Turbulence and How to Avoid It

Size: px
Start display at page:

Download "Turbulence and How to Avoid It"

Transcription

1 Turbulence and How to Avoid It Lesson Overview Wind turbines work best when they are exposed to consistent winds moving with constant speed and direction. Turbulence ( swirling winds ) causes problems. In this lesson, students will investigate turbulence generated by obstacles such as school buildings or trees. Simple analysis and measurements illustrate the concepts of turbulence, and indicate how it can be avoided in site selection for wind turbines. Grade Level Grades 9-12 (secondary school) Time Required One class (indoors) for discussion of concepts; one class for data collection (if desired). Curriculum Connection (Province/Territory and course) Atlantic Provinces Education Foundation: General Curriculum Outcomes for Social Studies: Nova Scotia People, Place and Environment: Students will be expected to demonstrate an understanding of the interactions among people, places and the environment. Students will use maps, globes, pictures, models and technologies to represent and describe physical and human systems. Students will use location, distance, scale, direction and size to describe where places are and how they are distributed. Interdependence Students will be expected to demonstrate an understanding of the interdependent relationship among individuals, societies and the environment and the implications for a sustainable future. Identify and describe examples of positive and negative interactions among people, technology and the environment. Link to the Canadian Atlas Online (CAOL) Additional Resources, Materials and Equipment Required Computers LCD projector Internet access Coloured ribbon (several metres) Canadian Wind Energy Association: Guided Tour of Wind Energy-Danish Wind Energy Association: Wind Energy Links:

2 Main Objective To recognize the effect of obstacles in generating turbulence from wind. Learning Outcomes By the end of the lesson, students will be able to recognize the effects of obstacles (buildings, groves of trees) in generating turbulence.

3 Teacher Activity The Lesson Student Activity Introduction 1. For background preparation, direct students to the information on the following site: After choosing appropriate language, go to the Explore by themes on the left side of the screen. Choose Extremes of Weather then, Generating Power on the top bar. Then choose Wind power from the dropdown menu. Wind turbines work best when they are exposed to consistent winds moving with constant speed and direction. Turbulence ( swirling wind ) causes problems. 2. Speculate on the following questions: Has anyone experienced turbulence in an airplane flight? Can you define turbulence? What influences turbulence? How can it be recognized and assessed? What are the implications for choosing a site and tower height for turbines? 1. Gather background information from: as 2. Small group discussion/presentation of possible answers prior to extensive investigation. These suggestions will be looked at throughout the course of the lesson.

4 Lesson Development (See attached diagram) 2. Instruct students that turbulence is near zero directly above the ground surface. It increases with height both to windward and leeward of an object (e.g. a building). Observations indicate that a building (or grove of trees) will generate a turbulent envelope that extends along the surface to approximately twice the height of the obstacle to windward. To leeward, the turbulent zone extends upwards to twice the height of the obstacle. To leeward, the envelope extends along the surface approximately 20 times the height of the obstacle. 3. Inquire: How high is our school? What is the extent of the envelope of turbulence that would be produced by the school? Why are aircraft wings thicker at the leading edge, tapering towards the trailing edge? 2. Discover through investigations: a) The height of the school. b) The envelope of turbulence that would be produced by the school 3. Respond to questions. (Turbulence at the leading edge produces lift; tapering reduces turbulent drag along the trailing edge).

5 Demonstrations & Measurements The wind plumb-bob is described in the Lesson Extension section 4. Instruct that turbulence can be demonstrated by the following: a) If your school has a flagpole: Attach coloured ribbons at 1 m intervals to the rope used to hoist the flag. Raise the flag and observe the ribbons. Ribbons which stream in a straight line are subject to laminar (non-turbulent) flow; those which swirl are experiencing turbulence (Greater swirling, more turbulence). b) In a location where a kite can be flown safely, the same experiment can be done by attaching ribbons to the kite string. Ribbons should be spaced at greater intervals (e.g. 5 m) and must be light enough to allow the kite to fly. When the kite reaches a height greater than twice that of the adjacent obstacles (trees, buildings), it will generally be subject to laminar flow, and ribbons near the kite will stream out in straight lines. c) If you have either a commercial or homemade anemometer, or a wind plumb-bob, you can measure wind speeds at various places around the school building. Alternatively, wind directions only can be measured. Variations in either direction or speed indicate turbulence. Generally, the envelope of turbulent flow extends around a low building (such as a school) as indicated on the diagram.* 4. Assemble ribbon pieces which should be at least 1 m long and wide enough to be easily visible. Use different colours for different heights. a) Record the heights of ribbons influenced by turbulence on the flagpole. b) Record the heights of ribbons influenced by turbulence. c) Record the wind speed and direction at each location. Plot the locations on a map of the school grounds. Are the wind speeds and directions identical everywhere? If not, then turbulence is occurring. *This only applies to essentially vertical obstacles (groves of trees and small buildings), not to sloping topography or hills. It also does not apply to a single isolated tree or pole.

6 Conclusion: Implications for Turbines 5. Brainstorm and record responses to the following: If you wanted to set up a mini-turbine at your school, how high would it have to be to be above the turbulent flow zone? What would be the best location on school property for it? How high are the tallest trees in your area? What is the minimum clear space required around a wind turbine? Generate a list e.g.: a.) A wind turbine must never be located in a zone of excessively turbulent airflow. b.) Light turbulence will decrease performance, because a turbine cannot react to rapid changes in wind direction. c.) Extreme turbulence puts stress on the rotors and blades, and can result in wind turbine failure. d.) The height of the turbine should be at least twice that of any trees in the vicinity. Ideally, there should be no large trees within a distance approximately 10 times the height of the turbine. Locating turbines in open areas avoids problems with turbulence. Typically, commercial turbines are mounted m above the ground surface. 5. After discussion, make a list of criteria identified through discussion and observation.

7 Wind Laminar Flow Zone 2 x building height Turbulent Flow Zone 2 x building height 20 x building height Turbulence generated by a Building Lesson Extension #1 Estimating wind speed without using an anemometer If you do not have an anemometer, the wind speed can be estimated by using a wind plumb-bob. This also allows you to measure gusting or inconsistent winds by taking measurements over minutes. Requires: Protractor, cm long (can be made by cutting a wooden semi-circle) Monofilament fishing line (30-50 cm long) Ping-pong ball 1. Attach one end of the fishing line to the centre (zero point) of the protractor. Attach the ping-pong ball to the other end. Ensure that the fishing line can move freely, and that the ping-pong ball is at least 15 cm below the protractor (the length of line required will thus depend on the size of the protractor). 2. Estimating wind speed requires two people. One person holds the protractor assembly at arm s length, ensuring that the protractor edge remains level. The second person estimates the angle made by the fishing line on the protractor (and should also help ensure that the protractor is level). Allow at least 30 seconds for the wind to move the ball. 3. Wind speed can be estimated as: Angle m/s km/h Beaufort Scale Description Calm; smoke rises vertically 85 ~ 1 ~ 4 1 Very light winds; paper airplanes affected 80 ~ 3 ~ 15 3 Leaves rustle; wind felt by people

8 70 ~ 5 ~ 20 4 Moderate breeze; papers and dust move 55 ~ 8 ~ 30 5 Fresh breeze; small deciduous trees sway 40 ~ 11 ~ 40 6 Strong winds; large branches moving, wires whistling 30 ~ 14 ~ 50 7 Whole trees moving; difficult to walk For safety, do not attempt to measure stronger winds! Lesson Extension #2 Conduct further investigations concerning the design of aircraft wings, to show how aeronautical engineers use turbulence to their advantage. Lesson Extension #3 See Construction of a homemade anemometer in the Lesson Plan Wind Speed and Height: Why do wind turbines have to be so tall? (Newfoundland and Labrador Grades 9-12) Assessment of Student Learning Poster presentations of diagrams and key elements. Link to Canadian National Standards for Geography Essential Element#3: Physical Systems Components of the Earth s physical system Global ocean and atmospheric systems Geographic Skills #2: Acquiring Geographic Information Systematically locate and gather geographic information from a variety of sources. Geographic Skills #5: Answering Geographic Questions Formulate valid generalizations from the results of various kinds of geographic inquiry

THE CANADIAN ATLAS ONLINE ONTARIO - GRADES 7 AND 8 Mapping Wind Energy

THE CANADIAN ATLAS ONLINE ONTARIO - GRADES 7 AND 8   Mapping Wind Energy Mapping Wind Energy Lesson Overview Wind is the horizontal movement of air across the surface of the Earth. The energy of the wind can be harnessed to create electricity. The stronger the wind, the more

More information

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio Spark 101 Educator Resource Copyright 2013 Defining Key Concepts What is wind power?

More information

Exploring Wind Energy

Exploring Wind Energy 2013-2014 Exploring Wind Energy Student Guide SECONDARY Introduction to Wind What is Wind? Wind is simply air in motion. It is produced by the uneven heating of the Earth s surface by energy from the sun.

More information

The Woodland Caribou: A Multi-Media Exploration of a Species at Risk

The Woodland Caribou: A Multi-Media Exploration of a Species at Risk The Woodland Caribou: A Multi-Media Exploration of a Species at Risk Lesson Overview This lesson examines the Canadian boreal population of the Woodland Caribou, a species at risk. Following an introduction

More information

Wind Energy for Kids

Wind Energy for Kids Wind Energy for Kids 1 What is wind power? Inside this pack you will find out what makes the wind blow, how a modern wind turbine makes electricity, how we measure the speed and direction of the wind,

More information

The following figure shows a 4-legged silo and the involved forces in presence of wind: F vw2 :

The following figure shows a 4-legged silo and the involved forces in presence of wind: F vw2 : Technical Notes WIND LOAD ON SILOS The aim of this technical note is to make an introduction to the effect of the wind on a silo by identifying the forces that appear on weighing assemblies in addition

More information

Outline. Wind Turbine Siting. Roughness. Wind Farm Design 4/7/2015

Outline. Wind Turbine Siting. Roughness. Wind Farm Design 4/7/2015 Wind Turbine Siting Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 andrew-kusiak@uiowa.edu Tel: 319-335-5934 Fax: 319-335-5669 http://www.icaen.uiowa.edu/~ankusiak Terrain roughness Escarpments

More information

Chapter 10, Part 1. Scales of Motion. Examples of Wind at Different Scales. Small Scale Winds

Chapter 10, Part 1. Scales of Motion. Examples of Wind at Different Scales. Small Scale Winds Chapter 10, Part 1 Small Scale Winds Scales of Motion Wirls or eddies exist at all length scales in the atmosphere. Microscale (2m) Mesoscale (20km) Synoptic scale (2000km) Examples of Wind at Different

More information

Wind in the Atmosphere

Wind in the Atmosphere Lesson 2 Wind in the Atmosphere ESSENTIAL QUESTION What is wind? By the end of this lesson, you should be able to explain how energy provided by the sun causes atmospheric movement, called wind. p 6.ESS2.2,

More information

Where have all the Salmon Gone?

Where have all the Salmon Gone? Where have all the Salmon Gone? Lesson Overview In this lesson, students will participate in a simulation activity that illustrates the lifecycle of salmon in order to appreciate the different obstacles

More information

Meteorology 2/6/2017. Wind, and its Interaction with Particle Plumes. Variation of wind speed with elevation. Variation of wind speed during the day

Meteorology 2/6/2017. Wind, and its Interaction with Particle Plumes. Variation of wind speed with elevation. Variation of wind speed during the day Meteorology The effect of wind, weather, and temperature conditions on the behavior of particle plumes Wind, and its Interaction with Particle Plumes Variation of wind speed with elevation Variation of

More information

The Physics of Flight. Outreach Program Lesson Plan

The Physics of Flight. Outreach Program Lesson Plan The Physics of Flight Outreach Program Lesson Plan WAAW Foundation is non-profit organization dedicated to bringing hands-on STEM education to girls all over Africa. Our Mission: To increase the pipeline

More information

5200 Lawrence Place Hyattsville, Maryland 20781, USA Toll Free: Phone: Fax:

5200 Lawrence Place Hyattsville, Maryland 20781, USA Toll Free: Phone: Fax: 5200 Lawrence Place Hyattsville, Maryland 20781, USA Toll Free: 1-888-416-0174 Phone: 301-277-3888 Fax: 301-277-3323 www.premierkites.com Congratulations on your purchase of the Osprey sport kite. The

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 7B: Forces on Submerged Bodies 7/26/2018 C7B: Forces on Submerged Bodies 1 Forces on Submerged Bodies Lift and Drag are forces exerted on an immersed body by the surrounding

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 15 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Flying High. HHJS Science Week Background Information. Forces and Flight

Flying High. HHJS Science Week Background Information. Forces and Flight Flying High HHJS Science Week 2013 Background Information Forces and Flight Flight Background Information Flying is defined as controlled movement through the air. Many things can become airborne but this

More information

Bernoulli s Principle at Work

Bernoulli s Principle at Work Diagram of demonstration Denise Winkler and Kim Brown July 25, 2003 Bernoulli s Principle at Work *Airflow should be straight on the edge of the airfoil. pivot rod airflow counter weight support rod airfoil

More information

NASA Engineering Design Challenge The Great Boomerang Challenge Teacher Guide Overview your students excited about this lesson

NASA Engineering Design Challenge The Great Boomerang Challenge Teacher Guide Overview your students excited about this lesson NASA Engineering Design Challenge The Great Boomerang Challenge Teacher Guide Overview Students think and act like engineers and scientists as they follow the eight steps of the engineering design process

More information

Provided by TryEngineering -

Provided by TryEngineering - Provided by TryEngineering - Lesson Focus Lesson focuses on sports engineering and advanced materials development. Students work in a team to devise a racquet out of everyday materials that can consistently

More information

Theory of Flight Stalls. References: FTGU pages 18, 35-38

Theory of Flight Stalls. References: FTGU pages 18, 35-38 Theory of Flight 6.07 Stalls References: FTGU pages 18, 35-38 Review 1. What are the two main types of drag? 2. Is it possible to eliminate induced drag? Why or why not? 3. What is one way to increase

More information

5200 Lawrence Place Hyattsville, Maryland 20781, USA Toll Free: Phone: Fax:

5200 Lawrence Place Hyattsville, Maryland 20781, USA Toll Free: Phone: Fax: 5200 Lawrence Place Hyattsville, Maryland 20781, USA Toll Free: 1-888-416-0174 Phone: 301-277-3888 Fax: 301-277-3323 www.premierkites.com Congratulations on your purchase of the Wolf NG sport kite. The

More information

School of Engineering & Technology University of Hertfordshire Hatfield, AL10 9AB. Wind Tunnel Testing of Crossgrip TPO Roof Walkway Matting

School of Engineering & Technology University of Hertfordshire Hatfield, AL10 9AB. Wind Tunnel Testing of Crossgrip TPO Roof Walkway Matting School of Engineering & Technology University of Hertfordshire Hatfield, AL10 9AB Wind Tunnel ing of Crossgrip TPO Roof Walkway Matting Consultant: Dr. Ken Hart (k.j.hart@herts.ac.uk) Consultancy Report

More information

Wind Tunnel Testing of Crossgrip Roof Walkway Matting

Wind Tunnel Testing of Crossgrip Roof Walkway Matting School of Aerospace, Automotive & Design Engineering Consultancy Report No: 03/00015 Wind Tunnel Testing of Crossgrip Roof Walkway Matting Consultant: Dr. K.J. Hart June 2004 For: Plastic Extruders Ltd

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

Transcript for the BLOSSMS Lesson. An Introduction to the Physics of Sailing

Transcript for the BLOSSMS Lesson. An Introduction to the Physics of Sailing [MUSIC PLAYING] Transcript for the BLOSSMS Lesson An Introduction to the Physics of Sailing Do you ever wonder how people manage to sail all the way around the world without a motor? How did they get where

More information

SUBPART C - STRUCTURE

SUBPART C - STRUCTURE SUBPART C - STRUCTURE GENERAL CS 23.301 Loads (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by

More information

CHAPTER 9 PROPELLERS

CHAPTER 9 PROPELLERS CHAPTER 9 CHAPTER 9 PROPELLERS CONTENTS PAGE How Lift is Generated 02 Helix Angle 04 Blade Angle of Attack and Helix Angle Changes 06 Variable Blade Angle Mechanism 08 Blade Angles 10 Blade Twist 12 PROPELLERS

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 6 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine Matheus C. Fernandes 1, David H. Matthiesen PhD *2 1 Case Western Reserve University Dept. of Mechanical Engineering,

More information

VISUAL AIDS FOR DENOTING OBSTACLES

VISUAL AIDS FOR DENOTING OBSTACLES CHAPTER 6. VISUAL AIDS FOR DENOTING OBSTACLES 6.1 Objects to be marked and/or lighted Note. The marking and/or lighting of obstacles is intended to reduce hazards to aircraft by indicating the presence

More information

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds?

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds? Name: Date: 1. Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.9 s, what is the magnitude

More information

Global Winds and Local Winds

Global Winds and Local Winds Global Winds and Local Winds National Science Education Standards ES 1j What is the Coriolis effect? What are the major global wind systems on Earth? What Causes Wind? Wind is moving air caused by differences

More information

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Discovering Physical Geography Third Edition by Alan Arbogast Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Factors That Influence Air Pressure Air Pressure is the measured weight of air

More information

Local and Global Winds

Local and Global Winds PART 2 Wind Local and Global Winds Wind is the horizontal movement of air. All wind is caused by air pressure differences due to the uneven heating of Earth's surface, which sets convection currents in

More information

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 5 Winds, Oceans, Weather, and Climate Section 1 Global Wind Patterns and Weather What Do You See? Learning Outcomes In this section, you will Determine the effects of Earth s rotation and the uneven

More information

Lesson Plan: Kite Meteorology

Lesson Plan: Kite Meteorology Lesson Plan: Kite Meteorology Grade Level: 3 Subject Areas: Time Required: National Standards Correlation: Summary: Objectives: Materials: Science and Math Preparation: 1 hour Activity: 1 hour every day

More information

Table of Contents. Career Overview... 4

Table of Contents. Career Overview... 4 Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Hot-Air Balloons Activity 1 Your First Hot-Air Balloon.... 5 Activity 2 Surface Area and Volume...

More information

A child places a car of mass 95 g on the track. She adjusts the controller to a power of 4.2 W so the car accelerates from rest for 0.40 s.

A child places a car of mass 95 g on the track. She adjusts the controller to a power of 4.2 W so the car accelerates from rest for 0.40 s. 1 The picture shows a track for racing toy electric cars. A guide pin fits in a groove in the track to keep the car on the track. A small electric motor in the car is controlled, with a hand-controller,

More information

Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Investigating Factors That Affect Tsunami Inundation A Science Inquiry Investigating Factors That Affect Tsunami Inundation A Science Inquiry Students build tsunami wave tanks to learn about the affect that both near-coast bathymetry (submarine topography) and coastal landforms

More information

Surf Clams: Latitude & Growth

Surf Clams: Latitude & Growth Surf Clams: Latitude & Growth East Coast MARE Materials For the leader: Projector Whiteboard to project data graph onto For the activity: Copy of data table Copy of map Computer program to graph in or

More information

Aviation Teleclass Webinar!

Aviation Teleclass Webinar! Welcome to the Supercharged Science Aviation Teleclass Webinar! You can fill out this worksheet as we go along to get the most out of time together, or you can use it as a review exercise at the end of

More information

Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Investigating Factors That Affect Tsunami Inundation A Science Inquiry Investigating Factors That Affect Tsunami Inundation A Science Inquiry Students build tsunami wave tanks to learn about the affect that both near-coast bathymetry (submarine topography) and coastal landforms

More information

THE DESIGN OF WING SECTIONS

THE DESIGN OF WING SECTIONS THE DESIGN OF WING SECTIONS Published in "Radio Control Model News" Issue Number 8 Winter 93 Aerofoil section design has advanced a great deal since great pioneers like Horatio Phillips experimented with

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodynamics I UNIT C: 2-D Airfoils C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory AE301 Aerodynamics I : List of Subjects

More information

PRE-TEST Module 2 The Principles of Flight Units /60 points

PRE-TEST Module 2 The Principles of Flight Units /60 points PRE-TEST Module 2 The Principles of Flight Units 1-2-3.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four

More information

No Description Direction Source 1. Thrust

No Description Direction Source 1. Thrust AERODYNAMICS FORCES 1. WORKING TOGETHER Actually Lift Force is not the only force working on the aircraft, during aircraft moving through the air. There are several aerodynamics forces working together

More information

Lesson: Airspeed Control

Lesson: Airspeed Control 11/20/2018 Airspeed Control Page 1 Lesson: Airspeed Control Objectives: o Knowledge o An understanding of the aerodynamics related to airspeed control o Skill o The ability to establish and maintain a

More information

Science in Sport. 106 How fast is the wind speed? Read. Count/Tachometer Any EASYSENSE. Sensors: Loggers: Logging time: EasyLog

Science in Sport. 106 How fast is the wind speed? Read. Count/Tachometer Any EASYSENSE. Sensors: Loggers: Logging time: EasyLog Sensors: Loggers: Count/Tachometer Any EASYSENSE Science in Sport Logging time: EasyLog 106 How fast is the wind speed? Read When an Olympic or world record is set, the rules for it to stand are quite

More information

Grade 3. Practice Test. Clouds, Wind, and Storms Just the Wind

Grade 3. Practice Test. Clouds, Wind, and Storms Just the Wind Name Date Grade 3 Clouds, Wind, and Storms Just the Wind Photo Credits (in order of appearance): Boarding1Now/iStock/Thinkstock; Rasica/iStock/Thinkstock Today you will read two passages. Read these sources

More information

JAR-23 Normal, Utility, Aerobatic, and Commuter Category Aeroplanes \ Issued 11 March 1994 \ Section 1- Requirements \ Subpart C - Structure \ General

JAR-23 Normal, Utility, Aerobatic, and Commuter Category Aeroplanes \ Issued 11 March 1994 \ Section 1- Requirements \ Subpart C - Structure \ General JAR 23.301 Loads \ JAR 23.301 Loads (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed

More information

It s a Breeze! Integrated Processes Observing Collecting and recording data Identifying variables Comparing and contrasting Interpreting data Relating

It s a Breeze! Integrated Processes Observing Collecting and recording data Identifying variables Comparing and contrasting Interpreting data Relating It s a Breeze! Topic ind direction and speed, informal Key Question hat do our wind detectors show us about the wind? Learning Goal tudents will: use a ribbon to find wind direction, and devise a simple

More information

Lesson Overview Students learn about the varying heights of ocean waves and what causes the variation, how waves are formed, and the parts of waves.

Lesson Overview Students learn about the varying heights of ocean waves and what causes the variation, how waves are formed, and the parts of waves. Ocean Lecture & Educator s Night May 16, 2012 Wave Heights Below is an overview of the activity Wave Heights (National Geographic) to incorporate information learned from Dr. Herrington s presentation

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

Name: SOLUTIONS MIDTERM 2, Spring 2019

Name: SOLUTIONS MIDTERM 2, Spring 2019 Name: SOLUTIONS MIDTERM 2, Spring 2019 Solutions in bold. Print your name clearly above, and write and bubble in your student 800 number on the provided scantron. There are 20 equally-weighted problems

More information

Low Speed Wind Tunnel Wing Performance

Low Speed Wind Tunnel Wing Performance Low Speed Wind Tunnel Wing Performance ARO 101L Introduction to Aeronautics Section 01 Group 13 20 November 2015 Aerospace Engineering Department California Polytechnic University, Pomona Team Leader:

More information

ENGINEERing challenge workshop for science museums in the field of aeronautic engineering

ENGINEERing challenge workshop for science museums in the field of aeronautic engineering ENGINEERing challenge workshop for science museums in the field of aeronautic engineering 1 Index Workshop ID card...3 Specific unit objectives...4 Resources...4 The workshop...5 Introduction...5 The main

More information

Wellington Street : Wind Impact Qualitative Assessment. To Whom It May Concern, RE: Proposed Wellington Street Wind Impact Qualitative Assessment

Wellington Street : Wind Impact Qualitative Assessment. To Whom It May Concern, RE: Proposed Wellington Street Wind Impact Qualitative Assessment March 19, 2018 Alex Halef, President, BANC Investments Ltd. Inverse Developments Ltd. BANC Group To Whom It May Concern, RE: Proposed Wellington Street Wind Impact Qualitative Assessment The proposed 8

More information

Wind Energy. Definition of Wind Energy. Wind energy is energy from moving air.

Wind Energy. Definition of Wind Energy. Wind energy is energy from moving air. Wind Energy Definition of Wind Energy Wind energy is energy from moving air. Air has mass. When it moves, it has kinetic energy. Kinetic energy is the energy of motion. How does wind form? Wind forms when

More information

Wind in the Atmosphere

Wind in the Atmosphere Lesson 1 Wind in the Atmosphere Essential Question What is wind? By the end of this lesson, you should be able to explain how energy provided by the sun causes atmospheric movement, called wind. 8.10A

More information

Schooner Adventure Water and Energy

Schooner Adventure Water and Energy Schooner Adventure Water and Energy Harnessing Energy from the Ocean: Investigating Ocean Wind and Water Currents I. What Causes Wind and Wind Currents? How Winds Are Made Investigate movement of warm

More information

Daniel and the Old Lion Hunter

Daniel and the Old Lion Hunter Daniel and the Old Lion Hunter Theme When the speed of a moving fluid increases, pressure in the fluid decreases, and vice versa. Goal Daniel Bernoulli Swiss mathematician and scientist (1700 1782) Students

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Class: Date: Chapter 3 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the following is a physical quantity that has a magnitude

More information

Earth s Atmosphere. Air Currents

Earth s Atmosphere. Air Currents CHAPTER 12 Earth s Atmosphere LESSON 3 Air Currents What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with

More information

Section 6. The Surface Circulation of the Ocean. What Do You See? Think About It. Investigate. Learning Outcomes

Section 6. The Surface Circulation of the Ocean. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 5 Winds, Oceans, Weather, and Climate Section 6 The Surface Circulation of the Ocean What Do You See? Learning Outcomes In this section, you will Understand the general paths of surface ocean currents.

More information

Wind, Light & Sun Urban Projects Wind in the City Beaufort scale number Descriptive term Units in km/h Units in knots Description on Land Description at Sea 0 Calm 0 0 Smoke rises vertically

More information

Dick Bowdler Acoustic Consultant

Dick Bowdler Acoustic Consultant Dick Bowdler Acoustic Consultant 01383 882 644 077 8535 2534 dick@dickbowdler.co.uk WIND SHEAR AND ITS EFFECT ON NOISE ASSESSMENT OF WIND TURBINES June 2009 The Haven, Low Causeway, Culross, Fife. KY12

More information

markilux markilux Technical Information safe timeless beautiful markilux Collection Specification markilux 1700 markilux 1700 stretch markilux

markilux markilux Technical Information safe timeless beautiful markilux Collection Specification markilux 1700 markilux 1700 stretch markilux safe timeless beautiful pergola 215 Installation of and awning systems (in line EN 13561) and pergola systems intended for outdoor use meet the requirements of European Standard EN 13561 for blinds and

More information

Newton s Triple Play Explore

Newton s Triple Play Explore 5E Lesson: Explore Newton s Triple Play Explore Stations (80 minutes) Students will explore how forces affect the motion of objects in the following stations. Station : Baseball Forces Baseball Space to

More information

National Renewable Energy Laboratory. Wind Resource Data Summary Guam Naval Ordnance Annex Data Summary and Retrieval for November 2009

National Renewable Energy Laboratory. Wind Resource Data Summary Guam Naval Ordnance Annex Data Summary and Retrieval for November 2009 National Renewable Energy Laboratory Wind Resource Data Summary Guam Naval Ordnance Annex Data Summary and Retrieval for November 2009 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard

More information

Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all. interconnected as part of a single large global ocean.

Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all. interconnected as part of a single large global ocean. Ocean Motion Met 101: Introduction to the World's Oceans Produced by The COMET Program Geography: Name Pd. Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all

More information

What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening?

What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening? What happens to a fluid (water or air) when it moves from entering a wide opening to entering a narrow opening? The water (or air) speeds up. Since the same amount of water/air has to travel through a

More information

Wind Movement and Global and Local Winds

Wind Movement and Global and Local Winds Wind Movement and Global and Local Winds In previous lessons, you learned that the uneven heating of Earth s surface by the Sun causes some areas to be warmer than others. This uneven heating of land forms

More information

Aerodynamic principle

Aerodynamic principle Aerodynamic principle In this document, I want to give you a short overview about the different aerodynamical principles based on which wind turbines and EneBird Wind Power Plants work. You won't need

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 6 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) A steep pressure gradient: a. produces light winds. b. produces strong winds. c. is only possible in

More information

Plot the Path. Mary Anne Otten. lesson three

Plot the Path. Mary Anne Otten. lesson three Plot the Path Mary Anne Otten lesson three Subject/Grade: Grade 2, Math, Social Studies, Science Duration: one class period Materials needed: Per class: Day the Great Lakes Drained Away by Charles Ferguson

More information

3/6/2001 Fig. 6-1, p.142

3/6/2001 Fig. 6-1, p.142 First GOES 11 image http://visible earth.nasa.g ov/view_rec. php?id=190 Air-born dust from the Sahara Desert, Feb. 2001 Fig. 6-CO, p.140 dust from China over Japan. 3/5/2001 FIGURE 6.1 A model of the atmosphere

More information

Rocket Activity Foam Rocket

Rocket Activity Foam Rocket Rocket Activity Foam Rocket Objective Students will learn about rocket stability and trajectory with rubber bandrpowered foam rockets. Description Students will construct rockets made from pipe insulating

More information

Documentary Lens Lesson Plan for The White Ship

Documentary Lens Lesson Plan for The White Ship Documentary Lens Lesson Plan for The White Ship Page 1 Documentary Lens Lesson Plan for The White Ship By Andrea Burke École secondaire de Clare, Conseil scolaire acadien provincial, NS Curriculum Connections

More information

ROOFING & CLADDING IN WINDY CONDITIONS

ROOFING & CLADDING IN WINDY CONDITIONS ROOFING & CLADDING IN WINDY CONDITIONS 3rd Edition FORWARD Roofers must always be made aware of and understand the hazards which can overtake them whenever work is attempted or continued in windy conditions.

More information

Vertical Wind Energy Engineering Design and Evaluation of a Twisted Savonius Wind Turbine

Vertical Wind Energy Engineering Design and Evaluation of a Twisted Savonius Wind Turbine Design and Evaluation of a Twisted Savonius Wind Turbine Ian Duffett Jeff Perry Blaine Stockwood Jeremy Wiseman Outline Problem Definition Introduction Concept Selection Design Fabrication Testing Results

More information

Meteorology. Iain Darby NAPC/PH-NSIL IAEA. International Atomic Energy Agency

Meteorology. Iain Darby NAPC/PH-NSIL IAEA. International Atomic Energy Agency Meteorology Iain Darby NAPC/PH-NSIL International Atomic Energy Agency Good Weather Information Accurate weather forecasts play a vital role in all aviation activity It is required by law in many countries

More information

Wind and Air Pressure

Wind and Air Pressure Wind and Air Pressure When air moves above the surface of the Earth, it is called wind. Wind is caused by differences in air pressure. When a difference in pressure exists, the air will move from areas

More information

Chapter 2 Wind: Origin and Local Effects

Chapter 2 Wind: Origin and Local Effects Chapter 2 Wind: Origin and Local Effects All renewable energy (except tidal and geothermal power), and even the energy in fossil fuels, ultimately comes from the sun. About 1 2 % of the energy coming from

More information

Calculus 12: Evaluation 3 Outline and Review

Calculus 12: Evaluation 3 Outline and Review Calculus 12: Evaluation 3 Outline and Review You should be able to: 1. Differentiate various types of functions including trigonometric, exponential and logarithmic functions, 2. Solve various related

More information

Case studies from classes led by Dr. Ron Fulbright, University of South Carolina Upstate. INNOVATIVE ANALYSIS A BETTER KITE

Case studies from classes led by Dr. Ron Fulbright, University of South Carolina Upstate. INNOVATIVE ANALYSIS A BETTER KITE INNOVATIVE ANALYSIS A BETTER KITE 1 1. BRIEF DESCRIPTION OF THE SITUATION A kite is a tethered aircraft. The necessary lift that makes the kite wing fly is generated when air flows over and under the kite's

More information

First Flight Glossary

First Flight Glossary First Flight Glossary (for secondary grades) aeronautics The study of flight and the science of building and operating an aircraft. aircraft A machine used for flying. Airplanes, helicopters, blimps and

More information

Summary index by gender

Summary index by gender 8 Summary of findings The findings from the 5 wellness indicators discussed in Chapters 2 to 7, inclusive are summarized in the following pages. First an aggregated index is created by combining the net

More information

SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.

More information

Aerodynamics Principles

Aerodynamics Principles Aerodynamics Principles Stage 1 Ground Lesson 3 Chapter 3 / Pages 2-18 3:00 Hrs Harold E. Calderon AGI, CFI, CFII, and MEI Lesson Objectives Become familiar with the four forces of flight, aerodynamic

More information

Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India)

Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India) International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 4ǁ April 2014ǁ PP.49-54 Aerodynamically Efficient Wind Turbine Blade S Arunvinthan

More information

Exploration Series. AIRPLANE Interactive Physics Simulation Page 01

Exploration Series.   AIRPLANE Interactive Physics Simulation Page 01 AIRPLANE ------- Interactive Physics Simulation ------- Page 01 What makes an airplane "stall"? An airplane changes its state of motion thanks to an imbalance in the four main forces acting on it: lift,

More information

Bernoulli's Principle

Bernoulli's Principle Bernoulli's Principle Bernoulli's Principle states that as the speed of a moving fluid increases, the pressure within the fluid decreases. Introduction The Bernoulli's Principle explains the behavior of

More information

Semi Freddo Snow kite [Ram Air]

Semi Freddo Snow kite [Ram Air] User manual Semi Freddo Snow kite [Ram Air] This manual gives you detailed instructions on how to use your new Semi Freddo kite. We recommend you take your time to read the instructions. In case you have

More information

Installation and Training Manual

Installation and Training Manual AirForce1 Tower Kit Installation and Training Manual FuturEnergy Limited Ettington Park Business Centre Stratford upon Avon CV37 8BT +44 (0)1789 451070 Table of Contents Safety Notes... 3 Parts Supplied

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Grade: 8. Author(s): Hope Phillips

Grade: 8. Author(s): Hope Phillips Title: Tying Knots: An Introductory Activity for Writing Equations in Slope-Intercept Form Prior Knowledge Needed: Grade: 8 Author(s): Hope Phillips BIG Idea: Linear Equations how to analyze data from

More information

Uncontrolled copy not subject to amendment. Principles of Flight

Uncontrolled copy not subject to amendment. Principles of Flight Uncontrolled copy not subject to amendment Principles of Flight Principles of Flight Learning Outcome 1: Know the principles of lift, weight, thrust and drag and how a balance of forces affects an aeroplane

More information

1.3: CLIMATE GEOGRAPHY. pgs

1.3: CLIMATE GEOGRAPHY. pgs 1.3: CLIMATE GEOGRAPHY pgs. 76-89 INTRODUCTION WEATHER: Is the combination of temperature, precipitation, cloud cover and wind that we experience EACH DAY. Example: 22 0 C and clear skies. CLIMATE: The

More information