EQUILIBRIUM/CENTER-OF-GRAVITY (honors)

Size: px
Start display at page:

Download "EQUILIBRIUM/CENTER-OF-GRAVITY (honors)"

Transcription

1 EQUILIBRIUM/CENTER-OF-GRAVITY (honors) 1) Three boys are trying to balance on a seesaw, which consists of a rock, acting as a pivot at the center, and a very light board 3.60 m long. Two boys are already on either end. One has a mass of 50.0 kg, and the other a mass of 35.0 kg. Where should the third boy, whose mass is 25.0 kg, place himself so as to balance the seesaw? 2) A uniform, 12.0-m long girder has a mass of kg. It rests unattached on a concrete slab with one end overhanging the edge by 5.50 m. How far can an 80.0-kg man walk out on the girder before it tips? 3) A short-wave antenna is attached to the top of a mast 20.0-m high, and exerts a tension force of 600. N on the mast. A guy wire running to the ground from a point 6.00 m below the top of the mast and inclined 60 to the horizontal supports the mast. The mast is pivoted on a hinge pin at its base. Determine the tension in the guy wire. 4) Approximately how much force must the muscle in the upper arm exert on the lower arm to hold a 7.30-kg shot? Assume the lower arm has a mass of 2.80 kg and its center-of-gravity is 12.0 cm from the elbow joint. 5) A uniform 100.-kg horizontal beam is supported at each end. A 300.-kg piano rests ¼ of the way from one end. What is the vertical force on each of the supports?

2 6) Calculate the forces exerted by the supports (A and B) of the 30.0-kg diving board pictured below when a 60.0-kg person stands at its tip. (the center-of-gravity of the board is at its center.) 7) Calculate the tension in the wire that supports the 30.0-kg beam shown below, and the horizontal and vertical components of the force exerted by the wall on the beam. (Beam is 2.50 meters long; CG is 1.00 meter from wall) 8) A 20.0-m uniform beam weighing 900. N is supported on walls A and B. a. Find the maximum weight a person can be to walk to the extreme right end without tipping the beam. b. Find the forces that the walls A and B exert on the beam when the person is standing at a point 2.00 m to the right of B. 9) A traffic light hangs from a structure (shown below). The uniform, diagonally oriented, aluminum pole is 7.50 m long and has a mass of 8.00 kg. The mass of the traffic light is 11.0 kg. Determine the tension in the horizontal cable and the vertical and horizontal components of the force exerted by the hinge pin on the diagonal aluminum pole.

3 10) A painter (mass = 60.0 kg) is standing ¾ of the way up a ladder (mass = 12.0 kg) which is leaning against a frictionless wall. Find the (horizontal) force the wall exerts on the ladder and the x-y components of the force the ground exerts on the ladder. (Center of gravity of the ladder is at its geometric center) 11) A 41.0-kg trapdoor, 1.20 m long, is supported by a hinge at A and a sloping rope at B. Find the tension in the rope and the vertical and horizontal reaction forces of the hinge when the door is just about to open. (Center of gravity of door is meter from the hinge.) 12) Sawhorses A and B support a 40.0-kg plank that is 6.00 m long. A 60.0-kg crate is placed on the plank, 2.00 m from B. a. Find the reaction forces at A and B. b. If the box and sawhorse B are moved as shown below, find the reaction forces at A and B. 13) A 12.0-kg plank has three concrete blocks placed on it. If each block has a mass of 10.0 kg and a width of 24.0 cm, and the center-of-gravity of each block is at its geometric center, find the center-of-gravity of the entire system. (The plank is uniform in shape and density.)

4 14) A baton consists of a 4.00-cm diameter sphere weighing 2.00 N and an 8.00-cm diameter sphere weighing 6.00 N, joined by a uniform rod of weight 3.20 N and length 86.0 cm. Calculate the center-ofgravity of the baton. 15) A serving platter holds a kg block of cheese, a 2.27-kg pitcher of water, and a 1.05-kg plate of bread. If the center-of-gravity of each object is denoted by the dots and the mass of the platter is 1.75 kg (CG of platter is at its geometric center), find the center-of-gravity of the system. 16) Two paramedics are carrying a man on a stretcher (stretcher is of negligible weight). The man is 1.83 m long. The paramedics are on either end; the one at his head exerting an upward force of 500. N, and the one at his feet exerting an upward force of 235 N. Locate the man's center-of-gravity. 17) An automobile weighing lb. (mass = 1364 kg) has a wheelbase -- length from front wheel to back wheel -- of 120. in. (305 cm). Its center-of-gravity is located 70.0 in. (178 cm) behind the front axle. Determine the amount of force exerted on (a) each of the front wheels (assumed equal) and (b) each of the back wheels (assumed equal) by the level ground. 18) A 70.0-kg adult sits at one end of a 10.0-m board (m = 10.0 kg), on the other end of which sits his 20.0-kg child. Where should the pivot be placed so the board is balanced? (board is uniform in composition)

5 19) A 170.-cm tall person lies in a horizontal position on a massless board that is supported by two scales, one under the feet and one beneath the top of the head. The two scales read 310. N and 344 N, respectively. Where is the center-of-gravity of this person? 20) A uniform horizontal beam of mass 20.0 kg is supported at its left end by a wall and at its right end by a cable. Find the tension in the cable. 21) Two window washers are on a 4.00-m long horizontal platform (m = 30.0 kg) suspended by two cables, one at each end. Harry (m = 80.0 kg) is 1.00 m from the left end, and Stan (m = 50.0 kg) is 1.50 m from the right end. If the center-of-gravity of the platform is at its geom. center, find the forces exerted by each cable. 22) A uniform stunt ramp (85.0 kg) is set as shown below. Calculate the magnitude of the force exerted by the right support and the vertical force exerted by the ground on the ramp ) A flag (10.0 kg) is suspended from a wall in the manner shown below. Calculate the tension in the wire and the x-y components of the force of the wall holder on the pole. (Pole is uniform in composition.) [length of pole = 3.00 m, mass of pole = 5.00 kg] (CG of flag is directly under the free end of the pole.)

6 24) If the uniform stick has a mass of 0.50 kg, the block on the left has a mass of 1.0 kg and the block on the right has a mass of 1.5 kg, find the center-of-gravity of the system. (centers-of-gravity of individual objects shown with dots) 25) Two birds, each of mass 0.15 kg, sit on a golf club (m = 0.55 kg) as shown below. Find the center-ofgravity of the system. (CG of objects shown w/ dots) ANSWERS: m to right of rock m from slab edge N N 5. F L = 2.70 x 10 3 N up, F R = 1230 N up 6. F A = 1640 N down, F B = 2520 N up 7. T = 183 N, F y = 176 N up, F x = 140. N right 8. a N b. F A = 300. N up, F B = 1.20 x 10 3 N up, 9. T = 232 N, F y = 186 N up, F x = 232 N right 10. F w = 233 N, F x = 233 N right, F y = 706 N up 11. T = 333 N, F y = 100. N up, F x = 141 N left a. F A = 392 N up, F B = 588 N up b. F A = 327 N up, F B = 653 N up m from left end m from left end m from left end m from his head 17. a N b x 10 3 N m from adult s end m from feet N 21. F 1 = 919 N up, F 2 = 649 N up 22. F sup = 402 N, F grd = 444 N up 23. T = 136 N, F x = 134 N right, F y = 123 N up m from left end m from left end

Q Pearson Education, Inc.

Q Pearson Education, Inc. Q11.1 Which of the following situations satisfies both the first condition for equilibrium (net force = 0) and the second condition for equilibrium (net torque = 0)? A. an automobile crankshaft turning

More information

Torque Review. 3. What is true about the Torques on an object in rotational equilibrium?

Torque Review. 3. What is true about the Torques on an object in rotational equilibrium? Torque Review 1. Define the following: a. Torque b. Lever arm c. Line of action d. Fulcrum e. Center of mass 2. What can be observed about an object in rotational equilibrium? 3. What is true about the

More information

Honors Physics Rotation HW, statics (Homework)

Honors Physics Rotation HW, statics (Homework) Honors Physics Rotation HW, statics (Homework) For answers, send email to: admin@tutor-homework.com. Include file name: Physics_Worksheet_0058 Price: $3 (c) 2012 www.tutor-homework.com: Tutoring, homework

More information

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch 1. In the laboratory, you are asked to determine the mass of a meter stick without using a scale of any kind. In addition to the meter stick, you may use any or all of the following equipment: - a set

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com 6. Figure 2 3 m 0.5 m A D B June 2005 C 30 A uniform pole AB, of mass 30 kg and length 3 m, is smoothly hinged to a vertical wall at one end A. The pole is held in equilibrium

More information

Homework of chapter (3)

Homework of chapter (3) The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Hasan Almassri T.A: Eng. Mahmoud AlQazzaz First semester, 2013. Homework

More information

Chapter 11 [ Edit ] Exercise w = = 780. Chapter 11. Part A. Part B. Part C. Part D

Chapter 11 [ Edit ] Exercise w = = 780. Chapter 11. Part A. Part B. Part C. Part D Chapter 11 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 11 Due: 11:59pm on Tuesday, April 10, 2018 To understand how points are awarded, read the Grading Policy for this

More information

Fig. 3.1 (not to scale)

Fig. 3.1 (not to scale) 1 Fig. 3.1 shows an early water-powered device used to raise a heavy load. The heavy load rests on piston B. cylinder A cylinder B water load piston A piston B connecting rod connecting rod pivot beam

More information

Appendix : Categorization Task. Instructions

Appendix : Categorization Task. Instructions Appendix : Categorization Task Instructions Your task is to group the 25 problems below based upon similarity of solution into various groups on the sheet of paper provided. Problems that you consider

More information

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following. Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.

More information

MECHANICS: EQUILIBRIUM QUESTIONS

MECHANICS: EQUILIBRIUM QUESTIONS MECHANICS: EQUILIBRIUM QUESTIONS Torques and energy (2017;3) A uniform wooden plank of mass 5.0 kg and length 6.0 m is resting in the hands of two circus employees, Alf and Bert. Sally, a circus dancer

More information

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on

More information

AP Physics B Fall Final Exam Review

AP Physics B Fall Final Exam Review Name: Date: AP Physics B Fall Final Exam Review 1. The first 10 meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The

More information

Exam 3 Phys Fall 2002 Version A. Name ID Section

Exam 3 Phys Fall 2002 Version A. Name ID Section Closed book exam - Calculators are allowed. Only the official formula sheet downloaded from the course web page can be used. You are allowed to write notes on the back of the formula sheet. Use the scantron

More information

Name: SOLUTIONS MIDTERM 2, Spring 2019

Name: SOLUTIONS MIDTERM 2, Spring 2019 Name: SOLUTIONS MIDTERM 2, Spring 2019 Solutions in bold. Print your name clearly above, and write and bubble in your student 800 number on the provided scantron. There are 20 equally-weighted problems

More information

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase.

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase. HONORS PHYSICS PROBLEM SET NEWTON S LAWS & FORCES ONE DIMENSIONAL FORCES 1. The net external force on the propeller of a 0.75 kg model airplane is 17 N forward. What is the acceleration of the airplane?

More information

Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1

Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1 Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1 1. An arrow is fired upward at a speed of 100 m/s. What will be its height (in meters) one second before it reaches its maximum height? A) 505 B) 496 C)

More information

Study Island. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: 10th Grade Geometry Right Angle Trig

Study Island. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: 10th Grade Geometry Right Angle Trig Study Island Copyright 2014 Edmentum - All rights reserved. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: 10th Grade Geometry Right Angle Trig 1. A lamp illuminates an area that is 12

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 20, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

Slide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3?

Slide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 1 / 68 1 What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 2 / 68 2 What is the mass of a rectangular shaped ice block with dimensions of 0.04m x 0.05m

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 26, 2002 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

Unit Conversion Worksheet

Unit Conversion Worksheet Name: Period Date: Unit Conversion Worksheet Conversions 1 hour = 3600 seconds 1 mile = 5280 feet 1 yard = 3 feet 1 meter = 3.28 feet 1 km = 0.62 miles 1 light second = 300,000,000 meters 1 kg = 2.2 lbs

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

Equilibrium. Observations

Equilibrium. Observations Equilibrium Observations When you look closely at a rope you will see that it consists of several strands of twine. If you tried to hang a heavy (or massive) object on a single strand of twine it would

More information

1. Find the potential energy of 20 Kg mass child sitting on a roof 10 m above the ground.

1. Find the potential energy of 20 Kg mass child sitting on a roof 10 m above the ground. LECTURE_8 Name: ID: DATE: 22/04/2015 101 PHYS ASSIGNMENT 1. Find the potential energy of 20 Kg mass child sitting on a roof 10 m above the ground. 2. A women is pulling a box of 20 Kg mass on a horizontal

More information

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown

More information

AP Physics 1 Fall Semester Review Problems 1-10 Due Thursday, Due Friday, Test on Monday

AP Physics 1 Fall Semester Review Problems 1-10 Due Thursday, Due Friday, Test on Monday AP Physics 1 Fall Semester Review Problems 1-10 Due Thursday, 11-16 Due Friday, Test on Monday Motion Problems from Unit 1 1. Forest Gump is walking to ping pong practice with Lieutenant Dan at 1.3 m/s

More information

DYNAMICS PROBLEM SOLVING

DYNAMICS PROBLEM SOLVING DYNAMICS PROBLEM SOLVING 1. An elevator of mass 800 kg accelerates at 3.0 m/s 2 [down]. What force does the cable exert on the elevator? (5400 N) 2. The engine of a train has a mass of 5.0 x 10 4 kg. It

More information

(i) Write down equations for x and y in terms of t. (iii) Find the range of the golf ball.

(i) Write down equations for x and y in terms of t. (iii) Find the range of the golf ball. 1 A golf ball is hit at an angle of 60 to the horizontal from a point, O, on level horizontal ground. Its initial speed is 20 m s 1. The standard projectile model, in which air resistance is neglected,

More information

Ch06 Work and Energy.notebook November 10, 2017

Ch06 Work and Energy.notebook November 10, 2017 Work and Energy 1 Work and Energy Force = push or pull Work = force*distance (//) Technically: Work = force*distance*cos θ 2 Sample 1: How much work is done lifting a 5 N weight 3m vertically? 3 Work is

More information

1) What is the magnitude of the momentum of a kg baseball traveling at 45.0 m/s?

1) What is the magnitude of the momentum of a kg baseball traveling at 45.0 m/s? Momentum review 6) Two friends are standing on opposite ends of a canoe that is initially at rest with respect to a frictionless lake. The person in the front throws a very massive ball toward the back,

More information

Vocabulary Force: A push or a pull.

Vocabulary Force: A push or a pull. PSW-02-01 Forces in Equilibrium (55 pts) Directions: You MUST show Your Formula, Your Units, Your Answer, and all of your work for full credit!!! Some answers are given on the last page to compare your

More information

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage?

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage? Simple Machines Problem Set 1. In what two ways can a machine alter an input force? 2. What does it mean to say that a machine has a certain mechanical advantage? 3. Distinguish between ideal mechanical

More information

Four blocks are placed at the edge of a table as shown. Which block will fall over?

Four blocks are placed at the edge of a table as shown. Which block will fall over? Science Quiz for Grades 3-6 The following multiple choice quiz problems are suitable for kids in grades 3-6. These problems are designed to test and challenge their everyday understanding of the natural

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Hang from a pair of gym rings and the upward support forces of the rings will always

More information

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Monday 16 January 2017 Afternoon Time allowed: 1 hour 30 minutes You must have: the

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

AB:-: ~~ -\ L~fUIl ""pivot TOPIC 5. Thrning Effect of Forces. 3 The diagram shows a gauge which measures the amount of liquid in a tank.

AB:-: ~~ -\ L~fUIl pivot TOPIC 5. Thrning Effect of Forces. 3 The diagram shows a gauge which measures the amount of liquid in a tank. TOPC 5 Thrning Effect of Forces 1 The diagram shows a vertical piece of card pivoted freely at P. Which labelled point is most likely to be at the centre of mass? With what force is the spring pulled?

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket.

1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket. 1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar bucket arm rubber band string scale handle As the handle is turned, the

More information

TEKS Lesson 6.8E: Machines

TEKS Lesson 6.8E: Machines 6.8E Investigate how inclined planes and pulleys can be used to change the amount of force to move an object. : Machines What is a machine? A machine is a device that allows you to do work in a way that

More information

3. Moments and Pressure

3. Moments and Pressure Leaving Cert Physics Long Questions 2017-2002 3. Moments and Pressure Remember to photocopy 4 pages onto 1 sheet by going A3 A4 and using back to back on the photocopier Contents Moments: ordinary level

More information

1 Mechanical Equilibrium

1 Mechanical Equilibrium 1 Mechanical Equilibrium 1-1 Forces in Equilibrium Vocabulary Force: A push or a pull. A force is needed to change an object s state of motion. The downward force acting on an object is called weight,

More information

AP Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation. Name. Date. Period

AP Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation. Name. Date. Period Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation Name Date Period Practice Problems I. A continuous force of 2.0 N is exerted on a 2.0 kg block to the right. The block moves with a constant horizontal

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 12

BROCK UNIVERSITY. Name: Student #: Page 1 of 12 Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: July 2016 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 104 Examination date: 9 July 2016 Number of hours:

More information

REVIEW : KINEMATICS

REVIEW : KINEMATICS 1 REVIEW 5-4-16: KINEMATICS Kinematics-Defining Motion 1 A student on her way to school walks four blocks east, three blocks north, and another four blocks east, as shown in the diagram. Compared to the

More information

WINSAFE Corp. Operating Instructions For Outrigger Davit. Winsafe Part # WSOR208

WINSAFE Corp. Operating Instructions For Outrigger Davit. Winsafe Part # WSOR208 WINSAFE Corp. Operating Instructions For Outrigger Davit Winsafe Part # WSOR208 These instructions must be read and understood by anyone installing or suspending equipment from Winsafe modular beams and

More information

Honors Physics Semester 2 Final Exam Review

Honors Physics Semester 2 Final Exam Review Honors Physics Semester 2 Final Exam Review 1600 kg 800 kg 9 m/s A truck with mass 1600 kg collides with a car with mass 800 kg at rest. They stick together and continue to move to the right. 1. What is

More information

(a) Calculate the speed of the sphere as it passes through the lowest point of its path.

(a) Calculate the speed of the sphere as it passes through the lowest point of its path. 1991 Q33 A sphere of mass 3 kg on the end of a wire is released from rest and swings through a vertical distance of 0.4 m. (Neglect air friction.) (a) Calculate the speed of the sphere as it passes through

More information

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units Example Problems 3.2 Springs and Hooke s Law E1. An ideal spring has a spring constant of 120 N/m, calculate how large of a force is needed to stretch the spring exactly 0.30 meters. E2. A monkey hangs

More information

Raising a Yagi Using A Tram Without the Need for Tag Lines

Raising a Yagi Using A Tram Without the Need for Tag Lines Raising a Yagi Using A Tram Without the Need for Tag Lines The photo slide show that follows was presented to the FRC Meeting of 12/14/10. The narrative and diagram in this PowerPoint presentation was

More information

Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary.

Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary. Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary. 1. In which situation is work not done? A) a frozen turkey is carried upstairs B)

More information

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h.

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h. Physics Keller Midterm exam review The midterm exam will be seventy questions selected from the following. The questions will be changed slightly, but will remain essentially the same. 1) A truck is moving

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Q1. The diagram shows two buses. Bus A is empty. Bus B contains bags of sand upstairs to represent passengers.

Q1. The diagram shows two buses. Bus A is empty. Bus B contains bags of sand upstairs to represent passengers. Q1. The diagram shows two buses. Bus A is empty. Bus B contains bags of sand upstairs to represent passengers. Each bus has been tilted as far as it can without falling over. (a) Each bus will topple over

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

Level 2 Physics, 2012

Level 2 Physics, 2012 91171 911710 2SUPERVISOR S Level 2 Physics, 2012 91171 Demonstrate understanding of mechanics 2.00 pm Wednesday 14 November 2012 Credits: Six Achievement Achievement with Merit Achievement with Excellence

More information

Lesson 5. Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1

Lesson 5. Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1 Lesson 5 Diana Pell March 6, 2014 Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1 360 We can divide 1 into 60 equal parts, where each part is called 1 minute, denoted 1 (so that 1 minute is

More information

PHYSICS 218 EXAM 3 Monday, November 19, 2007

PHYSICS 218 EXAM 3 Monday, November 19, 2007 PHYSICS 218 EXAM 3 Monday, November 19, 2007 NAME: SECTION: 525 526 527 528 529 530 531 532 Note: 525 Recitation Thurs 2:20 529 Recitation Tues 9:35 526 Recitation Thurs 3:55 530 Recitation Tues 12:45

More information

Pythagorean Theorem Review Missing Hypotenuse. Name: Mr. Fourmy.

Pythagorean Theorem Review Missing Hypotenuse. Name: Mr. Fourmy. Name: Mr. Fourmy Date: Period: -------------------------- ---------------- Pythagorean Theorem Review Missing Hypotenuse --------- Directions: Using the Pythagorean Theorem.jind the missing side length/or

More information

Applications of trigonometry

Applications of trigonometry Applications of trigonometry This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

A child places a car of mass 95 g on the track. She adjusts the controller to a power of 4.2 W so the car accelerates from rest for 0.40 s.

A child places a car of mass 95 g on the track. She adjusts the controller to a power of 4.2 W so the car accelerates from rest for 0.40 s. 1 The picture shows a track for racing toy electric cars. A guide pin fits in a groove in the track to keep the car on the track. A small electric motor in the car is controlled, with a hand-controller,

More information

FLOATING AND SINKING

FLOATING AND SINKING NAME SCHOOL INDEX NUMBER DATE FLOATING AND SINKING 1. 1994 Q5a P2 (a) State Archimedes s principal (1 mark) 2. 1996 Q29 P1 A solid copper sphere will sink in water while a hollow copper sphere of the same

More information

PHYSICS 20 Vectors and Dynamics

PHYSICS 20 Vectors and Dynamics NEWTONS 1st LAW 1. A 10.00 kg mass is tied to a string with a maximum strength of 100 N. A second string of equal strength is tied to the bottom of the mass. a) If the bottom string is pulled with a jerk

More information

Exam Question 9: Hydrostatics. March 6, Applied Mathematics: Lecture 8. Brendan Williamson. Introduction. Density, Weight and Volume

Exam Question 9: Hydrostatics. March 6, Applied Mathematics: Lecture 8. Brendan Williamson. Introduction. Density, Weight and Volume Exam Question 9: Hydrostatics March 6, 2017 This lecture is on hydrostatics, which is question 9 of the exam paper. Most of the situations we will study will relate to objects partly or fully submerged

More information

Levers. Simple Machines: Lever 1

Levers. Simple Machines: Lever 1 Levers In the last lesson, we spent a lot of time on this strange concept called work. Work happens when something moves a distance against a force. Swell...who cares?! Well, believe it or not, this is

More information

Student name: + is valid for C =. The vorticity

Student name: + is valid for C =. The vorticity 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #1 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

The purpose of this training is to give field technicians awareness training and guidelines on potential hazards they may encounter in the field.

The purpose of this training is to give field technicians awareness training and guidelines on potential hazards they may encounter in the field. Purpose The purpose of this training is to give field technicians awareness training and guidelines on potential hazards they may encounter in the field. Fall Protection and Prevention JELD-WEN Field Employees

More information

2.6 Related Rates Worksheet Calculus AB. dy /dt!when!x=8

2.6 Related Rates Worksheet Calculus AB. dy /dt!when!x=8 Two Rates That Are Related(1-7) In exercises 1-2, assume that x and y are both differentiable functions of t and find the required dy /dt and dx /dt. Equation Find Given 1. dx /dt = 10 y = x (a) dy /dt

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

BASIC MOTOR SKILLS TESTING

BASIC MOTOR SKILLS TESTING BASIC MOTOR SKILLS TESTING FLORIDA REGION THIRTEEN CRIMINAL JUSTICE TESTING CENTER INTRODUCTION The Basic Motor Skills Test consists of two parts: the Strength and Endurance Test and the Job Task Course.

More information

An introduction to Rigging for Trail Work

An introduction to Rigging for Trail Work An introduction to Rigging for Trail Work Give me a lever long enough and a prop strong enough, I can single handed move the world. Archimedes The purpose of this seminar is to provide a hands-on introduction

More information

TENSOREX C+ TENSOREX C+

TENSOREX C+ TENSOREX C+ Installation instruction TENSOREX C+ TENSOREX C+ is a new spring automatic tensioning device for tramway, light and heavy railways Overhead Contact Lines ( OCL ). TENSOREX Products are only by PFISTERER

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Copyright 2014 Edmentum - All rights reserved. AP Physics Blizzard Bag 2014-2015 Classical Mechanics 1. A block of mass 4.0 kg is attached to the end of a spring. The spring stiffness constant is 25 N/m.

More information

Advanced Subsidiary / Advanced Level

Advanced Subsidiary / Advanced Level GCE Examinations Mechanics Module M1 Advanced Subsidiary / Advanced Level Paper K Time: 1 hour 30 minutes Instructions and Information Candidates may use any calculator except those with a facility for

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

All work on this packet is my own. I have not done anything to give myself or anyone else an unfair advantage on this assignment.

All work on this packet is my own. I have not done anything to give myself or anyone else an unfair advantage on this assignment. AP Physics Summer Packet Name: Period: All work on this packet is my own. I have not done anything to give myself or anyone else an unfair advantage on this assignment. Signature: I care significantly

More information

Lab 7 Rotational Equilibrium - Torques

Lab 7 Rotational Equilibrium - Torques Lab 7 Rotational Equilibrium - Torques Objective: < To test the hypothesis that a body in rotational equilibrium is subject to a net zero torque and to determine the typical tension force that the biceps

More information

CCM8 Unit 7: Pythagorean Theorem Vocabulary

CCM8 Unit 7: Pythagorean Theorem Vocabulary CCM8 Unit 7: Pythagorean Theorem Vocabulary Base Exponent Hypotenuse Legs Perfect Square Pythagorean Theorem When a number is raised to a power, the number that is used as a factor The number that indicates

More information

Explain that this is how I did my tower, it does not necessarily represent the state of the art, nor even the right way to do any particular aspect

Explain that this is how I did my tower, it does not necessarily represent the state of the art, nor even the right way to do any particular aspect Explain that this is how I did my tower, it does not necessarily represent the state of the art, nor even the right way to do any particular aspect of the tower. I invite those more experience to make

More information

LAB 7. ROTATION. 7.1 Problem. 7.2 Equipment. 7.3 Activities

LAB 7. ROTATION. 7.1 Problem. 7.2 Equipment. 7.3 Activities LAB 7. ROTATION 7.1 Problem How are quantities of rotational motion defined? What sort of influence changes an object s rotation? How do the quantities of rotational motion operate? 7.2 Equipment plumb

More information

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10.

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10. Practice exam semester 1 physics Walk this Way Activity, Graph Sketching and Recognition, Sonic Ranger Lab: Use the graph to the right for q s 1-3 1. Which object(s) is (are) not moving? 2. Which change

More information

Old-Exam.Questions-Ch-14 T072 T071

Old-Exam.Questions-Ch-14 T072 T071 Old-Exam.Questions-Ch-14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density

More information

Lecture 19 Fluids: density, pressure, Pascal s principle and Buoyancy.

Lecture 19 Fluids: density, pressure, Pascal s principle and Buoyancy. Lecture 19 Water tower Fluids: density, pressure, Pascal s principle and Buoyancy. Hydraulic press Pascal s vases Barometer What is a fluid? Fluids are substances that flow. substances that take the shape

More information

BUOYANCY, FLOATATION AND STABILITY

BUOYANCY, FLOATATION AND STABILITY BUOYANCY, FLOATATION AND STABILITY Archimedes Principle When a stationary body is completely submerged in a fluid, or floating so that it is only partially submerged, the resultant fluid force acting on

More information

BIOMECHANICAL MOVEMENT

BIOMECHANICAL MOVEMENT SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions - text book pages 169-172 1) For which of the following is the athlete s centre of mass most likely to lie outside of

More information

VECTORS Important Questions from CBSE point of view

VECTORS Important Questions from CBSE point of view VECTORS Important Questions from CBSE point of view LEVEL-1 1. Two forces have their resultant equal to either. At what angle are they inclined? 2. Add a velocity of 30 m/s eastwards to a velocity of 40

More information

Moments and Pressure Workshop

Moments and Pressure Workshop Moments and Pressure Workshop This workshop will cover the following: a. Moments b. Moment units (Nm) c. Anticlockwise moment = Clockwise moment d. Pressure e. Pressure in liquids Moments A moment is the

More information

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction.

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction. 1. A baseball is thrown at an angle of 40.0 above the horizontal. The horizontal component of the baseball s initial velocity is 12.0 meters per second. What is the magnitude of the ball s initial velocity?

More information

The study of the measurement of triangles is called Trigonometry.

The study of the measurement of triangles is called Trigonometry. Math 10 Workplace & Apprenticeship 7.2 The Sine Ratio Day 1 Plumbers often use a formula to determine the lengths of pipes that have to be fitted around objects. Some common terms are offset, run, and

More information

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum? AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a water-filled container. The

More information

Review Problems for Physics A Final

Review Problems for Physics A Final Review Problems for Physics A Final 1. The fastest helicopter, the Westland Lynx, can travel 3.33 km in the forward direction in just 30.0 s.what is the average velocity of this helicopter? Express your

More information

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the

More information

TWO DIMENSIONAL KINEMATICS

TWO DIMENSIONAL KINEMATICS PHYSICS HOMEWORK #11 TWO DIMENSIONAL [Remember that ALL vectors must be described by BOTH magnitude and direction!] 1. You walk 250. steps North and then 400. steps East. What is your displacement? (Distance

More information

March 01, Applications of Rt triangle trig ink.notebook. 8.4 Applications of Rt Triangle Trig. Standards

March 01, Applications of Rt triangle trig ink.notebook. 8.4 Applications of Rt Triangle Trig. Standards Lesson Objectives Standards Lesson Notes Lesson Objectives Standards Lesson Notes 8.4 Applications of Rt Triangle Trig After this lesson, you should be able to successfully find and use trigonometric ratios

More information

MSA Confined Space Entry Equipment

MSA Confined Space Entry Equipment MSA Confined Space Entry Equipment Because every life has a purpose... MSA Confined Space Entry Equipment MSA XTIRPA Manhole Guard System Use for confined space vertical entry and fall protection when

More information

Types of Forces. Pressure Buoyant Force Friction Normal Force

Types of Forces. Pressure Buoyant Force Friction Normal Force Types of Forces Pressure Buoyant Force Friction Normal Force Pressure Ratio of Force Per Unit Area p = F A P = N/m 2 = 1 pascal (very small) P= lbs/in 2 = psi = pounds per square inch Example: Snow Shoes

More information

Ramp B is steeper than Ramp A. Less force is needed to push boxes up Ramp A. However, you have to move the boxes over a greater distance.

Ramp B is steeper than Ramp A. Less force is needed to push boxes up Ramp A. However, you have to move the boxes over a greater distance. What is a simple machine? Would you say this bicycle is a simple machine? It is certainly simpler than a car, but it does not fit the scientific definition of simple machine. A simple machine is a device

More information

Mechanical Energy I. Name: Date: Section C D F. Mr. Alex Rawson Physics

Mechanical Energy I. Name: Date: Section C D F. Mr. Alex Rawson Physics Name: Date: Section C D F Mechanical Energy I Mr. Alex Rawson Physics 1. One of the two Olympic weightlifting events is called the Clean and Jerk, shown below. As of Athens 2004, the record for Clean and

More information