The GCOOS Mooring Plan Element Draft, 19 February 2011

Size: px
Start display at page:

Download "The GCOOS Mooring Plan Element Draft, 19 February 2011"

Transcription

1 The GCOOS Mooring Plan Element Draft, 19 February Introduction In order to proceed with the establishment of a regional coastal ocean observing system for the Gulf of Mexico, it is essential to have plans for the components comprising that system. Those components include, among others, an HF Radar system, an integrated Harmful Algal Bloom observing system, a system of sea level measurements and a system of moored buoys. This document is a draft plan for measurements made from moorings. It has been based on inputs from current mooring operators in the Gulf, from HF Radar operators, from model developers and others, but it certainly is subject to modification based on new knowledge, experience, and changes in technology and costs. Assumptions Consider only moorings for velocity, T, S, waves and met measurements. Do not include instrumentation useful on the moorings for other elements (e.g., HABS, hypoxia,...) Do not include moorings used in PORTS Do not include stations intended primarily for water level measurements even if they include met measurements etc. Deficiencies Does not include industry and CMAN stations making met measurements Cost estimates are likely too low and need another look This document is deliberately short. Section 2 gives design considerations. Section 3 describes and pictures the preliminary design. Cost estimates are given in Section 4. The final section gives Nowlin s personal prioritization for implementation. 2. Design Considerations We first consider points relative to the uses and placement of moorings in the Gulf of Mexico regional coastal ocean observing system. This discussion is divided between the shelves and the deeper water portions of the Gulf. 2.1 Shelf Moorings Correlation scales have been shown to be of order 15 km across- shelf and km along- shelf. Hence, it is totally impractical to sub- sample such motions. Their monitoring must be carried out by the use of HF Radar. We might consider three sub- regions of the shelf. The outer shelf extends from the shelf break inshore some km. The inner shelf is the region of intersecting surface and bottom Ekman layers resulting in wind- driven along shelf currents and is also affected by freshwater stratification. The mid shelf separates the inner and outer shelf regions. On narrow portions of he shelf this may not exist.

2 2.1.1 Inner and mid shelf moorings Much of the inner and mid shelf will be covered by HF Radars measuring surface currents and waves. However there remain needs to locate moorings at the following locations: Near ship channels and in difficult navigation areas, Near the limits of radar coverage to maintain information where radar coverage is poor and to verify retrieved radar estimates of currents and waves, and At regular intervals in cross- shelf arrays to monitor vertical structure and property distributions of major wind and density driven currents. Cross Shelf Moorings should have temperature and salinity measurements at the surface, mid depth and bottom, as a minimum. This can be achieved using MicroCats with inductive links. The trade off of these measurements would be that the maintenance interval may be reduced resulting in elevated O & M Due to the blanking on ADCPS buoys should be fitted with a single point current meter to collects data as close to the surface as possible as this will be required for intercomparioson with HF Radar data, All moorings near shore should measure directional waves because radar- derived wave signatures could benefit from careful verification with direct observations Outer shelf moorings This is the critical region for interactions between deepwater circulation features (e.g., Loop Current, Loop Current Eddies, cyclonic eddies) and the circulation and property distributions over the shelf. Large on- or off- shelf water exchanges can occur, drastically altering properties over the shelf Air- sea flux monitoring along the shelf break will enhance capability for predictions (atmospheric circulation, weather, storm intensity). Air- sea interaction buoys (with full suites of improved meteorological measurements developed by Robert Weller et al. in the late 1980s) should be placed along the shelf edge perhaps seven to complement the NDBC buoys, Data would be compared with bulk estimates and with numerical weather prediction and other model results when not used in those models The same shelf- edge buoys, as well as the four NDBC buoys, should be equipped with acoustic Doppler current profilers (ADCPs) and vertical arrays of temperature and conductivity sensors. 2.2 Continental Slope and Deepwater Moorings Velocity profiles as well as temperature and perhaps conductivity are needed from locations distributed throughout the deepwater Gulf, including the slope. These will be used to monitor the movement and property distributions of major circulation features. In general (with the exception of the surface Ekman layer) currents are coherent over the upper m of the water column; flow features below that level may be quite different and are frequently intensified toward the bottom. Therefore, monitoring should extend through the water column. These measurements are needed to verify and constrain numerical circulation and other ocean models, to alert commercial operators regarding current conditions and may be used to track the distribution of substances released into the deep Gulf.

3 Deepwater oil & gas exploration and production is proceeding between ~88 W 94 W. The federal government mandates that exploration and production platforms production near real time vertical profiles of currents through the upper water column using downward- looking ADCPs. Data are publically available via the National Data Buoy Center (NDBC). It should be possible to enhance measurements made on some of these platforms by adding upward looking ADCPs in the lower water column and a string of temperature- conductivity sensors along the signal/power cables leading down to the ADCPs. Based on the experiences of a number of operators who have tried to do this it is ill- conceived and therefore propose that we remove this requirement for temperature/ conductivity sensors from the proposal. The only case where this may be reasonable would be on new build structures, but would still be a very costly solution buoys and gliders are a better option. Also upward looking ADCPs on the Seabed can be very problematic and Acoustic telemetry unreliable due to background noise, therefore upward looking ADCPs can be twinned with the existing NDBC and new assets Enhanced capability industry platforms Approximately eight of the industry platforms should be enhanced to include deeper profiles of currents and discrete measurements of temperature and conductivity through the water column. See above Needed new assets Four deepwater moorings, with aforementioned capability, should be added to the west or south of the enhanced industry platforms, and seven moorings should be added east of the industry platforms. These moorings also should have standard meteorological packages and wave sensors. Drawing has been revised to add the additional mooring. And deepwater upward looking ADCPs with acoustic telemetry General Integrating Considerations It is important to note that other measurements should be included on these mooring as required for other purposes. Examples are measurements for monitoring hypoxia, harmful algal blooms, the carbon cycle, or ecosystem parameters. The costs for those measurements have not been included in this plan. 3. Preliminary Design Note: All data should be transmitted to on shore processing facilities within a maximum of 30 minutes after measurements are made. 3.1 Existing moorings operated by the NDBC and by non- federal groups should be upgraded in terms of sensing capability and data transmission. The locations of these moorings are shown on the map in Figure 2. Different symbols designate different operators: T = TABS; N = NDBC; W = WAVCIS; C = COMPS, L = LUMCON; and D = Dauphin Island Marine Laboratory.

4 Figure 2. Draft GCOOS Mooring Location Map 3.2 Deepwater moorings are in two classes We plan for eight (8) oil and gas industry deepwater platforms to be enhanced as described in section These will be located within the area in which industry platforms are operating; that area is indicated in Figure 2 by shading We plan for eleven (11) new deepwater moorings as described in section to be placed at approximately the locations shown in Figure Shelf- edge moorings The positions of the seven new shelf- edge moorings are shown in Figure 2. As seen, these would be complemented by the three NDBC buoys located near the shelf edge, although, the NDBC moorings would not have sophisticated air- sea flux measuring sensors. 3.4 Cross- shelf mooring arrays There are two categories of cross- shelf arrays. Category 1 makes maximum use of extant assets and of new shelf- edge moorings. These arrays are indicated by solid lines in Figure 2 and should be implemented first. Category 2 cross- shelf arrays, indicated by dashed lines in Figure 2, are intended to complete the inner and mid shelf array of moorings. On each cross- shelf array as attempt has been made to locate moorings near or on the following isobaths: 200, 100, 30, and 10 m. 3.5 Moorings near ship channels and in difficult navigation regions Locations of these moorings have not been specified. Rather, we include as an initial estimate the need for fifteen shallow water (depths to about 10 m) buoys capable of measuring near surface velocity, temperature and conductivity (assumed at this time to be based on the current system attached to existing navigation buoys, which reduces both capital and maintenance costs). We also

5 include ten buoys capable of measuring in water depths up to 50 m surface velocity, temperature, conductivity, directional waves and winds as well as vertical profiles of horizontal currents. 4. Cost estimates Here we begin with the costs of extant mooring assets. Then we give costs for needed new assets, beginning with the assets needed in the deepwater Gulf and then progressing to needs for monitoring near ship channels and in difficult navigation areas. I have asked a number of people indicated in the text to review these costs. To make this simpler I have constructed a spreadsheet, which I attach, I request that each Volunteer review and revise the spreadsheet as appropriate 4.1 Costs of upgrading and maintaining current non- federal assets TABS To upgrade TABS I buoys to measure current profiles, winds and waves would cost $880K. To upgrade TABS II buoys to 2.25 M buoys with full capability would cost $1,400. To prepare spares for existing 2.25 M buoys would cost $520K. The total upgrade costs would be $2,800K. Annual operating costs would be $1,220K year WAVCIS Upgrades would cost ~ $300K Annual operating costs would be ~ $980K per year COMPS Upgrades to extant equipment would cost ~ $ 1,260K. Annual operating costs needed are ~ $800K LUMCON Annual operating costs estimated at $200K DISL Including upgrades for real- time data transmission, the total costs in year one would be $278K for year one and $167K per year for continuing operation USM The cost to upgrade the mooring would be $60K. The annual cost is approximately $120K Costs of upgrading and maintaining current federal assets The costs of upgrading ten moorings to include ADCP and temperature/conductivity strings is estimated to be ~ $660K. The costs of annual operating costs of existing equipment is not included because they already are included in the federal budget TOTAL costs of existing moorings: Costs of initial upgrades $5,358K Annual operating costs $3,487K 4.2 Costs of deepwater moorings The cost of enhancing industry platforms will be ~ $85K each, for a total cost of $680K. Industry will be expected to maintain the equipment. However an annual replacement and upgrade cost of ~ $68K will be needed.

6 The costs of added assets will be ~ $390K per buoy and $240K per hear for operation and replacement and upgrades. For ten buoys the cost will be $3,900K for assets and $2,400K for operation. Total for deepwater moorings: $4,580K $2,468K 4.3 Costs of shelf- edge moorings The cost for each of the shelf- edge moorings would be $330K with temperature and conductivity string, ADCP, waves and surface water properties. The cost of an IMET system with data transmission to measure surface fluxes would be $83K per buoy, installed and calibrated. Thus, the seven new moorings would cost $2,891K, and annual operating costs would be ~ $1,400K. Modifying the NDBC moorings to include a vertical string of temperature and conductivity sensors and a full depth ADCP would cost ~ $ 270K for the three. Total for shelf- edge moorings: $3,161K $1,400K 4.4 Costs of cross- shelf arrays This cost estimates are based on the incorporation of extant assets and shelf- edge moorings into the cross- shelf arrays. Category 1 arrays will require ten TABS II buoys plus three spares at $120K each and seven 2.2- m buoys plus three spares at $260K each. Total costs for category 1 cross- shelf arrays: $4,160K $1,700K Category 2 arrays will require four plus one spare 2.2- m buoy with ADCP at $290K each, five plus two spare 2.2- m buoys with 100 m ADCP at $260K, and nine plus three TABS II buoys at $210K each. Total costs for category 2 arrays: $5,790K $2,160K Total costs for cross- shelf arrays $9,950K $3,860K 4.5 Costs of moorings for channels and difficult navigation regions Ten shallow water (TABS I) each would cost $300K. The intermediate depth moorings cost $120K each for a total of $1,200K.

7 Total costs: 4.6 TOTAL COSTS TOTAL $1,500K $1,000K $24,549K $12,215K $36,764K Note these estimates do not include currently budgeted federal, state, or industry funds being used for operations or maintenance costs for instrumentation deployed on oil and gas industry platforms. 5. Implementation Priority The sub- arrays of this mooring plan are divided here into priority order for implementation. This selection is attributed to Worth Nowlin. 1 is the sub- array of highest priority; 2 is the sub- array of next highest priority; etc. 1. Upgrades and continuation of extant moorings: Clearly, the first item of business is to bring existing assets up to needed capabilities and to maintain their operation. 2. Category 1 cross- shelf arrays: If these arrays are implemented prior to all of the shelf- break moorings, it will be necessary to implement some of the shelf- break moorings to complete the cross- shelf arrays. 3. Moorings for channels and difficult navigation regions 4. Deepwater moorings: This implementation should begin with enhancements to the industry platforms. 5. Category 2 cross- shelf arrays 6. Shelf- edge array 6. Planning Team Members The team that developed the plan for this element is identified in Table 1. Table 1. Development Team Members Name Affiliation Expertise Richard Crout NOAA, NDBC NDBC Assets, buoy technology and Data Management Cort Cooper Chevron Oil industry capabilities, and requirements Kyeong Park Dauphin Island Marine HABS, coastal requirements Laboratory Mark Luther USF Bouy and sensor technology, COMPS, Florida Ports Buzz Martin TGLO TABS Network, Oil Spill Response Steve DiMarco TAMU TABS Network, research activities and requirements Worth Nowlin TAMU GCOOS, Observational requirement in the Gulf, HABS Stephan Howden USM HF Radar Alan Lewitus NOAA Hypoxia, Alexis Lugo Fernandez BOEMRE BOEMRE requirements, Gulf research, NTL measurement programs Jan van Smirren Fugro Oil industry capabilities, and requirements An initial draft plan was prepared in July 2010 by Worth Nowlin with information inputs from Nick Shay, Chris Mooers, Norman Guinasso, Robert Weller, Robert Weisberg, and Cort Cooper.

An IOOS Operational Wave Observation Plan Supported by NOAA IOOS Program & USACE

An IOOS Operational Wave Observation Plan Supported by NOAA IOOS Program & USACE An IOOS Operational Wave Observation Plan Supported by NOAA IOOS Program & USACE R.E. Jensen, W.A. Birkemeier and W. Burnett JCOMM-Workshop on Wave Measurements from Buoys Wave Information to Application

More information

MAPCO2 Buoy Metadata Report Project Title:

MAPCO2 Buoy Metadata Report Project Title: MAPCO2 Buoy Metadata Report Project Title: Autonomous Multi-parameter Measurements from a Drifting Buoy During the SO GasEx Experiment Funding Agency: NOAA Global Carbon Cycle program PI(s): Christopher

More information

High Frequency Acoustical Propagation and Scattering in Coastal Waters

High Frequency Acoustical Propagation and Scattering in Coastal Waters High Frequency Acoustical Propagation and Scattering in Coastal Waters David M. Farmer Graduate School of Oceanography (educational) University of Rhode Island Narragansett, RI 02882 phone: (401) 874-6222

More information

Pioneer Array Micro-siting Public Input Process Frequently Asked Questions

Pioneer Array Micro-siting Public Input Process Frequently Asked Questions Pioneer Array Micro-siting Public Input Process Frequently Asked Questions The National Science Foundation (NSF) has completed the micro-siting of the moored array of the Ocean Observatories Initiative

More information

NSF's Ocean Observatories Initiative: Building Research Infrastructure for the Pacific Northwest and the Broader Community

NSF's Ocean Observatories Initiative: Building Research Infrastructure for the Pacific Northwest and the Broader Community Agenda Item B.3.b Supplemental OOI PowerPoint April 2013 Ocean Observatories Initiative NSF's Ocean Observatories Initiative: Building Research Infrastructure for the Pacific Northwest and the Broader

More information

JCOMM Technical Workshop on Wave Measurements from Buoys

JCOMM Technical Workshop on Wave Measurements from Buoys JCOMM Technical Workshop on Wave Measurements from Buoys Val Swail Chair, JCOMM Expert Team on Wind Waves and Storm Surges Neville Smith Vincent Cardone Peter Janssen Gerbrand Komen Peter Taylor WIND WAVES

More information

CHAPTER 7 Ocean Circulation

CHAPTER 7 Ocean Circulation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CHAPTER 7 Ocean Circulation Words Ocean currents Moving seawater Surface ocean currents Transfer heat from warmer to cooler areas Similar to pattern of major wind belts

More information

Understanding the Dynamics of Shallow-Water Oceanographic Moorings

Understanding the Dynamics of Shallow-Water Oceanographic Moorings Understanding the Dynamics of Shallow-Water Oceanographic Moorings Mark A. Grosenbaugh Department of Applied Ocean Physics & Engineering Woods Hole Oceanographic Institution Woods Hole, MA 02543 phone:

More information

Air-Sea Interaction Spar Buoy Systems

Air-Sea Interaction Spar Buoy Systems DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited Air-Sea Interaction Spar Buoy Systems Hans C. Graber CSTARS - University of Miami 11811 SW 168 th Street, Miami,

More information

Well, Well, Well. BACKGROUND Seasonal upwelling is a very important process in the coastal ocean of the Pacific Northwest.

Well, Well, Well. BACKGROUND Seasonal upwelling is a very important process in the coastal ocean of the Pacific Northwest. Well, Well, Well SUMMARY In this activity students investigate the relationship between winds, surface currents, sea surface temperature and upwelling and downwelling off the coast of OR and WA. Students

More information

COMPARISON OF DEEP-WATER ADCP AND NDBC BUOY MEASUREMENTS TO HINDCAST PARAMETERS. William R. Dally and Daniel A. Osiecki

COMPARISON OF DEEP-WATER ADCP AND NDBC BUOY MEASUREMENTS TO HINDCAST PARAMETERS. William R. Dally and Daniel A. Osiecki COMPARISON OF DEEP-WATER ADCP AND NDBC BUOY MEASUREMENTS TO HINDCAST PARAMETERS William R. Dally and Daniel A. Osiecki Surfbreak Engineering Sciences, Inc. 207 Surf Road Melbourne Beach, Florida, 32951

More information

Offshore Wind Energy Stringent quality assurance and quality control. Coastal and Freshwater Fast responding and flexible organisation

Offshore Wind Energy Stringent quality assurance and quality control. Coastal and Freshwater Fast responding and flexible organisation Services Oceanographic and Positioning Equipment Rental Meteorological and Oceanographic Surveys Data Analysis and Characterisation Marine Energy Resource Assessment Real-Time Monitoring Founded in 2010,

More information

Wave research at Department of Oceanography, University of Hawai i

Wave research at Department of Oceanography, University of Hawai i Wave research at Department of Oceanography, University of Hawai i Hawaii wave climate. Directional waverider buoys around Hawaii. Past and present wave-related research projects. Effect of tides on wave

More information

An Observational and Modeling Study to Quantify the Space/Time Scales of Inner Shelf Ocean Variability and the Potential Impacts on Acoustics

An Observational and Modeling Study to Quantify the Space/Time Scales of Inner Shelf Ocean Variability and the Potential Impacts on Acoustics DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Observational and Modeling Study to Quantify the Space/Time Scales of Inner Shelf Ocean Variability and the Potential

More information

ATON System Workshop

ATON System Workshop ATON System Workshop ATON System: Real-time current measurements from Coast Guard navigation buoys in ports, bays and the coastal ocean Aid-to-Navigation = ATON ATON System Workshop Outline: Overview of

More information

Currents measurements in the coast of Montevideo, Uruguay

Currents measurements in the coast of Montevideo, Uruguay Currents measurements in the coast of Montevideo, Uruguay M. Fossati, D. Bellón, E. Lorenzo & I. Piedra-Cueva Fluid Mechanics and Environmental Engineering Institute (IMFIA), School of Engineering, Research

More information

Effects of Offshore Forcing in the Nearshore Environment

Effects of Offshore Forcing in the Nearshore Environment Effects of Offshore Forcing in the Nearshore Environment Geno Pawlak Department of Ocean and Resources Engineering University of Hawaii at Manoa 2540 Dole St., Holmes Hall 402 Honolulu, HI 96822 phone:

More information

Ocean Observatories Initiative (OOI) Moorings: New Capabilities for Seagoing Science

Ocean Observatories Initiative (OOI) Moorings: New Capabilities for Seagoing Science Ocean Observatories Initiative Ocean Observatories Initiative (OOI) Moorings: New Capabilities for Seagoing Science presented by Ed Dever and Walt Waldorf November 20, 2014 OOI Science Themes Coastal and

More information

7.4 Temperature, Salinity and Currents in Jamaica Bay

7.4 Temperature, Salinity and Currents in Jamaica Bay 7.4 Temperature, Salinity and Currents in Jamaica Bay Arnold Gordon, Bruce Huber and Robert Houghton 7.4.1 INTRODUCTION Jamaica Bay stratification is weakly indicative of a shallow, tidally active environment,

More information

Country report - India NATIONAL INSTITUTE OF OCEAN TECHNOLOGY 07/10/2010

Country report - India NATIONAL INSTITUTE OF OCEAN TECHNOLOGY 07/10/2010 Country report - India NATIONAL INSTITUTE OF OCEAN TECHNOLOGY 07/10/2010 XXVI DBCP meeting 28 September 2010 Department of Civil Engineering, NIT Trichy 2 FOCUS 1/5 of world population 50 % living along

More information

"Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider"

Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. "Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider" Luca Centurioni Scripps Institution of Oceanography

More information

THE CHALLENGES OF A LARGE-AREA BATHYMETRIC SURVEY

THE CHALLENGES OF A LARGE-AREA BATHYMETRIC SURVEY THE CHALLENGES OF A LARGE-AREA BATHYMETRIC SURVEY Agenda: - Introduction - Tender - Project Planning - Survey - Processing - Delivery - Conclusion 2 Introduction We know less of the oceans at our feet,

More information

Temperature, salinity, density, and the oceanic pressure field

Temperature, salinity, density, and the oceanic pressure field Chapter 2 Temperature, salinity, density, and the oceanic pressure field The ratios of the many components which make up the salt in the ocean are remarkably constant, and salinity, the total salt content

More information

Wave energy converter effects on wave and sediment circulation

Wave energy converter effects on wave and sediment circulation Wave energy converter effects on wave and sediment circulation Grace Chang and Craig Jones Integral Consulting Inc. cjones@integral-corp.com; gchang@integral-corp.com Jesse Roberts, Kelley Ruehl, and Chris

More information

The Great Coastal Gale of 2007 from Coastal Storms Program Buoy 46089

The Great Coastal Gale of 2007 from Coastal Storms Program Buoy 46089 The Great Coastal Gale of 2007 from Coastal Storms Program Buoy 46089 Richard L. Crout, Ian T. Sears, and Lea K. Locke NOAA National Data Buoy Center 1007 Balch Blvd. Stennis Space Center, MS 39529 USA

More information

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide.

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide. The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg and Roger Flood School of Marine and Atmospheric Sciences, Stony Brook University Since the last report was issued on January 31

More information

EARTH, PLANETARY, & SPACE SCIENCES 15 INTRODUCTION TO OCEANOGRAPHY. LABORATORY SESSION #6 Fall Ocean Circulation

EARTH, PLANETARY, & SPACE SCIENCES 15 INTRODUCTION TO OCEANOGRAPHY. LABORATORY SESSION #6 Fall Ocean Circulation EARTH, PLANETARY, & SPACE SCIENCES 15 INTRODUCTION TO OCEANOGRAPHY LABORATORY SESSION #6 Fall 2017 Ocean Circulation The focus of the Lab this week is circulation of the ocean and atmosphere. Here, you

More information

MOTUS Wave Buoys. Powered By the Aanderaa MOTUS Directional Wave Sensor

MOTUS Wave Buoys. Powered By the Aanderaa MOTUS Directional Wave Sensor MOTUS Wave Buoys Powered By the Aanderaa MOTUS Directional Wave Sensor Two Buoys, One Brain The Aanderaa MOTUS directional wave sensor factory calibrated and currently available on two proven buoy platforms:

More information

South Bay Coastal Ocean Observing System California Clean Beaches Initiative

South Bay Coastal Ocean Observing System California Clean Beaches Initiative South Bay Coastal Ocean Observing System California Clean Beaches Initiative Quarterly Report March 2004 to City of Imperial Beach Eric Terrill 1 1 Scripps Institution of Oceanography, University of California,

More information

South Bay Coastal Ocean Observing System California Clean Beaches Initiative

South Bay Coastal Ocean Observing System California Clean Beaches Initiative South Bay Coastal Ocean Observing System California Clean Beaches Initiative Quarterly Report September 2003 to City of Imperial Beach Eric Terrill 1 1 Scripps Institution of Oceanography, University of

More information

Atmospheric Forcing and the Structure and Evolution of the Upper Ocean in the Bay of Bengal

Atmospheric Forcing and the Structure and Evolution of the Upper Ocean in the Bay of Bengal DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Atmospheric Forcing and the Structure and Evolution of the Upper Ocean in the Bay of Bengal J. Thomas Farrar and Robert

More information

TRIAXYS Acoustic Doppler Current Profiler Comparison Study

TRIAXYS Acoustic Doppler Current Profiler Comparison Study TRIAXYS Acoustic Doppler Current Profiler Comparison Study By Randolph Kashino, Axys Technologies Inc. Tony Ethier, Axys Technologies Inc. Reo Phillips, Axys Technologies Inc. February 2 Figure 1. Nortek

More information

Marine Renewables Industry Association. Marine Renewables Industry: Requirements for Oceanographic Measurements, Data Processing and Modelling

Marine Renewables Industry Association. Marine Renewables Industry: Requirements for Oceanographic Measurements, Data Processing and Modelling Marine Renewables Industry Association Marine Renewables Industry: Requirements for Oceanographic Measurements, Data Processing and Modelling October 2009 Table of Contents 1. Introduction... 1 2. Measurements

More information

CROSS-SHORE SEDIMENT PROCESSES

CROSS-SHORE SEDIMENT PROCESSES The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

Wave-Phase-Resolved Air-Sea Interaction

Wave-Phase-Resolved Air-Sea Interaction DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave-Phase-Resolved Air-Sea Interaction W. Kendall Melville Scripps Institution of Oceanography (SIO) UC San Diego La Jolla,

More information

SeaSmart. Jonathan Evans

SeaSmart. Jonathan Evans SeaSmart A new approach for rapid, on-site resource assessment at potential tidal stream energy array sites using MAS Marine Solutions for the Deep Data World Jonathan Evans Presentation Outline Marine

More information

Coastal Wave Energy Dissipation: Observations and Modeling

Coastal Wave Energy Dissipation: Observations and Modeling Coastal Wave Energy Dissipation: Observations and Modeling Jeffrey L Hanson US Army Corps of Engineers Field Research Facility USACE Field Research Facility Kent K. Hathaway US Army Corps of Engineers

More information

MOOS IvP Helm Based Simulations of Collision Avoidance by an Autonomous Surface Craft Performing Repeat-Transect Oceanographic Surveys

MOOS IvP Helm Based Simulations of Collision Avoidance by an Autonomous Surface Craft Performing Repeat-Transect Oceanographic Surveys MOOS IvP Helm Based Simulations of Collision Avoidance by an Autonomous Surface Craft Performing Repeat-Transect Oceanographic Surveys Michael A. Filimon Dept. of Ocean Engineering Daniel L. Codiga Grad.

More information

APPENDIX G WEATHER DATA SELECTED EXTRACTS FROM ENVIRONMENTAL DATA FOR BCFS VESSEL REPLACEMENT PROGRAM DRAFT REPORT

APPENDIX G WEATHER DATA SELECTED EXTRACTS FROM ENVIRONMENTAL DATA FOR BCFS VESSEL REPLACEMENT PROGRAM DRAFT REPORT APPENDIX G WEATHER DATA SELECTED EXTRACTS FROM ENVIRONMENTAL DATA FOR BCFS VESSEL REPLACEMENT PROGRAM DRAFT REPORT Prepared for: B.C. Ferries Services Inc. Prepared by: George Roddan, P.Eng. Roddan Engineering

More information

Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines

Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines Southeast Asian Fisheries Development Center Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines Anond Snidvongs Department od Marine Science, Chulalongkorn University, Bangkok

More information

Review of Equivalent Neutral Winds and Stress

Review of Equivalent Neutral Winds and Stress Review of Equivalent Neutral Winds and Stress Mark A. Bourassa Center for Ocean-Atmospheric Prediction Studies, Geophysical Fluid Dynamics Institute & Department of Earth, Ocean and Atmospheric Science

More information

Draft of OKMC Cruise Plan (R/V Revelle June 1-14, 2012 RR1205)

Draft of OKMC Cruise Plan (R/V Revelle June 1-14, 2012 RR1205) Draft of OKMC Cruise Plan (R/V Revelle June 1-14, 2012 RR1205) Ren-Chieh Lien and Thomas B Sanford 1. Objectives In the RR1205 cruise, we will deploy five subsurface moorings, one surface mooring (TBD),

More information

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA Updates to OSCAR and challenges with capturing the wind-driven currents. Wind-Driven Surface Currents Kathleen Dohan Earth and Space Research, Seattle, WA ENSO OSCAR Surface currents from satellite fields

More information

High Ping Rate Profile Water Mode 12

High Ping Rate Profile Water Mode 12 Application Note FSA-014 (October 2008) Revised October 2008 High Ping Rate Profile Water Mode 12 Introduction Water Mode 12 is the result of the continued evolution of the signal processing within our

More information

Airborne Remote Sensing of Surface and Internal Wave Processes on the Inner Shelf

Airborne Remote Sensing of Surface and Internal Wave Processes on the Inner Shelf Airborne Remote Sensing of Surface and Internal Wave Processes on the Inner Shelf Ken Melville, Luc Lenain Scripps Institution of Oceanography North Wind/Wave NDBC Station 42040 29.212 N 88.207 W 19 Oct

More information

Observations of Velocity Fields Under Moderately Forced Wind Waves

Observations of Velocity Fields Under Moderately Forced Wind Waves Observations of Velocity Fields Under Moderately Forced Wind Waves Timothy P. Stanton Oceanography Department, Code OC/ST Naval Postgraduate School Monterey, CA 93943-5000 phone: (831) 656 3144 fax: (831)

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Nearshore Circulation Undertow and Rip Cells Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay

More information

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 INTRODUCTION Sontek/YSI has introduced new firmware and software for their RiverSurveyor product line. Firmware changes

More information

Surface Tracking Feature

Surface Tracking Feature TELEDYNE RD INSTRUM ENTS A Teledyne Technologies Company Application Note FSA-022 (June 2008) Surface Tracking Feature 1 Introduction The following Application Note serves as a guide of how to use the

More information

BOTTOM MAPPING WITH EM1002 /EM300 /TOPAS Calibration of the Simrad EM300 and EM1002 Multibeam Echo Sounders in the Langryggene calibration area.

BOTTOM MAPPING WITH EM1002 /EM300 /TOPAS Calibration of the Simrad EM300 and EM1002 Multibeam Echo Sounders in the Langryggene calibration area. BOTTOM MAPPING WITH EM1002 /EM300 /TOPAS Calibration of the Simrad EM300 and EM1002 Multibeam Echo Sounders in the Langryggene calibration area. by Igor Kazantsev Haflidi Haflidason Asgeir Steinsland Introduction

More information

SEASONDE DETECTION OF TSUNAMI WAVES

SEASONDE DETECTION OF TSUNAMI WAVES SEASONDE DETECTION OF TSUNAMI WAVES Belinda Lipa, John Bourg, Jimmy Isaacson, Don Barrick, and Laura Pederson 1 I. INTRODUCTION We here report on preliminary results of a study to assess the capability

More information

Mooring Modifications for the Reduction of Losses to Vandalism

Mooring Modifications for the Reduction of Losses to Vandalism Mooring Modifications for the Reduction of Losses to Vandalism H. Paul Freitag Chris Meinig Andrew J. Shepherd Pacific Marine Environmental Laboratory Seattle, Washington, USA Linda D. Stratton JISAO/University

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Lecture 22 Nearshore Circulation Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay within the

More information

Overview. 2 Module 13: Advanced Data Processing

Overview. 2 Module 13: Advanced Data Processing 2 Module 13: Advanced Data Processing Overview This section of the course covers advanced data processing when profiling. We will discuss the removal of the fairly gross effects of ship heave and talk

More information

CoastaZ Engineering. Technical Note AIRBORNE COASTAL CURRENT EVALUATION SURVEY SYSTEM

CoastaZ Engineering. Technical Note AIRBORNE COASTAL CURRENT EVALUATION SURVEY SYSTEM CETN VI-25 (Dee 92) CoastaZ Engineering Technical Note AIRBORNE COASTAL CURRENT EVALUATION SURVEY SYSTEM PURPOSE: This Technical Note introduces a new method for collecting current measurements at multiple

More information

Ocean Currents Unit (4 pts)

Ocean Currents Unit (4 pts) Name: Section: Ocean Currents Unit (Topic 9A-1) page 1 Ocean Currents Unit (4 pts) Ocean Currents An ocean current is like a river in the ocean: water is flowing traveling from place to place. Historically,

More information

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK The 9 th International Conference on Coasts, Ports and Marine Structures (ICOPMAS 2010) 29 Nov.-1 Dec. 2010 (Tehran) DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK sayed mohammad

More information

The construction of Deepwater Navigation Channel (DNC) in the Bystry arm of the Danube Delta has started in The whole project provides the

The construction of Deepwater Navigation Channel (DNC) in the Bystry arm of the Danube Delta has started in The whole project provides the Annex 45 Numerical Studies of Waves, Currents and Sediment Transport at the Marine Part of Deepwater Navigation Channel through the Bystry Arm of the Danube Delta and Model Verification based on Laboratory

More information

Modeling 3D circulation in the Choctawhatchee Bay and River System

Modeling 3D circulation in the Choctawhatchee Bay and River System Modeling 3D circulation in the Choctawhatchee Bay and River System Rosemary Cyriac 1, Casey Dietrich 1, Arash Fathi 2, Clint Dawson 2, Kendra Dresback 3, Cheryl Ann Blain 4, Matthew Bilskie 5, Scott Hagen

More information

Eric J. Aronchick, B.S. Oceanographic Field Technician

Eric J. Aronchick, B.S. Oceanographic Field Technician , B.S. Oceanographic Field Technician EXPERTISE Experienced in conducting offshore shallow, mid, and deep water deployment and recovery operations of oceanographic instrumentation and equipment. Skilled

More information

Coastal Sediment Transport Modeling Ocean Beach & San Francisco Bight, CA

Coastal Sediment Transport Modeling Ocean Beach & San Francisco Bight, CA 1 Coastal Sediment Transport Modeling Ocean Beach & San Francisco Bight, CA Honghai Li and Lihwa Lin Engineering Research and Development Center U.S. Army Corps of Engineers Frank Wu, Lisa Andes, and James

More information

Predicting the Surface Currents of Guanabara Bay Dr Andrew McCowan 1, Elise Lawry 2, Ryan Dermek 3

Predicting the Surface Currents of Guanabara Bay Dr Andrew McCowan 1, Elise Lawry 2, Ryan Dermek 3 Dr Andrew 1, Elise Lawry 2, Ryan Dermek 3 1 Managing Director, Water Technology Pty Ltd, Melbourne, Australia E-mail: Andrew.@watertech.com.au 2 Senior Engineer, Water Technology Pty Ltd, Melbourne, Australia

More information

VIDEO TRANSCRIPT. A Proposal to Expand the Flower Garden Banks National Marine Sanctuary An interview with Sanctuary Superintendent, G.P.

VIDEO TRANSCRIPT. A Proposal to Expand the Flower Garden Banks National Marine Sanctuary An interview with Sanctuary Superintendent, G.P. VIDEO TRANSCRIPT A Proposal to Expand the Flower Garden Banks National Marine Sanctuary An interview with Sanctuary Superintendent, G.P. Schmahl (Opening scene of Flower Garden Banks National Marine Sanctuary

More information

Lesson: Ocean Circulation

Lesson: Ocean Circulation Lesson: Ocean Circulation By Keith Meldahl Corresponding to Chapter 9: Ocean Circulation As this figure shows, there is a connection between the prevailing easterly and westerly winds (discussed in Chapter

More information

Nortek Technical Note No.: TN-021. Chesapeake Bay AWAC Evaluation

Nortek Technical Note No.: TN-021. Chesapeake Bay AWAC Evaluation Nortek Technical Note No.: TN-021 Title: Chesapeake Bay AWAC Evaluation Last Edited: October 5, 2004 Authors: Eric Siegel-NortekUSA, Chris Malzone-NortekUSA, Torstein Pedersen- Number of Pages: 12 Chesapeake

More information

US Navy Wave Energy Test Site. Kaneohe, HI

US Navy Wave Energy Test Site. Kaneohe, HI US Navy Wave Energy Test Site Kaneohe, HI Presented by: Luis A. Vega Ph.D., HNEI, University of Hawaii September 24, 2014 MHK Testing in Hawaii (excluding OTEC) What do you do to support/facilitate testing?

More information

14/10/2013' Bathymetric Survey. egm502 seafloor mapping

14/10/2013' Bathymetric Survey. egm502 seafloor mapping egm502 seafloor mapping lecture 10 single-beam echo-sounders Bathymetric Survey Bathymetry is the measurement of water depths - bathymetry is the underwater equivalent of terrestrial topography. A transect

More information

Potential applications of AUVs and Gliders in Offshore Windfarm Site Surveys

Potential applications of AUVs and Gliders in Offshore Windfarm Site Surveys Potential applications of AUVs and Gliders in Offshore Windfarm Site Surveys Dr James Hunt (National Oceanography Centre, Southampton) MREKE Internship in partnership with MARS at NOCS Introduction to

More information

V Complying with IHO S-52/S-63/S-64

V Complying with IHO S-52/S-63/S-64 Model FEA-2107/2807 V.06.50 Complying with IHO S-52/S-63/S-64 The software has been upgraded to V.06.50 in accordance with the IHO standards. IHO S-52 Ed. 6.1.1 Specifications for Chart Contents and Display

More information

High Frequency Acoustical Propagation and Scattering in Coastal Waters

High Frequency Acoustical Propagation and Scattering in Coastal Waters High Frequency Acoustical Propagation and Scattering in Coastal Waters David M. Farmer Graduate School of Oceanography (educational) University of Rhode Island Narragansett, RI 02882 Phone: (401) 874-6222

More information

THE EFFECT OF THE OCEAN EDDY ON TROPICAL CYCLONE INTENSITY

THE EFFECT OF THE OCEAN EDDY ON TROPICAL CYCLONE INTENSITY TE EFFECT OF TE OCEAN ON TROPICAL CYCLONE INTENSITY 3C.1 Chia-Ying Lee and Chun-Chieh Wu* Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan 1. INTRODUCTION It has been widely

More information

Coastal Wave Studies FY13 Summary Report

Coastal Wave Studies FY13 Summary Report DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coastal Wave Studies FY13 Summary Report Jeffrey L. Hanson US Army Corps of Engineers, Field Research Facility 1261 Duck

More information

10% water in the world is tied up in the surface ocean currents. (above the pycnocline) Primary source is wind: Westerlies, Trades, Polar Easterlies

10% water in the world is tied up in the surface ocean currents. (above the pycnocline) Primary source is wind: Westerlies, Trades, Polar Easterlies Oceanography Chapter 9 10% water in the world is tied up in the surface ocean currents. (above the pycnocline) Primary source is wind: Westerlies, Trades, Polar Easterlies Coriolis deflects winds (and

More information

The Ocean is a Geophysical Fluid Like the Atmosphere. The Physical Ocean. Yet Not Like the Atmosphere. ATS 760 Global Carbon Cycle The Physical Ocean

The Ocean is a Geophysical Fluid Like the Atmosphere. The Physical Ocean. Yet Not Like the Atmosphere. ATS 760 Global Carbon Cycle The Physical Ocean The Physical Ocean The Ocean is a Geophysical Fluid Like the Atmosphere Three real forces: Gravity Pressure gradients Friction Two apparent forces: Coriolis and Centrifugal Geostrophic & Hydrostatic balances

More information

Wind measurements that reduce electricity prices

Wind measurements that reduce electricity prices Wind measurements that reduce electricity prices Extensive testing in three countries has proven that laser measurements of wind provide precise, reliable wind data. The research findings will make it

More information

Data Collection and Processing: Elwha Estuary Survey, February 2013

Data Collection and Processing: Elwha Estuary Survey, February 2013 Data Collection and Processing: Elwha Estuary Survey, February 2013 Ian Miller, WA Sea Grant Olympic Peninsula Field Office, 1502 E. Lauridsen Blvd #82, Port Angeles, WA 98362 immiller@u.washington.edu

More information

Wave-Current Interaction in Coastal Inlets and River Mouths

Wave-Current Interaction in Coastal Inlets and River Mouths DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave-Current Interaction in Coastal Inlets and River Mouths Tim T. Janssen Department of Geosciences, San Francisco State

More information

(20 points) 1. ENSO is a coupled climate phenomenon in the tropical Pacific that has both regional and global impacts.

(20 points) 1. ENSO is a coupled climate phenomenon in the tropical Pacific that has both regional and global impacts. SIO 210 Problem Set 4 Answer key December 1, 2014 Due Dec. 12, 2014 (20 points) 1. ENSO is a coupled climate phenomenon in the tropical Pacific that has both regional and global impacts. (2 points) a)

More information

Chapter 4 EM THE COASTAL ENGINEERING MANUAL (Part I) 1 August 2008 (Change 2) Table of Contents. Page. I-4-1. Background...

Chapter 4 EM THE COASTAL ENGINEERING MANUAL (Part I) 1 August 2008 (Change 2) Table of Contents. Page. I-4-1. Background... Chapter 4 EM 1110-2-1100 THE COASTAL ENGINEERING MANUAL (Part I) 1 August 2008 (Change 2) Table of Contents I-4-1. Background... Page I-4-1 a. Shore Protection Planning and Design, TR 4... I-4-1 b. Shore

More information

National Report of China

National Report of China National Report of China Yu Ting (NMDIS), State Oceanic Administration (SOA), China DBCP 29, 27 Sep. 2013, Paris, France Contents 1 Current program status 2 Future deployment plan 3 Technical development

More information

Columbia River Plume 2006 OSU Ocean Mixing Nash, Kilcher, Moum et al. CR05 Cruise Report (RISE Pt. Sur, May )

Columbia River Plume 2006 OSU Ocean Mixing Nash, Kilcher, Moum et al. CR05 Cruise Report (RISE Pt. Sur, May ) CR05 Cruise Report (RISE Pt. Sur, May 21-31 2006) Group Summary: Participants: Pt. Sur Ocean Mixing Group: Jonathan Nash, Levi Kilcher, Alexander Perlin, Greg Avicola; Pt. Sur UW: Emily Spahn (Alex Horner-Devine;

More information

Benefit of ESTCP/SERDP Research Program on Underwater Explosive Safety

Benefit of ESTCP/SERDP Research Program on Underwater Explosive Safety Benefit of ESTCP/SERDP Research Program on Underwater Explosive Safety Timothy W. Shelton, PE Supervisory Research Hydraulic Engineer ERDC CHL Oct 2017 DoD has very few options for disposing UXO recovered

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE By William S. Kessler and Richard Kleeman Journal of Climate Vol.13, 1999 SWAP, May 2009, Split, Croatia Maristella Berta What does give

More information

Sustainable Ocean Observations to Help Protect the Environment

Sustainable Ocean Observations to Help Protect the Environment Texas Automated Buoy System Sustainable Ocean Observations to Help Protect the Environment John N. Walpert, Norman L. Guinasso Jr., Linwood L. Lee Geochemical and Environmental Research Group, Texas A&M

More information

NATIONAL MARINE FISHERIES SERVICE (NMFS) REPORT ON HIGHLY MIGRATORY SPECIES (HMS) ACTIVITIES

NATIONAL MARINE FISHERIES SERVICE (NMFS) REPORT ON HIGHLY MIGRATORY SPECIES (HMS) ACTIVITIES Agenda Item J.1.a NMFS Report 1 March 2019 NATIONAL MARINE FISHERIES SERVICE (NMFS) REPORT ON HIGHLY MIGRATORY SPECIES (HMS) ACTIVITIES Deep-set Buoy Gear (DSBG) Authorization and National Environmental

More information

SURFACE CURRENTS AND TIDES

SURFACE CURRENTS AND TIDES NAME SURFACE CURRENTS AND TIDES I. Origin of surface currents Surface currents arise due to the interaction of the prevailing wis a the ocean surface. Hence the surface wi pattern (Figure 1) plays a key

More information

Ocean Circulation. Si Hui Lee and Frances Wen. You can access ME at

Ocean Circulation. Si Hui Lee and Frances Wen. You can access ME at Ocean Circulation Si Hui Lee and Frances Wen You can access ME at http://tinyurl.com/oceancirculation Earth - the blue planet - 71% area covered by the oceans - 3/4 of ocean area between 3000-6000m deep

More information

A Cost Effective and Efficient Way to Assess Trail Conditions: A New Sampling Approach

A Cost Effective and Efficient Way to Assess Trail Conditions: A New Sampling Approach A Cost Effective and Efficient Way to Assess Trail Conditions: A New Sampling Approach Rachel A. Knapp, Graduate Assistant, University of New Hampshire Department of Natural Resources and the Environment,

More information

ValidatingWindProfileEquationsduringTropicalStormDebbyin2012

ValidatingWindProfileEquationsduringTropicalStormDebbyin2012 Global Journal of Researches in Engineering: e Civil And Structural Engineering Volume 4 Issue Version. Year 24 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from

More information

An Atlas of Oceanic Internal Solitary Waves (February 2004) by Global Ocean Associates Prepared for Office of Naval Research Code 322 PO

An Atlas of Oceanic Internal Solitary Waves (February 2004) by Global Ocean Associates Prepared for Office of Naval Research Code 322 PO Overview The is located in the North Atlantic Ocean between southern Ireland and southwest England (Figure 1). The Sea s western edge covers a continental shelf region characterized by rough and irregular

More information

Upstream environment for SBI - Modeled and observed biophysical conditions in the northern Bering Sea

Upstream environment for SBI - Modeled and observed biophysical conditions in the northern Bering Sea Upstream environment for SBI - Modeled and observed biophysical conditions in the northern Bering Sea Jaclyn Clement 1, Wieslaw Maslowski 1, Lee Cooper 2, Jacqueline Grebmeier 2, Waldemar Walczowski 3,

More information

Evaluation of the Klein HydroChart 3500 Interferometric Bathymetry Sonar for NOAA Sea Floor Mapping

Evaluation of the Klein HydroChart 3500 Interferometric Bathymetry Sonar for NOAA Sea Floor Mapping Evaluation of the Klein HydroChart 3500 Interferometric Bathymetry Sonar for NOAA Sea Floor Mapping Yuhui Ai, Straud Armstrong and Dean Fleury L-3 Communications Klein Associates, Inc. 11 Klein Dr. Salem,

More information

Introduction to Physical Oceanography STUDENT NOTES Date: 1. What do you know about solar radiation at different parts of the world?

Introduction to Physical Oceanography STUDENT NOTES Date: 1. What do you know about solar radiation at different parts of the world? Introduction to Physical Oceanography STUDENT NOTES Date: 1 Warm up What do you know about solar radiation at different parts of the world? What affect does the tilt of the Earth have on the northern and

More information

Mass coral mortality under local amplification of 2 C ocean warming

Mass coral mortality under local amplification of 2 C ocean warming Mass coral mortality under local amplification of C ocean warming Thomas M. DeCarlo, Anne L. Cohen, George T.F. Wong, Kristen A. Davis, Pat Lohmann, Keryea Soong correspondence to: tdecarlo@uwa.edu.au

More information

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy 1 OUTLINE Overview of Oil Spill & its Impact Technical Challenges for Modeling Review

More information

Applications of Collected Data from Argos Drifter, NOAA Satellite Tracked Buoy in the East Sea

Applications of Collected Data from Argos Drifter, NOAA Satellite Tracked Buoy in the East Sea Applications of Collected Data from Argos Drifter, NOAA Satellite Tracked Buoy in the East Sea Young-Sang Suh (yssuh@nfrdi.re.kr) Ocean Research Team, National Fisheries Research and Development Institute,

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 4, 2013; 50 minutes

SIO 210 Introduction to Physical Oceanography Mid-term examination November 4, 2013; 50 minutes SIO 210 Introduction to Physical Oceanography Mid-term examination November 4, 2013; 50 minutes Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.) Possibly

More information

Observations of Near-Bottom Currents with Low-Cost SeaHorse Tilt Current Meters

Observations of Near-Bottom Currents with Low-Cost SeaHorse Tilt Current Meters DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Observations of Near-Bottom Currents with Low-Cost SeaHorse Tilt Current Meters Vitalii A. Sheremet, Principal Investigator

More information