Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10

Size: px
Start display at page:

Download "Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10"

Transcription

1 Exam 1 Review Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Location on Earth (L04) Latitude & Longitude great circles, prime meridian, time zones, cardinal points, azimuth know the named latitudes numerical latitude (what s at 23.5?) why each warrants a name! The Atmosphere (AB7 pp , L04) Structure Thermal structure Troposphere & Stratosphere Composition Primarily N 2 (78%), O 2 (21%), Differs from Mars, Venus Evolution of composition Oceans absorbed CO 2, locked it into rocks Life generated and maintains oxygen levels Stromatolites in Shark Bay, Australia Temperature increases with altitude Temperature decreases with altitude Troposphere = Sphere of change = Sphere of weather Temperature decreases with altitude (heated by ground) Stratosphere = Sphere of layers primarily the ozone layer Temperature increases with altitude (heated by ozone layer absorbing UV)

2 Sun and Earth (AB7 Ch. 2, L04) Energy from the Sun Light = Shortwave Radiation from Sun Seasons (AB7 pp , L04) Equinoxes & Solstices Named latitudes Equator, Tropics, Arctic & Antarctic Circles What latitudes? How are they defined? Energy Balance & Temperatures (Ch. 3, L14) Insolation (AB7 pp , L04 & 05 ) Reflection Albedo: Earth ~ 31 Scattering Blue sky & Daylight Blue light is scattered makes sky blue Red goes straight setting sun looks red Absorption by atmosphere Absorbs most IR, almost all UV, X-ray Absorption & Re-radiation by surface (Greenhouse) Absorbs shortwave (visible), radiates longwave (IR) Earth reflects 31% of solar energy Earth re-radiates 69% of solar energy Ozone absorbs 3% of solar energy Atmosphere absorbs 21% of solar energy Atmospheric Moisture (Ch. 5) Ground absorbs 45% of solar energy Page 2 Weather! Greenhouse effect

3 Atmospheric Pressure and Winds (AB7 Ch. 4) ATMOSPHERIC PRESSURE Pressure -- weight of column of air (1 hpa = 10 Newtons/meter 2 = 1 mb) Sea-Level Pressure Standard = 1,013 hpa WIND (AB7 PP L07) Air is Moved by Forces Pressure Gradient Force (F PG ) F = P/d P is the change in pressure over distance d Coriolis Force (F C ) Only affects MOVING air goes away in still (or very slow) air Friction Friction with Earth's surface slows wind No friction aloft Geostrophic Winds (aloft) occur when F PG = F C parallel to isobars Clockwise around highs in N. Hemisphere Counterclockwise around lows in N. Hemisphere Non-Geostrophic Winds (surface) occur when F PG F C force because of wind friction with surface inward to low, outward from high Regional Winds: (AB7 pp , L07) 1. Land & Sea Breezes Sea Breeze: (day) Insolation heats land, air rises, cooler air blows in from the sea. Land Breeze: (night) Water cools more slowly than land, air rises, cooler air blows from land. 2. Up & Down Valley Breezes Up-Valley Breeze: (day) Insolation heats air, air rises up mountain side. Down-Valley Breeze: (night) Air in contact with mountain surface cools, sinks down the valley. 3. Katabatic Winds Prevailing winds descend mountains (Chinook, Föen, etc.) High pressure forces winds over mountains (Santa Ana) 4. Monsoons Seasonal shifts in location of high and low pressure systems Asian Monsoon and North American Monsoon Page 3

4 Water on Earth (AB7 Ch. 5, L12) 71% of surface area: Pacific Ocean and Southern Hemisphere 97% Oceans 3% Freshwater Properties: Polar Molecule (Mickey Mouse) Creates surface tension Makes solid float in liquid Creates hexagonal crystals: Pencil slices create halos, sun dogs, sun pillars, etc. Water Vapor Content (AB7 pp ) Psychrometric Charts! (L12) Specific Humidity Positive side where electrons rarely hang out Negative side where electrons mostly hang out mass of water vapor (grams) mass of air (kg) Relative Humidity Specific Humidity Maximum at Current Temp. Air Density (dry air) ρ = Pressure (Pa) ( 287)( T + 273) kg m Dry Air 3 C Moisture Content Review the Measuring Humidity worksheet! g water kg Dry Air g water m water kg Dry Air = = m Dry Air m Dry Air m Dry Air Energy Transfer and Temperature Heat Capacity: Energy required to raise (or lower) the temperature of a substance Latent heat: Heat released or absorbed when something (water) changes state released: gas to liquid (condensation), liquid to solid (freezing) absorbed: solid to liquid (melting) or liquid to gas (evaporating) Heat transfer Conduction: Hot stuff heats neighbors (inefficient!) Convection: Hot stuff moves Radiation: Heat (energy), itself moves Page 4

5 Cloud Development and Forms (AB7 Ch. 6, L15) 1) Lapse Rates a) Environmental lapse rate (ELR) -environment s change in temperature with height b) Dry adiabatic lapse rate (DAR) - change in temperature with height of a dry parcel of air - dry parcels cool more quickly than moist parcels c) Moist adiabatic lapse rate (MAR) - change in temperature with height of a parcel in which water is condensing - moist parcels heated by latent heat & have higher heat capacity cool more slowly than dry 2) Atmospheric Stability (AB7 pp , L15) a) Stable conditions: parcel always cooler than environment - environmental lapse rate steeper (slower) than adiabatic rates b) Unstable conditions: parcel always warmer than environment - environmental lapse rate less steep (faster) than adiabatic rates c) Conditionally stable conditions: - dry air cools faster than surroundings, - moist air cools more slowly than surroundings 3) Contrasts Between Land and Water (AB7 p. 72) continentality Land - changes temp. easily low heat capacity - heat stays on surface Water - little increase in temp. high heat capacity - evaporation cools high latent heat - light penetrates - water circulates Page 5

6 Lifting (AB7 pp , L11) Forced orographic (over mountains) Where does this happen? What s the result? frontal (know characteristic weather & cloud patterns on next page) convergent lifting convectional lifting Air Masses and Fronts (AB7 pp , L11) Air Masses Large volumes of air Move and collide Fronts form at collision zones Most weather takes place at fronts Page 6

7 Weather associated with a cold front: Weather Phenomenon Before Front Passage Contact with Front After Front Passage Temperature Warm Sudden Cooling Cold & Getting Colder Pressure Steady Decrease Level then Increasing Steady Increase Clouds Cirrus, Cirrostratus Cumulus & Cumulonimbus Cumulus then Clearing Precipitation Showers Heavy Precip., T-Storms Showers then Clearing Weather associated with a warm front: Weather Phenomenon Before Front Passage Contact with Front After Front Passage Temperature Cool Sudden Warming Warmer then Leveling Pressure Steady Decrease Level Slight Rise Then Decrease Clouds Cirrus, Cirrostratus, Altostratus, Nimbostratus Stratus, Nimbostratus Clearing with stratus Precipitation Showers, snow, sleet or drizzle Drizzle None Page 7

8 Mid-Latitude Cyclones (AB7 pp , L11) Warm and cold air masses pushing on each other Instability forces a wave to start, then rotation follows Cold front moves faster than warm front Cold front overtakes warm, pushes warm air aloft Occluded front! Inversion remains after dissipation of occlusion Dry Lines Separate air masses at same temperature (eg. ct next to mt in Texas) Humidity differs on either side Page 8

Wind is caused by differences in air pressure created by changes in temperature and water vapor content.

Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Topic 8: Weather Notes, Continued Workbook Chapter 8 Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Wind blows from high pressure areas to low

More information

Meteorology I Pre test for the Second Examination

Meteorology I Pre test for the Second Examination Meteorology I Pre test for the Second Examination MULTIPLE CHOICE 1. A primary reason why land areas warm up more rapidly than water areas is that a) on land, all solar energy is absorbed in a shallow

More information

WEATHER SYSTEMS OF MIDDLE LATITUDES

WEATHER SYSTEMS OF MIDDLE LATITUDES CHAPTER 10 WEATHER SYSTEMS OF MIDDLE LATITUDES MULTIPLE CHOICE QUESTIONS 1. In equal volumes, which one of the following air masses exerts the highest surface air pressure? a. cp *b. A c. mp d. ct e. mt

More information

Weather & Atmosphere Study Guide

Weather & Atmosphere Study Guide Weather & Atmosphere Study Guide 1. Draw a simple water cycle diagram using the following words: Precipitation, Evaporation, Condensation, Transpiration 2. In your own words, explain the difference between

More information

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions.

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions. Santa Ana Winds Surface weather map showing typical Santa Ana conditions. High Desert Elevation ~1500-2000 ft Santa Ana Winds ~1500 meters 0 meters Santa Ana Winds ~875 mb ~1500 meters ~875 mb Horizontal

More information

Length of day for a full year. Ocean Gyres. Wet. Adiabatic. lapse rate, starts at. dewpoint Dry Adiabatic lapse rate

Length of day for a full year. Ocean Gyres. Wet. Adiabatic. lapse rate, starts at. dewpoint Dry Adiabatic lapse rate Vernal Equinox March 20, 11:57 AM, CDT Sun will rise exactly in the east and set exactly in the west. All latitudes get 12 hours of day and 12 hours of dark. Length of day for a full year Wet Adiabatic

More information

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each)

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each) NAME: Section A. Circle the letter corresponding to the best answer. (1 point each) 1. Rainbows result from: a. refraction and reflection of sunlight by water droplets b. reflection of sunlight by oceans

More information

Atmospheric & Ocean Circulation-

Atmospheric & Ocean Circulation- Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds

More information

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately.

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately. Instructor: Prof. Seiberling PHYSICS DEPARTMENT MET 1010 2nd Midterm Exam October 28, 2002 Name (print, last rst): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 EXAM NUMBER NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 Name: SID: S Instructions: Write your name and student ID on ALL pages of the exam. In the multiple-choice/fill in the

More information

PHSC 3033: Meteorology Stability

PHSC 3033: Meteorology Stability PHSC 3033: Meteorology Stability Equilibrium and Stability Equilibrium s 2 States: Stable Unstable Perturbed from its initial state, an object can either tend to return to equilibrium (A. stable) or deviate

More information

Atmosphere & Weather. Earth Science

Atmosphere & Weather. Earth Science Atmosphere & Weather Earth Science Energy Transfer in the Atmosphere Earth s energy is provided by the SUN! Energy is important to us because it 1. Drives winds and ocean currents. 2. Allows plants to

More information

Unit Test Study Guide:

Unit Test Study Guide: Name: Homeroom: Date: Unit 6: Meteorology Study Guide Unit Test Study Guide: Atmosphere & Weather Use the summary points below as a resource to help you study for our unit test Monday! EARTH S ATMOSPHERE:

More information

MET 101 Introduction to Meteorology

MET 101 Introduction to Meteorology MET 101 Introduction to Meteorology MET 101 Griswold 1 MIDTERM EXAM Spring Semester 2015 Thursday, March 12, 2015 Name: Student ID #: Instructions: Closed Book. Time limit is 50 minutes. Total Points Attainable:

More information

THE ATMOSPHERE. WEATHER and CLIMATE. The Atmosphere 10/12/2018 R E M I N D E R S. PART II: People and their. weather. climate?

THE ATMOSPHERE. WEATHER and CLIMATE. The Atmosphere 10/12/2018 R E M I N D E R S. PART II: People and their. weather. climate? R E M I N D E R S Two required essays are due by Oct. 30, 2018. (A third may be used for extra credit in place of a Think Geographically essay.) ESSAY TOPICS (choose any two): Contributions of a noted

More information

Atmosphere Circulation

Atmosphere Circulation Atmosphere Circulation Winds What Causes Winds? Difference in air pressure due to unequal heating of the atmosphere. Temperatures vary according to the amount of sun it gets. Uneven heating of the Earth

More information

Pilot Rating Exam Meteorology

Pilot Rating Exam Meteorology Pilot Rating Exam Meteorology Derived from material originally assembled by Kenny Eaton (Dunstable Hang-Gliding and Paragliding Club), Nigel Page and Pat Dower (DSC) The 3 levels of understanding Will

More information

CHAPTER 9. More on meteorology

CHAPTER 9. More on meteorology CHAPTER 9 More on meteorology 1). Atmospheric Pressure Atmospheric pressure is the pressure with which the atmosphere acts downwards due to its weight. Pressure decreases with altitude because the column

More information

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Structure Consists of Layers Separated by Temperature Stratosphere: Temperature

More information

Fluid Circulation (Student Mastery Objectives) -The most frequent type of heat transfer of energy in the atmosphere is convection.

Fluid Circulation (Student Mastery Objectives) -The most frequent type of heat transfer of energy in the atmosphere is convection. Fluid Circulation (Student Mastery Objectives) -The most frequent type of heat transfer of energy in the atmosphere is convection. -Differences in density affect the circulation of fluids. Cold air is

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

10.2 Energy Transfer in the Atmosphere

10.2 Energy Transfer in the Atmosphere 10.2 Energy Transfer in the Atmosphere Learning Outcomes Understand the different layers of the atmosphere Understand how energy moves in, out, and around our atmosphere er Composi

More information

(a) Deflection to the left, slower velocity means greater deflection, greatest deflection at the south pole

(a) Deflection to the left, slower velocity means greater deflection, greatest deflection at the south pole 1 Test 2 Aid Sheet Exam: A single 8.5 by 11 inch aid sheet (both sides) and Type 2 nonprogrammable calculators are permitted. The time allowed for this Test (Part A plus Part B combined) is 90 minutes.

More information

LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS

LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS Introduction LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS This lab will provide students with the opportunity to become familiar with the concepts of atmospheric stability

More information

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams ATS 351 Lecture 6 Stability & Skew-T Diagrams To demonstrate stability, a parcel of air is used Expands and contracts freely Always has uniform properties throughout Air Parcel Air Parcel Movement: Why

More information

Chapter. Air Pressure and Wind

Chapter. Air Pressure and Wind Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure

More information

Chapter 13 Lecture Outline. The Atmosphere in Motion

Chapter 13 Lecture Outline. The Atmosphere in Motion Chapter 13 Lecture Outline The Atmosphere in Motion Understanding Air Pressure Air pressure is the force exerted by weight of air above Weight of the air at sea level 14.7 psi or 1 kg/cm 2 Decreases with

More information

The atmospheric circulation system

The atmospheric circulation system The atmospheric circulation system Key questions Why does the air move? Are the movements of the winds random across the surface of the Earth, or do they follow regular patterns? What implications do these

More information

Moisture and Stability in the Atmosphere

Moisture and Stability in the Atmosphere Moisture and Stability in the Atmosphere Humidity can be measured as: HUMIDITY Absolute humidity the mass of water vapour in a volume of air (g/m 3.) Relative Humidity the proportion of the actual mass

More information

ATOMOSPERIC PRESSURE, WIND & CIRCULATION

ATOMOSPERIC PRESSURE, WIND & CIRCULATION ATOMOSPERIC PRESSURE, WIND & CIRCULATION A. INTRODUCTION Important because: pressure patterns drive wind patterns which in turn drive oceanic circulation patterns o atmospheric & oceanic circulation: major

More information

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle from: USGS http://water.usgs.gov/edu/watercycle.html Evaporation: enough water to cover the entire surface of Earth to 1 meter cycles

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 3 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Natural convection and turbulence are most likely to occur when: a) temperature decreases rapidly with

More information

4.2 Pressure and Air Masses (6.3.2)

4.2 Pressure and Air Masses (6.3.2) 4.2 Pressure and Air Masses (6.3.2) Explore This Phenomena www.ck12.org Everybody loves a picnic. Your friends and you are headed up the canyon to enjoy the mountains. While driving you feel a slight discomfort

More information

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa The Atmosphere in Motion Foundations, 6e - Chapter 13 Stan Hatfield Southwestern Illinois College Atmospheric pressure Force exerted by the weight

More information

Weather and Climate. Climate the situation of the atmosphere during a long period of time and a big surface.

Weather and Climate. Climate the situation of the atmosphere during a long period of time and a big surface. Weather and Climate Weather and Climate Weather the situation of the atmosphere during a short period of time and a small surface of the Earth. It is very irregular and changes a lot. Climate the situation

More information

Earth s tilt at an angle of 23.5 degrees to the plane of its orbit around the Sun.

Earth s tilt at an angle of 23.5 degrees to the plane of its orbit around the Sun. Science 2200 1 Weather dynamics is the study of how the motion of water and air causes weather patterns. Energy from the Sun drives the motion of clouds, air, and water. Earth s tilt at an angle of 23.5

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Earth s Atmosphere. Earth s atmosphere is a key factor in allowing life to survive here.

Earth s Atmosphere. Earth s atmosphere is a key factor in allowing life to survive here. Chapter 10.2 Earth s Atmosphere Earth s atmosphere is a key factor in allowing life to survive here. This narrow band of air has the right ingredients and maintains the correct temperature, to allow life

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Chapter 24 Solid to Liquid The process of changing state, such as melting ice, requires that energy be transferred in the form of heat. Latent heat is the energy absorbed or released

More information

1.3: CLIMATE GEOGRAPHY. pgs

1.3: CLIMATE GEOGRAPHY. pgs 1.3: CLIMATE GEOGRAPHY pgs. 76-89 INTRODUCTION WEATHER: Is the combination of temperature, precipitation, cloud cover and wind that we experience EACH DAY. Example: 22 0 C and clear skies. CLIMATE: The

More information

AT350 EXAM #2 November 18, 2003

AT350 EXAM #2 November 18, 2003 AT350 EXAM #2 November 18, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the 50 questions by using a No. 2 pencil to completely fill

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4 Wednesday, September 20, 2017 Reminders Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4 PLEASE don t memorize equations, but know how to recognize them

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM 1 TEM: 0643 OM-RT - Weather - hap. 6 OD_PREG: PREG20098600 (5301) PREGUNT: Every physical process of weather is accompanied

More information

Physics 137 Exam 2 Review

Physics 137 Exam 2 Review Physics 137 Exam 2 Review Chapter 4: Humidity, Condensation, and Clouds 1. Evaporation and Condensation 2. Saturation (Equilibrium) a. rate at which water evaporates from the liquid (ice) surface is the

More information

APPI PPG LECTURE 5: FURTHER METEOROLOGY

APPI PPG LECTURE 5: FURTHER METEOROLOGY LECTURE 5: FURTHER METEOROLOGY Introduction: This lecture covers Further Meteorology and aims to give you more of an understanding of advanced weather conditions and patterns. However Meteorology is a

More information

Scott Denning CSU CMMAP 1

Scott Denning CSU CMMAP 1 Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic Lapse Rates Dry and Moist Convective Motions Present Atmospheric Composition What

More information

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer 18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.

More information

Horizontal movement of air between cooler and warmer regions. - horizontal movement of air Convection over areas where is

Horizontal movement of air between cooler and warmer regions. - horizontal movement of air Convection over areas where is Winds and Water Chapter 9 continued... Uneven Heating The various materials of the earth absorb and emit energy at different rates Convection Heated air expands; density reduced; air rises Upward movement

More information

Assessment Schedule 2016 Earth and Space Science: Demonstrate understanding of processes in the ocean system (91413)

Assessment Schedule 2016 Earth and Space Science: Demonstrate understanding of processes in the ocean system (91413) NCEA Level 3 Earth & Space Science (91413) 2016 page 1 of 6 Assessment Schedule 2016 Earth and Space Science: Demonstrate processes in the ocean system (91413) Evidence Statement Q Evidence with with Excellence

More information

Chapter: Atmosphere Section 3: Air Movement

Chapter: Atmosphere Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 3: Air Movement We will learn about: -Air Movement=Wind -Why different latitudes on Earth will receive different amounts of Solar Energy -The Coriolis Effect

More information

Chapter 7 Weather and Climate

Chapter 7 Weather and Climate Chapter 7 Weather and Climate *Describe what weather is, what affects it, and where it occurs. *Explain the connection between air pressure and wind. * *Many factors affect a region s weather. * *atmosphere

More information

CHAPTER 6 Air-Sea Interaction

CHAPTER 6 Air-Sea Interaction CHAPTER 6 Air-Sea Interaction What causes Earth s seasons? Tilt (23.5 ) responsible for seasons 2011 Pearson Education, Inc. Distribution of Solar Energy Distribution of Solar Energy Atmosphere absorbs

More information

Understanding Weather

Understanding Weather Understanding Weather Images Graphic of the atmosphere. Enlarge Cirrus clouds. Enlarge Air masses Air masses are parcels of air that bring distinctive weather features to the country. An air mass is a

More information

REMINDERS: Problem Set 2: Due Monday (Feb 3)

REMINDERS: Problem Set 2: Due Monday (Feb 3) REMINDERS: Problem Set 2: Due Monday (Feb 3) Midterm 1: Next Wednesday, Feb 5 - Lecture material covering chapters 1-5 - Multiple Choice, Short Answers, Definitions - Practice midterm will be on course

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the air temperature remains constant, evaporating water into the air will the dew point and the relative

More information

MET Lecture 8 Atmospheric Stability

MET Lecture 8 Atmospheric Stability MET 4300 Lecture 8 Atmospheric Stability Stability Concept Stable: Ball returns to original position Neutral: Ball stays wherever it is placed Unstable: Displacement grows with time. Atmospheric Stability

More information

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Discovering Physical Geography Third Edition by Alan Arbogast Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Factors That Influence Air Pressure Air Pressure is the measured weight of air

More information

Learning Target: Today we will begin learning about weather systems and fronts.

Learning Target: Today we will begin learning about weather systems and fronts. October 31st, 2014 Thank you for not chewing gum Materials: Pencil, science notebook, Science book Today s Agenda: Bell work Vocabulary quiz Finish reading 3.1 Notes Learning Target: Today we will begin

More information

TOPICS YOU NEED TO KNOW

TOPICS YOU NEED TO KNOW ATMO 101 Introduction to Meteorology Midterm Study Sheet Chapters 6, 7, 8 and 10 Exam Thursday 3/23/2017 Vocabulary Words for True and False, and Multiple Choice You are responsible for the following words:

More information

Full Name: Class: Period: Date:

Full Name: Class: Period: Date: Topic/Objective: Essential Question: Full Name: Class: Period: Date: Tutor Use Only: Air Pressure and Wind (Chapter 19) Air Pressure the weight of the atmosphere pushing down on the Earth exerting a force

More information

Weather EOG Review Questions

Weather EOG Review Questions Weather EOG Review Questions 1. Which statement best describes runoff? A Water vapor cools off and changes into water droplets. B Water in the form of rain, snow, sleet, or hail falls from clouds. C Precipitation

More information

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW.

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. ATMOSPHERIC CIRCULATION WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. Pressure differences result from variations in temperature. AIR

More information

Small- and large-scale circulation

Small- and large-scale circulation The Earth System - Atmosphere II Small- and large-scale circulation Atmospheric Circulation 1. Global atmospheric circulation can be thought of as a series of deep rivers that encircle the planet. 2. Imbedded

More information

Atmospheric Stability. GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6

Atmospheric Stability. GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6 Atmospheric Stability GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6 Last lecture: Thanks to Dr. Stewart! Hydrologic cycle! Humidity! Diabatic: convection, conduction, radiation; mixing! Adiabatic: change

More information

Atmospheric & Ocean Circulation- I

Atmospheric & Ocean Circulation- I Atmospheric & Ocean Circulation- I First: need to understand basic Earth s Energy Balance 1) Incoming radiation 2) Albedo (reflectivity) 3) Blackbody Radiation Atm/ Ocean movement ultimately derives from

More information

Weather Unit Study Guide

Weather Unit Study Guide Weather Unit Study Guide - 2018 Weather vs Climate What does weather measure? The condition of the earth's atmosphere at a particular time and place. How are climate and weather different? Climate is the

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 6 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) A steep pressure gradient: a. produces light winds. b. produces strong winds. c. is only possible in

More information

Atmospheric Gases. Earth s Atmosphere extends from earth s surface to outer space. It is made up of a mixture of gases with some solids and liquids.

Atmospheric Gases. Earth s Atmosphere extends from earth s surface to outer space. It is made up of a mixture of gases with some solids and liquids. Earth s Atmosphere 1-1 I Objectives: Identify the gases in Earthś atmosphere Describe the structures of Earthś atmosphere. Explain what causes air pressure. Atmospheric Gases Earth s Atmosphere extends

More information

WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67

WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67 WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67 What is Wind? A wind is a horizontal movement of air across a surface. Vertical movements are currents or updrafts and

More information

PILOT EXAM NOTES METEOROLOGY

PILOT EXAM NOTES METEOROLOGY Page 1 of 27 PILOT EXAM NOTES METEOROLOGY GT/ Peak Soaring Association Feb 97 Page 2 of 27 Contents: 1. BUYS BALLOTS S LAW... 4 2. FRONTS... 4 2.1 WARM FRONT... 5 2.1.1 Cross section... 5 2.2 WARM SECTOR...

More information

Canada s vast size creates a diverse range of weather conditions and climatic conditions. Warming trend for last 10 years Wet Spring Dry five summers

Canada s vast size creates a diverse range of weather conditions and climatic conditions. Warming trend for last 10 years Wet Spring Dry five summers Chapter 4 Weather and Climate Canada s vast size creates a diverse range of weather conditions and climatic conditions. Weather examples: Rainy today Snow tomorrow Fog on Wednesday 23 degree C today High

More information

Earth s Atmosphere. Atmospheric Gases. Other Gases. Solids in the Atmosphere

Earth s Atmosphere. Atmospheric Gases. Other Gases. Solids in the Atmosphere Earth s Atmosphere 1-1 I Atmospheric Gases Earth s Atmosphere extends from earth s surface to outer space. It is made up of a mixture of gases with some solids and liquids. Other Gases Water Vapor in the

More information

Lecture 8: Pressure and Wind

Lecture 8: Pressure and Wind Lecture 8: Pressure and Wind Pressure Distribution Forces Affect Wind Earth s Rotation Coriolis Force Geostrophic Balance Energy (Heat) The first law of thermodynamics Air Temperature Air Pressure Air

More information

Topic 4 Temperature, Atmospheric Circulation and Climate. Temperature Concepts and Measurement 10/2/2017. Thermometer and Instrument Shelter

Topic 4 Temperature, Atmospheric Circulation and Climate. Temperature Concepts and Measurement 10/2/2017. Thermometer and Instrument Shelter Topic 4 Temperature, Atmospheric Circulation and Climate Temperature Controls Global Temp. Patterns Atmospheric Circulation Primary High and Low Pressure Areas Global Circulation Model Local Winds Ocean

More information

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation.

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation. Chapter 6: Stability Concept of Stability Concept of Stability Lapse Rates Determine Stability and Stability Indices Air Parcel Expands as It Rises Air Parcel Expands As It Rises Air pressure decreases

More information

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere Lornshill Academy Geography Department Higher Revision Physical Environments - Atmosphere Physical Environments Atmosphere Global heat budget The earth s energy comes from solar radiation, this incoming

More information

Greenhouse Effect Activity

Greenhouse Effect Activity Greenhouse Effect Activity Objectives: The student will: 1. Read and use weather instruments. 2. Collect and record temperature readings. 3. Describe the concept of the greenhouse effect. Materials: Fish

More information

Global Weather Patterns

Global Weather Patterns Global Weather Patterns AZ State Standards Concept 2: Energy in the Earth System (Both Internal and External) Understand the relationships between the Earth s land masses, oceans, and atmosphere. PO 2.

More information

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 3, Lecture 1 Mass emission rate, Atmospheric Stability Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Review homework Review quiz Mass emission

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces MET 200 Lecture 11 Local Winds Last Lecture: Forces Scales of Motion Eddies Sea Breeze Mountain-Valley Circulations Chinook - Snow Eater Drainage Wind - Katabatic Wind 1 2 Review of Forces 1. Pressure

More information

ENVIRONMENTAL PHYSICS

ENVIRONMENTAL PHYSICS ENVIRONMENTAL PHYSICS Atmospheric Stability An understanding of why and how air moves in the atmosphere is fundamental to the prediction of weather and climate. What happens to air as it moves up and down

More information

Earth and Planetary Sciences 5 Midterm Exam March 10, 2010

Earth and Planetary Sciences 5 Midterm Exam March 10, 2010 Earth and Planetary Sciences 5 Midterm Exam March 10, 2010 Name: Teaching Fellow: INSTRUCTIONS PUT YOUR NAME ON EACH PAGE. The exam will last 80 minutes. Complete the problems directly on the exam. Extra

More information

Water on Earth. How do oceans relate to weather and the atmosphere? Solar Radiation and Convection Currents

Water on Earth. How do oceans relate to weather and the atmosphere? Solar Radiation and Convection Currents Earth is often called the Blue Planet because so much of its surface (about 71%) is covered by water. Of all the water on Earth, about 96.5% is held in the world s oceans. As you can imagine, these oceans

More information

Adiabatic Lapse Rates and Atmospheric Stability

Adiabatic Lapse Rates and Atmospheric Stability 8 Adiabatic Lapse Rates and Atmospheric Stability Learning Goals After studying this chapter, students should be able to: 1. describe adiabatic processes as they apply to the atmosphere (p. 174); 2. apply

More information

8 th Grade Science Meteorology Review

8 th Grade Science Meteorology Review 8 th Grade Science Meteorology Review #1 Where does Earth get the energy that produces global weather patterns? A: The sun B: Humidity C: Air masses D: Cyclones A. The Sun #2 Do all of the areas on Earth

More information

STUDENT PACKET # 10. Vocabulary: condensation, convection, convection current, land breeze, sea breeze

STUDENT PACKET # 10. Vocabulary: condensation, convection, convection current, land breeze, sea breeze STUDENT PACKET # 10 Name: Date: Student Exploration: Coastal Winds and Clouds Big Idea 7: Earth Systems and Patterns SC.6.E.7.4 Differentiate and show interactions among the geosphere, hydrosphere, cryosphere,

More information

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams arise because the Coriolis force prevents Hadley-type

More information

Chapter: Atmosphere Section 3: Air Movement

Chapter: Atmosphere Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 3: Air Movement We will learn about Air Movement=Wind -Why different latitudes on Earth will receive different amounts of Solar Energy -The Coriolis Effect

More information

Lecture Outlines PowerPoint. Chapter 18 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 18 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 18 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Chapter 8 Air Masses

Chapter 8 Air Masses Chapter 8 Air Masses Air Masses - 1 1. An Air Mass is a large body of air usually about 1500 km across and several km thick, that has homogeneous physical properties. 2. The important physical properties

More information

I. Atmosphere. Maintains a balance between the amount of heat absorbed from the Sun and the amount of heat that escapes back into space.

I. Atmosphere. Maintains a balance between the amount of heat absorbed from the Sun and the amount of heat that escapes back into space. Earth s Atmosphere 1-1 I Objectives: Identify the gases in Earthś atmosphere Describe the structures of Earthś atmosphere. Explain what causes air pressure. I. Atmosphere Maintains a balance between the

More information

Local Winds. Please read Ahrens Chapter 10

Local Winds. Please read Ahrens Chapter 10 Local Winds Please read Ahrens Chapter 10 Scales of Motion Microscale: meters Turbulent eddies Formed by mechanical disturbance or convection Lifetimes of minutes Mesoscale: km s to 100 s of km s Local

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation Why do we say Earth's temperature is moderate? It may not look like it, but various processes work to moderate Earth's temperature across the latitudes. Atmospheric circulation

More information

Review for the second quarter. Mechanisms for cloud formation

Review for the second quarter. Mechanisms for cloud formation Review for the second quarter Mechanisms for cloud formation 1 Rising air expands and cools; Sinking air compresses and warms. (18) (24) Dry adiabatic lapse rate (10 o C/km): the rate of temperature decrease

More information

Warm front and cold front video 3:50

Warm front and cold front video 3:50 Construct an explanation of the relationship between air pressure, weather fronts, and air masses and meteorological events such as tornados and thunderstorms Unpacked : Warm front and cold front video

More information

Factors Affecting Wind

Factors Affecting Wind Understanding Air Pressure Average air pressure at sea level is about 1 kg per cm 2 (14.7 lbs/in 2 ) Roughly the same pressure that is produced by a column of water 10 m (33 ft) high The pressurized suits

More information

Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER

Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER Climate Weather and Identity Climate and weather have a large influence on how Canadians build their identity. We will study the factors that contribute

More information

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65)

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Weather fronts (p 63) General circulation on a rotating Earth (p 65) Geostrophy force balance (p 66) Local effects (no coriolis force)

More information