photo Doug Vaught General Site

More information

V MW Offshore leadership

V MW Offshore leadership V120-4.5 MW Offshore leadership OptiSpeed allows the rotor speed to vary within a range of approximately 60 per cent in relation to nominal rpm. Thus with OptiSpeed, the rotor speed can vary by as much

More information

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD Vivek V. Kulkarni Department of Mechanical Engineering KLS Gogte Institute of Technology, Belagavi, Karnataka Dr. Anil T.R. Department

More information

CHAPTER 9 PROPELLERS

CHAPTER 9 PROPELLERS CHAPTER 9 CHAPTER 9 PROPELLERS CONTENTS PAGE How Lift is Generated 02 Helix Angle 04 Blade Angle of Attack and Helix Angle Changes 06 Variable Blade Angle Mechanism 08 Blade Angles 10 Blade Twist 12 PROPELLERS

More information

Wind Resource Assessment for DEADHORSE, ALASKA

Wind Resource Assessment for DEADHORSE, ALASKA 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for DEADHORSE, ALASKA Date last modified: 4/18/2006 Compiled by:

More information

Wind Resource Assessment for CHEFORNAK, ALASKA

Wind Resource Assessment for CHEFORNAK, ALASKA 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for CHEFORNAK, ALASKA Date last modified: 3/15/2006 Compiled by:

More information

Wind Resource Assessment for SAINT PAUL, ALASKA

Wind Resource Assessment for SAINT PAUL, ALASKA 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for SAINT PAUL, ALASKA Date last modified: 3/1/2006 Compiled by:

More information

Analysis of Traditional Yaw Measurements

Analysis of Traditional Yaw Measurements Analysis of Traditional Yaw Measurements Curiosity is the very basis of education and if you tell me that curiosity killed the cat, I say only the cat died nobly. Arnold Edinborough Limitations of Post-

More information

Tidal streams and tidal stream energy device design

Tidal streams and tidal stream energy device design Tidal streams and tidal stream energy device design This technical article introduces fundamental characteristics of tidal streams and links these to the power production of tidal stream energy devices.

More information

Operating Manual for the Evance Iskra R9000 Wind Turbine

Operating Manual for the Evance Iskra R9000 Wind Turbine L3 CS-01 Operating Manual Operating Manual for the Evance Iskra R9000 Wind Turbine //Level 3 Procedures/L3-CS-01 Operating Manual Date of Issue : 8 th December 2009 Page 1 of 13 Description Author Checked

More information

Wind turbine Varying blade length with wind speed

Wind turbine Varying blade length with wind speed IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 01-05 www.iosrjournals.org Wind turbine Varying blade length with wind speed Mohammed Ashique

More information

Lopez Community Land Trust. Final Wind Energy Report

Lopez Community Land Trust. Final Wind Energy Report Lopez Community Land Trust Final Wind Energy Report July 20th, 2007 Prepared by: Terrance Meyer P.E. Rose Woofenden 1 Table of Contents 1.0 INTRODUCTION 4 FIGURE 1.1 VESTAS TURBINE AT HULL, MA PROJECT

More information

5-Blade High Output 3500W Max. Hybrid Output/3000W Rated/48V WindMax Hybrid Wind Turbine w/controller, Xantrex XW4548 Inverter, Grid-tie w/backup

5-Blade High Output 3500W Max. Hybrid Output/3000W Rated/48V WindMax Hybrid Wind Turbine w/controller, Xantrex XW4548 Inverter, Grid-tie w/backup 5-Blade High Output 3500W Max. Hybrid Output/3000W Rated/48V WindMax Hybrid Wind Turbine w/controller, Xantrex XW4548 Inverter, Grid-tie w/backup Xantrex XW-SCP XW System Control Panel is needed to configure

More information

Energy Utilisation of Wind

Energy Utilisation of Wind Ing. Pavel Dostál, Ph.D., Ostrava University 1 Energy Utilisation of Wind Choice of locality Energy and wind output Wind-power installations Wind-power installations: types and classification Basic parts

More information

Engineering Flettner Rotors to Increase Propulsion

Engineering Flettner Rotors to Increase Propulsion Engineering Flettner Rotors to Increase Propulsion Author: Chance D. Messer Mentor: Jeffery R. Wehr Date: April 11, 2016 Advanced STEM Research Laboratory, Odessa High School, 107 E 4 th Avenue, Odessa

More information

Optimization of Blades of Horizontal Wind Turbines by Choosing an Appropriate Airfoil and Computer Simulation

Optimization of Blades of Horizontal Wind Turbines by Choosing an Appropriate Airfoil and Computer Simulation International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Optimization

More information

Windmills using aerodynamic drag as propelling force; a hopeless concept. ing. A. Kragten. April 2009 KD 416

Windmills using aerodynamic drag as propelling force; a hopeless concept. ing. A. Kragten. April 2009 KD 416 Windmills using aerodynamic drag as propelling force; a hopeless concept It is allowed to copy this report for private use. ing. A. Kragten April 2009 KD 416 Engineering office Kragten Design Populierenlaan

More information

6kW. following MCS accreditation. The Westwind 6kW is one of our most impressive. turbine designs, emerging as market leader in it s size

6kW. following MCS accreditation. The Westwind 6kW is one of our most impressive. turbine designs, emerging as market leader in it s size 6kW BS En 61400-12-2006 BS EN 61400-2-2006 BS EN 61400-11-2003 Class One MCS Approved Turbine The Westwind 6kW is one of our most impressive turbine designs, emerging as market leader in it s size following

More information

VERTICALLY AND HORIZONTALLY MOUNTED WIND MILLS. Wind Energy Production in Tampere University of Applied Sciences

VERTICALLY AND HORIZONTALLY MOUNTED WIND MILLS. Wind Energy Production in Tampere University of Applied Sciences VERTICALLY AND HORIZONTALLY MOUNTED WIND MILLS Wind Energy Production in Tampere University of Applied Sciences Ekaterina Evdokimova Bachelor s thesis May 2013 Degree Programme in Environmental Engineering

More information

A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment

A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment J.-Y. Park*, S. Lee* +, T. Sabourin**, K. Park** * Dept. of Mechanical Engineering, Inha University, Korea + KR Wind Energy Research

More information

Influence of the Number of Blades on the Mechanical Power Curve of Wind Turbines

Influence of the Number of Blades on the Mechanical Power Curve of Wind Turbines European Association for the Development of Renewable Energies, Environment and Power quality International Conference on Renewable Energies and Power Quality (ICREPQ 9) Valencia (Spain), 15th to 17th

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK FABRICATION AND TESTING OF CLOSE CASING VERTICAL AXIS WIND TURBINE WITH TUNNELLING

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

PREDICTION THE EFFECT OF TIP SPEED RATIO ON WIND TURBINE GENERATOR OUTPUT PARAMETER

PREDICTION THE EFFECT OF TIP SPEED RATIO ON WIND TURBINE GENERATOR OUTPUT PARAMETER Int. J. Mech. Eng. & Rob. Res. 2012 Hari Pal Dhariwal et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved PREDICTION THE EFFECT OF TIP

More information

Weightlifter Nacelle Only

Weightlifter Nacelle Only Weightlifter Nacelle Only i n s t r u c t i o n s About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms

More information

III. Wind Energy CHE 443 III. Wind Energy

III. Wind Energy CHE 443 III. Wind Energy WIND ENERGY Wind energy is the kinetic energy of air moving from one place to another in the form of wind. Wind is created as the results of uneven heating of the earth by the sun: Warm air rises leaving

More information

A Numerical Simulation Comparing the Efficiencies of Tubercle Versus Straight Leading Edge Airfoils for a Darrieus Vertical Axis Wind Turbine

A Numerical Simulation Comparing the Efficiencies of Tubercle Versus Straight Leading Edge Airfoils for a Darrieus Vertical Axis Wind Turbine A Numerical Simulation Comparing the Efficiencies of Tubercle Versus Straight Leading Edge Airfoils for a Darrieus Vertical Axis Wind Turbine By: Ross Neal Abstract: The efficiencies of sinusoidal and

More information

JJT WIND AMPLIFIER

JJT WIND AMPLIFIER JJT-001-2014 WIND AMPLIFIER Sevvel P 1, Santhosh P 2 1 Assoicate Professor, Department of Mechanical Engineering, Magna College of Engineering Email.Id : sevvel_ready@yahoo.co.in 2 Final year Mechanical

More information

The Wind Resource: Prospecting for Good Sites

The Wind Resource: Prospecting for Good Sites The Wind Resource: Prospecting for Good Sites Bruce Bailey, President AWS Truewind, LLC 255 Fuller Road Albany, NY 12203 bbailey@awstruewind.com Talk Topics Causes of Wind Resource Impacts on Project Viability

More information

Wind Energy Resource and Technologies

Wind Energy Resource and Technologies Wind Energy Resource and Technologies Dr. Ram Chandra DBT s Energy Bioscience Overseas Fellow Centre for Rural Development and Technology Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016

More information

Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India)

Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India) International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 4ǁ April 2014ǁ PP.49-54 Aerodynamically Efficient Wind Turbine Blade S Arunvinthan

More information

Test Summary Report Giraffe 2.0 Hybrid Wind-Solar Power Station - for wind: according to IEC Annex M - for solar: measurement report

Test Summary Report Giraffe 2.0 Hybrid Wind-Solar Power Station - for wind: according to IEC Annex M - for solar: measurement report Contact person Tanja Tränkle 2016-06-29 4P05805-R01 rev. 1 1 (7) Safety +46 10 516 57 19 Tanja.Trankle@sp.se Innoventum AB Morgan Widung / Marcus Ulmefors Turning Torso office 275 Lilla Varvsgatan 14 211

More information

Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip

Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip S. J. Wylie 1, S. J. Watson 1, D. G. Infield 2 1 Centre for Renewable Energy Systems Technology, Department of Electronic

More information

Vertical Wind Energy Engineering Design and Evaluation of a Twisted Savonius Wind Turbine

Vertical Wind Energy Engineering Design and Evaluation of a Twisted Savonius Wind Turbine Design and Evaluation of a Twisted Savonius Wind Turbine Ian Duffett Jeff Perry Blaine Stockwood Jeremy Wiseman Outline Problem Definition Introduction Concept Selection Design Fabrication Testing Results

More information

Sustainable Energy Science and Engineering Center. Wind Energy

Sustainable Energy Science and Engineering Center. Wind Energy Wind Energy References Chapter 15 - Text Book Wind Energy, Explained by J.F. Manwell, J.G. McGowan and A.L. Rogers, John Wiley, 2002. Wind Energy Hand Book, T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi,

More information

Terms and Definitions for Small Wind Site Assessor

Terms and Definitions for Small Wind Site Assessor Terms and Definitions for Small Wind Site Assessor AEO/ AEP: Annual energy output, also known as AEP, annual energy production of the wind electric system. Alpha: Surface friction coefficient, used to

More information

Wind Regimes 1. 1 Wind Regimes

Wind Regimes 1. 1 Wind Regimes Wind Regimes 1 1 Wind Regimes The proper design of a wind turbine for a site requires an accurate characterization of the wind at the site where it will operate. This requires an understanding of the sources

More information

Wind Resource Assessment for KING SALMON, ALASKA

Wind Resource Assessment for KING SALMON, ALASKA 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for KING SALMON, ALASKA Date last modified: 4/14/2006 Compiled

More information

Flowmeter Shootout Part II: Traditional Technologies

Flowmeter Shootout Part II: Traditional Technologies Flowmeter Shootout Part II: Traditional Technologies How to Choose Among Turbine, Positive Displacement, Thermal, Variable Area, and Open Channel Using Paradigm Cases By Jesse Yoder February 22, 2001 This

More information

Energy capture performance

Energy capture performance Energy capture performance Cost of energy is a critical factor to the success of marine renewables, in order for marine renewables to compete with other forms of renewable and fossil-fuelled power generation.

More information

Site Description: LOCATION DETAILS Report Prepared By: Tower Site Report Date

Site Description: LOCATION DETAILS Report Prepared By: Tower Site Report Date Wind Resource Summary for Holyoke Site Final Report Colorado Anemometer Loan Program Monitoring Period:: 6/21/26 /6/27 Report Date: December 2, 27 Site Description: The site is 17.4 miles south of the

More information

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES 5 th International Advanced Technologies Symposium (IATS 09), May 13-15, 2009, Karabuk, Turkey COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES Emrah KULUNK a, * and Nadir YILMAZ b a, * New

More information

Site Description: Tower Site

Site Description: Tower Site Wind Resource Summary for Elizabeth Site Final Report Colorado Anemometer Loan Program Monitoring Period: 7/3/6 /15/7 Report Date: December 22, 7 Site Description: The site is.6 miles northeast of the

More information

AN ISOLATED SMALL WIND TURBINE EMULATOR

AN ISOLATED SMALL WIND TURBINE EMULATOR AN ISOLATED SMALL WIND TURBINE EMULATOR Md. Arifujjaman Graduate Student Seminar: Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NL, Canada

More information

Exploration Series. AIRPLANE Interactive Physics Simulation Page 01

Exploration Series.   AIRPLANE Interactive Physics Simulation Page 01 AIRPLANE ------- Interactive Physics Simulation ------- Page 01 What makes an airplane "stall"? An airplane changes its state of motion thanks to an imbalance in the four main forces acting on it: lift,

More information

ROTORS for WIND POWER

ROTORS for WIND POWER ROTORS for WIND POWER P.T. Smulders Wind Energy Group Faculty of Physics University of Technology, Eindhoven ARRAKIS 1 st edition October 1991 revised edition January 2004 CONTENTS ROTORS for WIND POWER...

More information

Power curves - use of spinner anemometry. Troels Friis Pedersen DTU Wind Energy Professor

Power curves - use of spinner anemometry. Troels Friis Pedersen DTU Wind Energy Professor Power curves - use of spinner anemometry Troels Friis Pedersen DTU Wind Energy Professor Spinner anemometry using the airflow over the spinner to measure wind speed, yaw misalignment and flow inclination

More information

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer: Anemometry Anemometry Function of an anemometer: Measure some or all of the components of the wind vector In homogeneous terrain, vertical component is small express wind as -D horizontal vector For some

More information

Comparison of Wind Turbines Regarding their Energy Generation.

Comparison of Wind Turbines Regarding their Energy Generation. Comparison of Wind Turbines Regarding their Energy Generation. P. Mutschler, Member, EEE, R. Hoffmann Department of Power Electronics and Control of Drives Darmstadt University of Technology Landgraf-Georg-Str.

More information

Wind Power Systems. Energy Systems Research Laboratory, FIU

Wind Power Systems. Energy Systems Research Laboratory, FIU Wind Power Systems Historical Development of Wind Power In the US - first wind-electric systems built in the late 1890 s By 1930s and 1940s, hundreds of thousands were in use in rural areas not yet served

More information

Exploring Wind Energy

Exploring Wind Energy 2013-2014 Exploring Wind Energy Student Guide SECONDARY Introduction to Wind What is Wind? Wind is simply air in motion. It is produced by the uneven heating of the Earth s surface by energy from the sun.

More information

Wind Turbine on Telecom Tower

Wind Turbine on Telecom Tower Wind Turbine on Telecom Tower Load Estimation and Structural Design Approach Anil Agarwal (IIT Hyderabad) Srinivas Aluri (Hara Industries) Project overview 2 Motivation Telecom towers get average 13.5

More information

V MW. Exceptional performance and reliability at high-wind-speed sites. vestas.com

V MW. Exceptional performance and reliability at high-wind-speed sites. vestas.com V90-3.0 MW Exceptional performance and reliability at high-wind-speed sites vestas.com We deliver on the promise of wind power SUPERIOR YIELD AT HIGH-WIND-SPEED SITES High standards for weight and performance

More information

TWISTER Low Speed Surface Aerator

TWISTER Low Speed Surface Aerator Expanded AEROMIX Product Line Includes All Major Wastewater Aeration Technologies TWISTER Low Speed Surface Aerator Highest Oxygen Transfer The proven TWISTER Low Speed Surface Aerator delivers unmatched

More information

DEFINITIONS. Aerofoil

DEFINITIONS. Aerofoil Aerofoil DEFINITIONS An aerofoil is a device designed to produce more lift (or thrust) than drag when air flows over it. Angle of Attack This is the angle between the chord line of the aerofoil and the

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85303-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD http:// OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD Anand Kumar S malipatil 1, Anantharaja M.H 2 1,2 Department of Thermal Power Engineering, VTU-RO Gulbarga,

More information

MATH AND MAINTENANCE FOR PUMPS AND BLOWERS TRAINING SEMINAR

MATH AND MAINTENANCE FOR PUMPS AND BLOWERS TRAINING SEMINAR MATH AND MAINTENANCE FOR PUMPS AND BLOWERS TRAINING SEMINAR FORCE WEIGHT OF WATER MEASURED IN POUNDS PRESSURE = FORCE PER UNIT AREA WEIGHT PER UNIT AREA PRESSURE (PSI) = FORCE (LBS) / AREA (IN 2 ) P (PSI)

More information

Development of a Reciprocating Aerofoil Wind Energy Harvester

Development of a Reciprocating Aerofoil Wind Energy Harvester Development of a Reciprocating Aerofoil Wind Energy Harvester Russell hillips a and Danie Hattingh a Received 9 September 8, in revised form 6 November 9 and accepted December 9 Theoretical predictions

More information

2010 WIND GENERATOR. buyer s guide. by Ian Woofenden & Mick Sagrillo. home power 137 / june & july Courtesy Bill Court

2010 WIND GENERATOR. buyer s guide. by Ian Woofenden & Mick Sagrillo. home power 137 / june & july Courtesy Bill Court 2010 WIND GENERATOR buyer s guide by Ian Woofenden & Mick Sagrillo Courtesy Bill Court 44 Looking for the perfect antidote to your static solar collectors? Want something that moves, letting you know that

More information

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF AEROSPACE ENGINEERING BLADE ELEMENT MOMENTUM THEORY

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF AEROSPACE ENGINEERING BLADE ELEMENT MOMENTUM THEORY THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF AEROSPACE ENGINEERING BLADE ELEMENT MOMENTUM THEORY APPLIED TO HORIZONTAL AXIS WIND TURBINES THOMAS R. PURCELL Spring 211 A thesis

More information

Report for the Submission of Data Supporting World Record Runs in the Category Dead Upwind Vehicle Prepared by Rick Cavallaro 25 June 2012

Report for the Submission of Data Supporting World Record Runs in the Category Dead Upwind Vehicle Prepared by Rick Cavallaro 25 June 2012 Report for the Submission of Data Supporting World Record Runs in the Category Dead Upwind Vehicle Prepared by Rick Cavallaro 25 June 2012 On 16 June 2012 Rick Cavallaro made a number of runs with a wind

More information

WIND SHEAR, ROUGHNESS CLASSES AND TURBINE ENERGY PRODUCTION

WIND SHEAR, ROUGHNESS CLASSES AND TURBINE ENERGY PRODUCTION WIND SHEAR, ROUGHNESS CLASSES AND TURBINE ENERGY PRODUCTION M. Ragheb /18/17 INTRODUCTION At a height of about 1 kilometer the wind is barely affected by the surface of the Earth. In the lower atmospheric

More information

Performance of the High Solidity Wind Turbines in Low Wind Potential Sites of Sri Lanka

Performance of the High Solidity Wind Turbines in Low Wind Potential Sites of Sri Lanka Engineer Vol. XXXVIII, No. 01, pp. 7-15, 2005 Institution of Engineers, Sri Lanka 1. Performance of the High Solidity Wind Turbines in Low Wind Potential Sites of Sri Lanka Mahinsasa Narayana 1 and A G

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Increasing the power output of the Darrieus Vertical Axis Wind Turbine

Increasing the power output of the Darrieus Vertical Axis Wind Turbine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36. Increasing the power output of the Darrieus Vertical Axis Wind Turbine R. Ramkissoon 1 and K. Manohar

More information

IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY

IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY Department Of Mechanical Engineering IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY 9 Wind Data and Energy Estimation wind Energy Conversion Systems Wind Energy generators and

More information

Turbine dynamics and power curve performance

Turbine dynamics and power curve performance Turbine dynamics and power curve performance 26. Windenergietage Warnemünde, 8th November 2017 antonio.notaristefano@nispera.com Content The following topics are investigated: Turbine dynamics during changes

More information

Where are you right now? How fast are you moving? To answer these questions precisely, you

Where are you right now? How fast are you moving? To answer these questions precisely, you 4.1 Position, Speed, and Velocity Where are you right now? How fast are you moving? To answer these questions precisely, you need to use the concepts of position, speed, and velocity. These ideas apply

More information

Predicting climate conditions for turbine performance

Predicting climate conditions for turbine performance Predicting climate conditions for turbine performance Mark Žagar, Vinay Belathur Krishna, Alvaro Matesanz Gil Vestas Data Engineering & Analytics / Advanced Plant Modelling Resource assessment, power curve,

More information

T U R B I N E W I N D T I C A L 2009 design manual V E R

T U R B I N E W I N D T I C A L 2009 design manual V E R 2009 design manual V E R T I C A L W I N D T U R B I N E A New Approach to Wind Power FORM MEETS FUNCTION IN WIND ENERGY Windspire is a welcome solution for architects, planners and developers involved

More information

CIRCULATION CONTROLLED AIRFOIL ANALYSIS THROUGH 360 DEGREES ANGLE OF ATTACK

CIRCULATION CONTROLLED AIRFOIL ANALYSIS THROUGH 360 DEGREES ANGLE OF ATTACK Proceedings of the ASME 2009 3rd International Conference of Proceedings Energy Sustainability of ES2009 Energy Sustainability ES2009 July July 19-23, 2009, 2009, San San Francisco, California, USA ES2009-90341

More information

Science in Sport. 106 How fast is the wind speed? Read. Count/Tachometer Any EASYSENSE. Sensors: Loggers: Logging time: EasyLog

Science in Sport. 106 How fast is the wind speed? Read. Count/Tachometer Any EASYSENSE. Sensors: Loggers: Logging time: EasyLog Sensors: Loggers: Count/Tachometer Any EASYSENSE Science in Sport Logging time: EasyLog 106 How fast is the wind speed? Read When an Olympic or world record is set, the rules for it to stand are quite

More information