The Asymmetric Effects of El Niño and La Niña on the East Asian Winter Monsoon and Their Simulation by CMIP5 Atmospheric Models

Size: px
Start display at page:

Download "The Asymmetric Effects of El Niño and La Niña on the East Asian Winter Monsoon and Their Simulation by CMIP5 Atmospheric Models"

Transcription

1 Volume 31 Special Issue in Commemoration of Shaowu Wang FEBRUARY 2017 The Asymmetric Effects of El Niño and La Niña on the East Asian Winter Monsoon and Their Simulation by CMIP5 Atmospheric Models Zhun GUO 1,2, Tianjun ZHOU 1*, and Bo WU 1 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing Climate Change Research Center, Chinese Academy of Sciences, Beijing (Received June 13, 2016; in final form September 18, 2016) ABSTRACT El Niño Southern Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Niña events on the EAWM is not a mirror image of that of El Niño events. Although the EAWM becomes generally weaker during El Niño events and stronger during La Niña winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during El Niño years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Niño events and the WNP cyclone during La Niña events; specifically, the center of the WNP cyclone during La Niña events is westward-shifted relative to its El Niño counterpart. This central-position shift results from the longitudinal shift of remote El Niño and La Niña anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circulations are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux anomalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations. Key words: AMIP (Atmospheric Model Intercomparison Project), East Asian winter monsoon, ENSO, asymmetric effects, cloud, precipitation Citation: Guo, Z., T. J. Zhou, and B. Wu, 2017: The asymmetric effects of El Niño and La Niña on the East Asian winter monsoon and their simulation by CMIP5 atmospheric models. J. Meteor. Res., 31(1), 82 93, doi: /s Introduction The East Asian winter monsoon (EAWM) is an essential member of the global monsoon system. The EAWM can exert a large influence on the economy and society of eastern China, Korea, Japan, and surrounding regions, by affecting precipitation and temperature variations (Chang et al., 2006). Predictions of the interannual variability of the EAWM rely heavily on the El Niño Southern Oscillation (ENSO) phenomenon (Webster et al., 1998; Wang et al., 2008). Boreal winter is the mature phase of El Niño events. At this time, as a response to the equatorial eastern Pacific warming, a weak EAWM thus establishes under the effects of the anomalous anticyclone over the western North Pacific (WNP) (Zhang et al., 1996; Wang et al., 2000). Therefore, following a weaker EAWM during El Niño winters, southern China, eastern central China, and southern Japan are warmer and wetter, while northeastern China becomes drier (Li, 1990; Zhang et al., 1999; Chen et al., 2000; Wu et al., 2003). In La Niña years, the EAWM becomes stronger and the associated climate anomalies over East Asia are traditionally regarded as a mirror image of El Niño years (Tomita and Yasunari, 1996; Zhang et al., 1996; Ji et al., 1997; Wang Supported by the National Natural Science Foundation of China ( and ), China Meteorological Administration Special Public Welfare Research Fund (GYHY ), and Joint Center for Global Change Studies (105019). *Corresponding author: zhoutj@lasg.iap.ac.cn. The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2017

2 FEBRUARY 2017 Guo, Z., T. J. Zhou, and B. Wu 83 et al., 2000). In fact, many previous studies have demonstrated that El Niño is asymmetric to La Niña (e.g., Burgers and Stephenson, 1999; Jin et al., 2003; An and Jin, 2004; An et al., 2005; Zhang et al., 2015). Moreover, sensitivity experiments confirm that such asymmetry is highly related to nonlinear responses in the atmosphere to the underlying sea surface temperature (SST) anomalies (SS- TAs) (Hoerling et al., 1997; Kang and Kug, 2002). The stronger convection over the equatorial central Pacific during La Niña appears to the west of the suppressed convection during El Niño (Hoerling et al., 1997). Thus, the cooling of the equatorial Pacific associated with La Niña events may not lead to an opposite effect to the equatorial Pacific warming associated with El Niño events. This asymmetric feature of tropical atmospheric circulation has been confirmed by both data diagnosis and numerical modeling (Wu et al., 2010). The nonlinear responses in the atmosphere to the underlying SSTAs are highly related to the physical schemes of atmospheric models, even when they are forced by identical historical SST. It is therefore expected that the atmospheric responses of the EAWM will also vary greatly among different models. However, whether or not models are similar in their simulation of the asymmetric effects of ENSO on EAWM interannual variability needs to be investigated. Therefore, it is necessary to understand these similarities. The Atmospheric Model Intercomparison Project (AMIP) experiments from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) provide multiple samples and simplify these questions in atmospheric models that the underlying SST anomalies are fixed. Thus, our objectives are to: (1) evaluate the performance of CMIP5 models in simulating the asymmetric effects of ENSO on the EAWM, and (2) identify the possible sources of any model biases uncovered. Following this introduction, Section 2 describes the models, datasets, and analysis methods. The asymmetric effects in both observations and models are discussed in Section 3. Section 4 provides a summary of the study s key findings. 2. Data and methods The datasets used in the present study are as follows. (1) The wind fields from the National Centers for Environmental Prediction National Center for Atmospheric Research (NCEP NCAR) reanalysis data, for the period (Kalnay et al., 1996). (2) The precipitation and total cloud fraction from 560 meteorological stations, for the period , provided by the China Meteorological Administration. (3) Precipitation data from the Global Precipitation Climatology Project (GPCP) and the Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie and Arkin, 1997; Adler et al., 2003). (4) The AMIP experiments from 27 CMIP5 models. The details of the CMIP5 models are listed in Table 1. Eight-year filtered data are employed through a Lanczos filter (Duchon, 1979), to focus on the interannual variability. The asymmetric component of El Niño and La Niña events is defined as their sum (Hoerling et al., 1997). A composite analysis method is applied. We choose six El Niño events and six La Niña events (Table 2) in the period to evaluate the models, based on the threshold of one standard deviation of the winter mean (December February; DJF) Niño3.4 index. The Niño3.4 index is defined as the averaged SSTA over the central eastern Pacific (5 N 5 S, W), and the data source is the Climate Prediction Center, NOAA. As in Song and Zhou (2014), we also quantify the model performance in the simulation of interannual precipitation patterns over southeastern China (20 35 N, E), by applying a skill score (S): (1 + R ) 2 S = µ SDR ; SDR where R and SDR are the pattern correlation and the ratio of spatial standard deviation of the model against the observation, respectively. 3. Results The interannual variability of the EAWM is significantly affected by ENSO activities. Composite DJF mean precipitation and cloudiness anomalies for both El Niño and La Niña events are shown in Fig. 1, as well as their asymmetric components. The asymmetric effects of El Niño and La Niña events are confirmed. Southeastern China has more precipitation in the winters of El Niño years, with a central value of 9.0 mm day 1, which is about 50% of the climatology. The corresponding change of cloudiness exhibits an increase of 8%, which is about 12% of the climatology. On the contrary, the precipitation anomalies for La Niña years are not evident (Fig. 1b), and thus the responses of precipitation to El Niño and La Niña events are highly asymmetric (Fig. 1c). The cloudiness in southeastern China is less than normal in La Niña years, but the amplitude is far weaker than that of El Niño years (Figs. 1d and 1e), with 2% versus 8%,

3 84 Journal of Meteorological Research Volume 31 Table 1. Details of the 27 CMIP5 models used in this study Model Institute/Country Atmospheric resolution (lat. lon., level) ACCESS1.0 CSIRO BoM/Australia , L38 BCC_CSM1.1 BCC/China , L26 BCC_CSM1.1(m) BCC/China , L26 BNU-ESM Beijing Normal University/China , L26 CanESM2 CCCma/Canada , L35 CCSM4 NCAR/USA , L27 CESM1(CAM5) NSF DOE NCAR/USA , L27 CMCC-CM Canadian Centre for Climate Modelling and Analysis/Italy , L27 CNRM-CM5 Centre National de Recherches Météorologiques Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique/France , L31 CSIRO Mk3.6.0 CSIRO Queensland Climate Change Centre of Excellence/Australia , L18 EC-EARTH Irish Center of High-End Computing/Belgium , L16 FGOALS-g2 IAP Tsinghua University/China , L26 FGOALS-s2 IAP-LASG/China , L26 GFDL-HIRAM-C180 NOAA-GFDL/USA , L24 GFDL-HIRAM-C360 NOAA-GFDL/USA , L24 GISS-E2-R NASA-GISS/USA , L40 HadGEM2-A Korean Meteorological Administration-National Institute of Meteorological Research/South Korea , L38 INM-CM4.0 Institute of Numerical Mathematics/Russia , L21 IPSL-CM5A-LR IPSL/France 96 96, L39 IPSL-CM5B-LR IPSL/France 96 96, L39 IPSL-CM5B-LR IPSL/France 96 96, L39 MIROC5 Atmosphere and Ocean Research Institute (AORI), NIES, Japan Agency for Marine Earth Science and Technology (JAMSTEC)/Japan , L40 MPI-ESM-LR MPI-M/Germany , L47 MPI-ESM-MR MPI-M/Germany , L96 MRI-AGCM3.2H Meteorological Research Institute (MRI)/Japan , L48 MRI-AGCM3.2S MRI/Japan , L48 NorESM1-M Norwegian Climate Centre/Norway , L26 Table 2. El Niño and La Niña events during the period Event Year El Niño 1982, 1986, 1991, 1994, 1997, 2002 La Niña 1984, 1988, 1995, 1998, 1999, 2000 thus also showing a highly asymmetric response (Fig. 1f). Moreover, the correlation coefficient between area-averaged precipitation/cloudiness anomalies and the Niño3.4 index is 0.84/0.71 for years with a positive Niño3.4 index, which is statistically significant at the 1%/5% level. However, corresponding statistics for years with a negative Niño3.4 index are not evident. The high (low) correlation confirms the significant (insignificant) effects of El Niño (La Niña) events on winter precipitation (cloudiness) over southeastern China. All of this evidence shows that the effect of La Niña on the EAWM is not simply a mirror image of El Niño years. Previous diagnostic analysis has revealed that the anomalous lower-tropospheric anticyclone/cyclone in the tropical WNP connects the warm/cold events in the eastern Pacific with a weak/strong EAWM (Wang et al., 2000). To examine the lower-tropospheric circulation changes, Fig. 2 compares the composite DJF mean 850- hpa wind and surface air temperature anomalies. To extend the local precipitation changes shown in Fig. 1 to a broader domain and present a larger picture, the surface air temperature anomalies derived from the NCEP NCAR data are also shown in Fig. 2, since the change in surface air temperature is an essential indicator of the southern component of the EAWM (Wang et al., 2000). In the wintertime of El Niño events, East Asia has a strong anomalous anticyclone in the WNP (hereafter, WNPAC), and a weak anomalous cyclone in southeastern China. Anomalous southwesterly flow prevails along the East Asian coastline. Deficient precipitation is thus generated over the western Pacific with the dominance of the strong anticyclone, while excessive precipitation is seen in southeastern China due to the control of the anomalous cyclone. In El Niño winters, continental East Asia experiences a warmer climate associated with the dominance of the WNPAC (Fig. 2a), and thereby a weakening cold and dry monsoonal circulation. The pattern of La Niña events is not simply a mirror image of El Niño events, as shown in Fig. 2b; the central position of the WNP cyclone (WNPC) is located in the South China Sea along E, which shifts westward and becomes much weaker relative to the WNPAC ( E) during El Niño events. The spatial phase shift causes the anomalous northeasterly wind to be weak

4 FEBRUARY 2017 Guo, Z., T. J. Zhou, and B. Wu 85 Fig. 1. Composite December February (a c) mean precipitation (pr) anomalies (mm day 1 ) and (d f) total cloud (cld; %) for (a, d) eight El Niño (El) events, (b, e) seven La Niña (La) events, and (c, f) the asymmetric components between El Niño and La Niña events. The data are derived from observations at 560 meteorological stations in China for the period in southeastern China, and therefore cannot effectively influence the moisture transport and associated changes of precipitation over that region (Fig. 2b). In La Niña winters, however, the enhanced winter monsoon associated with the WNPC in the South China Sea results in a colder climate, especially west of 110 E, along the Indochina Peninsula. Due to the westward shift of the WN- PC relative to the WNPAC, the cooling signal is most robust around (20 N, 105 E). The asymmetric responses of surface circulations are more evident in the sums of El Niño and La Niña (Fig. 2c). The amplitudes of precipitation anomalies extending from the South China Sea to the WNP along N in La Niña years are stronger than those of El Niño years. The asymmetric response of surface air temperature is most robust over continental East Asia, with an amplitude of near 1.0 C (Fig. 2c). The resemblance of Fig. 2c to Fig. 2a again confirms that the effects related to El Niño events on the East Asian climate are stronger than those of La Niña events. The above analyses demonstrate that El Niño and La Niña events have robust asymmetric effects on the EAWM. Although El Niño years generally lead to a

5 86 Journal of Meteorological Research Volume 31 The surface cooling/warming and the subsidence over the WNP lead to suppressed/enhanced convective heating that further induces a Rossby-wave response and thereby the WNPAC/WNPC. Many factors contribute to the asymmetric responses of the WNPAC and WNPC. First, anomalous heating shows a significant spatial asymmetry between El Niño and La Niña events (Wu et al., 2010). In La Niña events, the negative precipitation anomalous belt appears in the west of its positive counterpart in El Niño events. Therefore, the WNPC during La Niña is located west of the WNPAC during El Niño. Second, the SSTAs over the WNP also show an asymmetry in their amplitudes; specifically, the cold SSTA during El Niño is stronger than the warm SSTA during La Niña. These mechanisms have been demonstrated by numerical model experiments (Wu et al., 2010). To investigate the simulation of the interannual EAWM patterns, Figs. 3 and 4 show composite DJF-averaged anomalous precipitation for El Niño and La Niña derived from observations and the multi-model ensemble mean (MME) of all 27 atmospheric general circulation models from CMIP5, respectively. To better evaluate the performance of the models, precipitation anomalies derived from the GPCP and CMAP data are also compared. The patterns from CMAP and GPCP show almost the same results as the station data, with pattern correlation coefficients of 0.98 and 0.96 for El Niño events. Among the CMIP5 models, 16 out of 27 show similar positive EAWM precipitation responses to the El Niño events as observed. However, the simulation skills in most models are less than 0.6 (Table 3), partly because of the westward shift of the simulated precipitation centers (figure omitted). The MME of the CMIP5 Fig. 2. Composite December February mean 850-hPa wind (vectors; models is able to reproduce the positive precipitation anm s 1) and surface air temperature (color-shaded; K) anomalies for (a) omalies over southeastern China, with a skill score of nine El Niño (El) events and (b) nine La Niña (La) events. (c) Asymmetric component estimated by the sum of (a) and (b). The data from 0.42, but its magnitude is smaller than observed. NCEP are from 1958 to The MME and most of the CMIP5 models fail to reproduce the asymmetric responses of precipitation to El weaker winter monsoon and thereby a warmer climate, Niño and La Niña events, as they reproduce incorrect while La Niña years witness a stronger winter monsoon negative precipitation anomalies when La Niña events and thereby a colder climate, due to the westward shift of appear (Fig. 4). Accordingly, the skill scores of precipitathe WNPC relative to the WNPAC, the effect of El Niño tion patterns are also poor (Table 3). Similar biases are on precipitation (temperature) over southeastern China also evident in the responses of cloud fraction, in that the (the East Asian coastline) is more significant. In addition, cloud anomalies are also highly symmetric (Fig. 5). the intensity of the WNPC is much weaker than that of Among the CMIP5 models, ACCESS1.0 performs the WNPAC, such that the WNPC cannot influence the best in terms of the precipitation pattern during El Niño EAWM as efficiently as the WNPAC does in El Niño events, with the highest skill score for precipitation of years. Therefore, the asymmetry of the WNPAC and 0.74, followed by MRI-AGCM3.2S (0.65), MPI-ESMWNPC plays crucial roles in dominating the asymmetric LR (0.62), GFDL-HIRAM-C360 (0.58), and INMclimate anomalies. CM4.0 (0.56). To further investigate the model perform-

6 FEBRUARY 2017 Guo, Z., T. J. Zhou, and B. Wu 87 Fig. 3. Composite December February mean precipitation anomalies (mm day 1) for selected El Niño events. (a) Station data, (b) CMAP, (c) GPCP, (d) multi-model ensemble mean (MME), and (e) MME of high-skill models (BE5). The dotted areas indicate that the precipitation anomalies are statistically significant at the 1% level derived by Student s t-test. Fig. 4. As in Fig. 3, but for La Niña events. ance, these five models, based on their precipitation skill score during El Niño events, are selected to represent the high-skill models ensemble (hereafter, BE5). The posit- ive precipitation anomalies over southeastern China are better captured in BE5, with a skill score of However, BE5 still overestimates the negative anom-

7 88 Journal of Meteorological Research Volume 31 Table 3. Skill scores for precipitation in the CMIP5 models for El Niño, La Niña, and their asymmetric components. The skill is relative to the station data over the region (20 30 N, E) Model Skill score of El Niño events Skill score of La Niña events Asymmetric components ACCESS BCC_CSM BCC_CSM1.1(m) BNU-ESM CanESM CCSM CESM1(CAM5) CMCC-CM CNRM-CM CSIRO Mk EC-EARTH FGOALS-g FGOALS-s GFDL-HIRAM-C GFDL-HIRAM-C GISS-E2-R HadGEM2-A INM-CM IPSL-CM5A-LR IPSL-CM5B-LR IPSL-CM5B-LR MIROC MPI-ESM-LR MPI-ESM-MR MRI-AGCM3.2H MRI-AGCM3.2S NorESM1-M Fig. 5. Composite December February cloud faction anomalies for the asymmetric component. (a) Station data, (b) International Satellite Cloud Climatology Project (ISCCP), (c) multi-model ensemble mean (MME), and (e) high-skill models (BE5, see Table 3). The dotted areas indicate that the precipitation anomalies are statistically significant at the 1% level by Student s t-test. alies in precipitation and cloud fraction in La Niña winters (Fig. 4). In the observation, the zonally asymmetric positions of the WNPAC and WNPC are regarded as one of the most influential factors in dominating the asymmetric EAWM precipitation anomalies. Figure 6 compares the compos-

8 FEBRUARY 2017 Guo, Z., T. J. Zhou, and B. Wu 89 Fig. 6. Composite December February mean surface air temperature anomalies (K) and 850-hPa winds (m s 1) for (a c) El Niño events, (d f) La Niña events, and (g i) the asymmetric component of ENSO. The dotted areas indicate that the precipitation anomalies are statistically significant at the 1% level. ite DJF mean 850-hPa wind anomalies and surface air temperature for El Niño, La Niña, and their asymmetric components. Generally, the CMIP5 models perform reasonably in simulating the spatial patterns and locations of the WNPAC and WNPC, as evidenced by the MME skill scores of 0.64 in El Niño events and 0.88 in La Niña events. In addition, the asymmetric component of the lower-atmospheric circulation is also reasonably reproduced (Figs. 6g i). However, the CMIP5 models overestimate the magnitudes of the WNPAC/WNPC, and thereby the anomalies of precipitation, especially in those models that perform well with respect to El Niño events. For example, in La Niña year winters, the simulated WNPC is stronger than observed. Accordingly, the anomalous northeasterly wind is much stronger than observed over southeastern China, and effectively influences the moisture transport and results in deficient local precipitation. Similar biases are also evident in El Niño events. The magnitudes of 850-hPa winds averaged over the northwestern Pacific (NWP; 0 30 N, E), p which are defined as u 2 + v 2, are significantly proportional to the absolute value of the precipitation anomalies averaged over southeastern China (Fig. 7a), affirming the impact of the lower-atmospheric circulation on the simulation of EAWM interannual variability. Since the CMIP5 models are forced by historical SST, surface air temperature anomalies do not show signific- ant disagreements between simulations and observations over ocean. Over land, however, the anomalies of surface air temperature anomalies, which are the responses to anomalous circulation, show large inconsistencies with observations. Owing to the overestimation of the WNPAC in El Niño winters, the MME and BE5 tend to overestimate the positive anomalies of surface temperature over the Indochina Peninsula. This is also true for La Niña events, which has a strong cold bias (Fig. 6). As the spatial patterns of the WNPAC and WNPC are simulated well by the CMIP5 models, the overestimations of circulation and precipitation may be related to the lack of air-sea coupling that suppresses the local negative feedback between surface wind/latent heating flux and the underlying SST, as the SST cannot respond to the surface heating fluxes (Wu and Kirtman, 2005). When SST is specified, such biases in latent heating flux and circulation are further amplified by the positive windevaporation feedback over the WNP, which is essential for maintaining the local SSTA and anomalous lowertropospheric circulation (Wang et al., 2000). Figure 8 compares composite DJF mean surface latent heat flux anomalies for El Niño and La Niña derived from OAFlux (objectively analyzed air sea fluxes) data and the models. In El Niño winters, a negative latent heating anomaly extends from the East/South China Sea and the northern Philippine Sea to the northern WNP, while the

9 90 Journal of Meteorological Research Volume 31 Fig. 7. Scatter plot of (a) the absolute value (ABS) of anomalous precipitation averaged over southeastern China (20 30 N, E), and (b) the absolute value of anomalous latent heat flux averaged over the NWP (0 30 N, E), versus the magnitudes of 850-hPa anomalous winds averaged over the NWP. Red dots denote El Niño events and blue dots denote La Niña events. WNP witnesses a positive latent heating anomaly. The La Niña winter shows almost opposite spatial patterns, although the positive anomalous latent heat flux center is located farther to the northwest of the composite negative latent heat flux anomaly center during El Niño (Fig. 8d). These dipole patterns in anomalous latent heat flux Fig. 8. As in Fig. 6, but for latent heat fluxes (W m 2).

10 FEBRUARY 2017 Guo, Z., T. J. Zhou, and B. Wu can be reproduced well by the CMIP5, MME, and BE5. However, the simulated latent anomalies are twice as those observed in both El Niño and La Niña winters, especially in the South China Sea and northern Philippine Sea. Thus, the WNPAC in El Niño events and the WNPC in La Niña events are overestimated. To show the positive feedback more clearly, the magnitudes of 850-hPa anomalous winds and absolute values of latent heat flux averaged over the NWP are shown in Fig. 7b. For both El Niño and La Niña events, there is a robust positive linear relationship between the magnitudes of lower-atmospheric circulation and latent heat fluxes. It indicates that the simulation of abnormal loweratmospheric circulation is highly related to that of latent heat flux, as evidenced by the statistically significant correlation coefficient of 0.83 and 0.69 for El Niño and La Niña years, respectively. Thus, the overestimated latent heat flux anomalies tend to enhance the Rossby-wave response, and thereby a low skill score of interannual EAWM variability. The anomalous lower-tropospheric circulations in turn 91 enhance the anomalies of latent heat flux by influencing the surface moisture advection. Following the bulk aerodynamic scheme, the latent heat flux is defined as: E = ½L ec e (qa qs) U; where E is latent heat flux, ρ is atmospheric surface density, Le is latent heat of vaporization, U is the horizontal component of the near-surface mean wind magnitude, and Ce represents the turbulent exchange coefficients of moisture. As the surface saturation specific humidity, qs, is a function of SST, Fig. 8 only shows the composite DJF mean specific humidity (qa) and wind anomalies (U) at the bottom of the atmosphere for El Niño and La Niña, derived from observations and models, separately. In the observation, there are dipole specific humidity anomalous patterns, with a negative/positive southern lobe over the NWP and a positive/negative northern lobe over the South China Sea and northern Philippine Sea in El Niño/La Niña winters, which resemble the patterns of latent heat flux anomalies. Associated with surface air temperature and circulation patterns, the dipole patterns Fig. 9. As in Fig. 6, but for the specific humidity (g kg 1) and winds (m s 1) at the surface.

11 92 Journal of Meteorological Research Volume 31 of specific humidity in La Niña winter are also located farther to the northwest of the composite negative specific humidity anomaly in El Niño winter. The CMIP5 MME shows similar patterns to the observation, except for a stronger positive/negative northern lobe of specific humidity. In El Niño events, the positive northern lobe over the South China Sea and north of the Philippines in the CMIP5, MME, and BE5 are much stronger than observed (Fig. 9). Accordingly, the local negative latent heat flux anomalies are stronger. In La Niña events, the simulated dipole specific humidity anomalous patterns are also stronger than observed, with a stronger negative northern lobe over the coastal areas of China. This favors a stronger positive anomalous latent heat flux over the northern WNP, and thereby a stronger WNPC. In El Niño winters, the stronger local anomalous circulation further amplifies the bias of the positive specific humidity anomalies by enhancing northward moisture transport over the South China Sea and the northern WNP (Figs. 9b and 9c). Conversely, the anomalous northward winds further amplify northward moisture transport and thus enhance the negative specific humidity anomalies in the marginal seas of East Asia, in La Niña winters. 4. Conclusion The interannual variability of the EAWM is significantly influenced by the variation of ENSO. In this study, based on data diagnosis, the authors investigate the asymmetric effects of El Niño and La Niña events on the EAWM. Although El Niño years generally show weaker winter monsoons and La Niña years show stronger winter monsoons, the enhanced precipitation over southeastern China and warmer air temperature along the East Asian coastline in El Niño years are more significant. In El Niño winters, southeastern China experiences a significant increase in precipitation and total cloud. However, the corresponding changes in La Niña winters are weak. The asymmetric effects are dominated by the asymmetric longitudinal positions and amplitude magnitudes of the WNPAC in El Niño years and the WNPC in La Niña years; the center of the weak WNPC in La Niña winters appears 10 west of the center of the strong WNPAC in El Niño winters, as a result of the longitudinal shift between El Niño and La Niña anomalous heating, and the amplitude asymmetry of the SSTA in the WNP. Twenty-seven CMIP5 atmospheric models are evaluated in this study, in terms of their ability to simulate the asymmetric effects of El Niño and La Niña events on EAWM interannual variability. Such asymmetric effects are barely reproduced. First, a westward shift and underestimation of the precipitation centers are seen in most of the models, and thereby the MME. Second, the models commonly overestimate the negative precipitation anomalies over southeastern China during La Niña events. They thus overestimate the symmetric component of EN- SO effects on EAWM interannual variability. Similar bias is also evident with respect to cloud fraction over southeastern China. In both El Niño and La Niña winters, the spatial patterns of lower-atmospheric circulations are well reproduced by the CMIP5 models. Moreover, the zonally asymmetric positions of the WNPAC and WNPC are also reasonably reproduced. However, the magnitudes of the simulated WNPAC in El Niño years and the WNPC in La Niña years are stronger than observed, which lead to stronger EAWM rainfall responses over southeastern China. Further analysis confirms that the overestimation of the WNPAC and WNPC occurs because of the overestimated latent heat flux anomalies, which amplify the Rossby-wave response over the WNP to the suppressed/ enhanced central Pacific convective heating. This is evidenced by the statistically significant correlation coefficient of 0.83 and 0.69 for El Niño and La Niña years, respectively. The stronger dipole pattern of latent heating flux anomalies results in stronger anomalous lower-atmospheric circulation. Moreover, the enhanced WNPAC and WNPC in turn further enhance the anomalies of surface specific humidity, and thereby latent heating fluxes, by enhancing/ blocking southward water vapor transport over the marginal seas of East Asia and the northern WNP. Note that the present analysis focuses on the composite conditions of El Niño and La Niña years. While the results are robust for most events, one exception is the winter of 1986, whose El Niño event was related to an anomalous cyclone in the WNP rather than an anomalous anticyclone. Analysis shows that the equatorial eastern Pacific SSTA during the winter of 1986 was not as warm as a normal El Niño event (figure omitted), and thus the warming of the equatorial eastern Pacific was not strong enough to suppress the convective heating in the western Pacific, and thereby failed in creating the anticyclone. The detailed processes of this special event warrant further study. Moreover, the intraseasonal oscillation is also a key factor for the asymmetric responses in anomalous circulation to ENSO (Zhang et al., 2015). Whether models can reasonably capture this mechanism needs to be evaluated in future work.

12 FEBRUARY 2017 Guo, Z., T. J. Zhou, and B. Wu 93 REFERENCES Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979 present). J. Hydrometeor., 4, An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of EN- SO. J. Climate, 17, An, S.-I., Y. G. Ham, J. S. Kug, et al., 2005: El Niño La Niña asymmetry in the coupled model intercomparison project simulations. J. Climate, 18, , doi: /JCLI Burgers, G., and D. B. Stephenson, 1999: The normality of El Niño. Geophys. Res. Lett., 26, Chang, C.-P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. The Asian Monsoon. Wang, B., ed. Berlin Heidelberg, Springer, Chen, W., H.-F. Graf, and R. H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, Ji, L. R., S. Q. Sun, K. Arpe, et al., 1997: Model study on the interannual variability of Asian winter monsoon and its influence. Adv. Atmos. Sci., 14, Jin, F.-F, S.-I. An, A. Timmermann, et al., 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, doi: /2002GL Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/ NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc., 77, Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, ACL 1-1 ACL 1-10, doi: /2001JD Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7, Song, F. F., and T. J. Zhou, 2014: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air sea coupling improve the simulations? J. Climate, 27, Tomita, T., and T. Yasunari, 1996: Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Japan, 74, Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, Wang, L., W. Chen, and R. H. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, doi: /2008- GL Webster, P. J., V. O. Magaña, T. N. Palmer, et al., 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, Wu, B., T. Li, and T. J. Zhou, 2010: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, , doi: /2010JCLI Wu, R. G., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air sea coupling in tropical atmospheric variability. Climate Dyn., 25, Wu, R. G., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of EN- SO-related rainfall anomalies in East Asia. J. Climate, 16, Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the 86/87 and 91/92 events. J. Meteor. Soc. Japan, 74, Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, Zhang, R. H., T. R. Li, M. Wen, et al., 2015: Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Climate Dyn., 45, Tech & Copy Editor: Shuri LI Language Editor: Colin Smith

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter 5th Session of the East Asia winter Climate Outlook Forum (EASCOF-5), 8-10 November 2017, Tokyo, Japan Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high

More information

Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon

Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon Chinese Science Bulletin 2009 SCIENCE IN CHINA PRESS Springer Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon QI YanJun 1,2,3, ZHANG RenHe 2, LI

More information

The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall

The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall Richard Levine Thanks to: Andy Turner, Deepthi Marathayil,

More information

Tianjun ZHOU.

Tianjun ZHOU. Ocean-Atmosphere interaction and Interannual monsoon variability Tianjun ZHOU zhoutj@lasg.iap.ac.cn 2 nd ACAM Training School: Observation & modeling of atmospheric chemistry & aerosols in the Asian monsoon

More information

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon 2.1 Introduction The Indian summer monsoon displays substantial interannual variability, which can have profound

More information

A Proposed Mechanism for the Asymmetric Duration of El Niño and La Niña

A Proposed Mechanism for the Asymmetric Duration of El Niño and La Niña 3822 J O U R N A L O F C L I M A T E VOLUME 24 A Proposed Mechanism for the Asymmetric Duration of El Niño and La Niña YUKO M. OKUMURA Climate and Global Dynamics Division, National Center for Atmospheric

More information

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability Tim Li IPRC and Dept. of Meteorology, Univ. of Hawaii Acknowledgement. B. Wang, C.-P. Chang, P. Liu, X. Fu, Y. Zhang, Kug

More information

Changes of The Hadley Circulation Since 1950

Changes of The Hadley Circulation Since 1950 Changes of The Hadley Circulation Since 1950 Xiao-Wei Quan, Henry F. Diaz, Martin P. Hoerling (NOAA-CIRES CDC, 325 Broadway, Boulder, CO 80305) Abstract The Hadley circulation is changing in response to

More information

Haibo Hu Jie He Qigang Wu Yuan Zhang

Haibo Hu Jie He Qigang Wu Yuan Zhang J Oceanogr (2011) 67:315 321 DOI 10.1007/s10872-011-0039-y ORIGINAL ARTICLE The Indian Ocean s asymmetric effect on the coupling of the Northwest Pacific SST and anticyclone anomalies during its spring

More information

East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models

East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models Article SPECIAL ISSUE: Extreme Climate in China April 2013 Vol.58 No.12: 1427 1435 doi: 10.1007/s11434-012-5533-0 SPECIAL TOPICS: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5

More information

Rokjin J. Park, Jaein I. Jeong, Minjoong Kim

Rokjin J. Park, Jaein I. Jeong, Minjoong Kim 1. Jeong, J. I. and R. J. Park (2017), Winter monsoon variability and its impact on aerosol concentrations in East Asia, Environmental Pollution, 211, 285-292. 2. Kim, M. J., S. -W. Yeh, and R. J. Park

More information

How fast will be the phase-transition of 15/16 El Nino?

How fast will be the phase-transition of 15/16 El Nino? How fast will be the phase-transition of 15/16 El Nino? YOO-GEUN HAM D E P A R T M E N T O F O C E A N O G R A P H Y, C H O N N A M N A T I O N A L U N I V E R S I T Y 2015/16 El Nino outlook One of strongest

More information

Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections

Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections Andréa S. Taschetto

More information

The Amplitude-Duration Relation of Observed El Niño Events

The Amplitude-Duration Relation of Observed El Niño Events ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2012, VOL. 5, NO. 5, 367 372 The Amplitude-Duration Relation of Observed El Niño Events Wu Yu-Jie 1,2 and DUAN Wan-Suo 1 1 State Key Laboratory of Numerical Modeling

More information

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation 5. Introduction The Asian summer monsoon is one of the most vigorous and energetic

More information

Contrasting Impacts of Developing Phases of Two Types of El Niño on Southern China Rainfall

Contrasting Impacts of Developing Phases of Two Types of El Niño on Southern China Rainfall August Journal 2016 of the Meteorological Society of Japan, Vol. 94, J. FENG No. 4, et pp. al. 359 370, 2016 359 DOI:10.2151/jmsj.2016-019 Contrasting Impacts of Developing Phases of Two Types of El Niño

More information

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events Vijay Pottapinjara 1*, Roxy Mathew Koll2, Raghu Murtugudde3, Girish Kumar M

More information

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models Iulia-Mădălina Ștreangă University of Edinburgh University of Tokyo Research Internship Program

More information

Understanding El Nino-Monsoon teleconnections

Understanding El Nino-Monsoon teleconnections Understanding El Nino-Monsoon teleconnections Dr Neena Joseph Mani Earth & Climate Science INSA Anniversary General meeting, Session: Science in IISER Pune 27 th December 2017 Mean State of the equatorial

More information

Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

Decadal amplitude modulation of two types of ENSO and its relationship with the mean state Clim Dyn DOI 10.1007/s00382-011-1186-y Decadal amplitude modulation of two types of ENSO and its relationship with the mean state Jung Choi Soon-Il An Sang-Wook Yeh Received: 14 February 2011 / Accepted:

More information

Climate change and the South Asian monsoon. Dr Andy Turner*

Climate change and the South Asian monsoon. Dr Andy Turner* 7-8 November 2014 ICIMOD, Kathmandu, Nepal Climate change and the South Asian monsoon International Workshop on Water and Air Challenges in the HKH Under Climate and Environmental Change: Dr Andy Turner*

More information

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO Effect of late 97 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO 7. Introduction Biennial variability has been identified as one of the major modes of interannual

More information

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events Jin-Yi Yu 1*, Hsun-Ying Kao 2, Tong Lee 3, and Seon Tae Kim 1 1 Department of Earth System

More information

Decadal changes in the relationship between Indian and Australian summer monsoons

Decadal changes in the relationship between Indian and Australian summer monsoons Decadal changes in the relationship between Indian and Australian summer monsoons By C. Nagaraju 1, K. Ashok 2, A. Sen Gupta 3 and D.S. Pai 4 1 CES, C-DAC Pune, India 2 CCCR, IITM, Pune, India 3 Universities

More information

Indian Ocean Feedback to the ENSO Transition in a Multimodel Ensemble

Indian Ocean Feedback to the ENSO Transition in a Multimodel Ensemble 6942 J O U R N A L O F C L I M A T E VOLUME 25 Indian Ocean Feedback to the ENSO Transition in a Multimodel Ensemble JONG-SEONG KUG Korea Institute of Ocean Science and Technology, Ansan, South Korea YOO-GEUN

More information

Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño?

Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño? ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 2, 70 74 Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño? LI Gen, REN Bao-Hua,

More information

Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases

Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 31: 2091 2101 (2011) Published online 13 September 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.2217 Different impacts of

More information

Increasing intensity of El Niño in the central equatorial Pacific

Increasing intensity of El Niño in the central equatorial Pacific Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044007, 2010 Increasing intensity of El Niño in the central equatorial Pacific Tong Lee 1 and Michael J. McPhaden 2

More information

El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies

El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D19, 4372, doi:10.1029/2001jd000393, 2002 El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress

More information

Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models

Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053322, 2012 Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models Yue Li, 1 Nicolas C. Jourdain,

More information

AILAN LIN TIM LI. IPRC, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

AILAN LIN TIM LI. IPRC, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii 6304 J O U R N A L O F C L I M A T E VOLUME 21 Energy Spectrum Characteristics of Boreal Summer Intraseasonal Oscillations: Climatology and Variations during the ENSO Developing and Decaying Phases* AILAN

More information

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon 4.1 Introduction The main contributors to the interannual variability of Indian summer

More information

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia Water Cycle between Ocean and Land and Its Influence on Climate Variability over the South American-Atlantic Regions as Determined by SeaWinds Scatterometers Rong Fu Hui Wang, Mike Young, and Liming Zhou

More information

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Jun ichi HIROSAWA Climate Prediction Division Japan Meteorological Agency SST anomaly in Nov. 1997 1 ( ) Outline

More information

Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation

Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation Clim Dyn (23) 4:282 2847 DOI.7/s382-2-47- Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation Dietmar Dommenget Tobias Bayr Claudia Frauen Received: March 22

More information

Effect of Orography on Land and Ocean Surface Temperature

Effect of Orography on Land and Ocean Surface Temperature Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, Eds., T. Matsuno and H. Kida, pp. 427 431. by TERRAPUB, 2001. Effect of Orography on Land and Ocean Surface Temperature

More information

The Air-Sea Interaction. Masanori Konda Kyoto University

The Air-Sea Interaction. Masanori Konda Kyoto University 2 The Air-Sea Interaction Masanori Konda Kyoto University 2.1 Feedback between Ocean and Atmosphere Heat and momentum exchange between the ocean and atmosphere Atmospheric circulation Condensation heat

More information

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP October 29, 2007 Outline Overview Recent

More information

NOTES AND CORRESPONDENCE. Contributions of Indian Ocean and Monsoon Biases to the Excessive Biennial ENSO in CCSM3

NOTES AND CORRESPONDENCE. Contributions of Indian Ocean and Monsoon Biases to the Excessive Biennial ENSO in CCSM3 1850 J O U R N A L O F C L I M A T E VOLUME 22 NOTES AND CORRESPONDENCE Contributions of Indian Ocean and Monsoon Biases to the Excessive Biennial ENSO in CCSM3 JIN-YI YU, FENGPENG SUN,* AND HSUN-YING

More information

Origin of Inter-model uncertainty in ENSO amplitude change

Origin of Inter-model uncertainty in ENSO amplitude change Origin of Inter-model uncertainty in ENSO amplitude change Shang-Ping Xie Scripps Institution of Oceanography, UCSD Zheng, X.T., S.-P. Xie, L.H. Lv, and Z.Q. Zhou, 2016: Intermodel uncertainty in ENSO

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 8 March 2010 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 4 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO Jin-Yi Yu 1*, Hsun-Ying Kao 1, and Tong Lee 2 1. Department of Earth System Science, University of California, Irvine, Irvine,

More information

Analysis of 2012 Indian Ocean Dipole Behavior

Analysis of 2012 Indian Ocean Dipole Behavior Analysis of 2012 Indian Ocean Dipole Behavior Mo Lan National University of Singapore Supervisor: Tomoki TOZUKA Department of Earth and Planetary Science, University of Tokyo Abstract The Indian Ocean

More information

Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM

Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM 15 APRIL 2008 N O T E S A N D C O R R E S P O N D E N C E 1829 Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM ZHUO WANG Department of Meteorology, Naval Postgraduate School, Monterey,

More information

Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability

Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability 2017 US AMOC Science Team Meeting May 24 th, 2017 Presenter: Hosmay Lopez 1,2 Collaborators:

More information

Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations*

Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations* 3206 JOURNAL OF CLIMATE VOLUME 15 Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations* YONGSHENG ZHANG International Pacific Research Center, School of Ocean

More information

Causes of the Intraseasonal SST Variability in the Tropical Indian Ocean

Causes of the Intraseasonal SST Variability in the Tropical Indian Ocean ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2008, VOL. 1, NO. 1, 1 6 Causes of the Intraseasonal SST Variability in the Tropical Indian Ocean Tim Li 1, Francis Tam 1, Xiouhua Fu 1, ZHOU Tian-Jun 2, ZHU Wei-Jun

More information

Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset

Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 28: 1579 1587 (2008) Published online 30 January 2008 in Wiley InterScience (www.interscience.wiley.com).1671 Impacts of the basin-wide Indian Ocean

More information

Mechanism of the Asymmetric Monsoon Transition as. Simulated in an AGCM

Mechanism of the Asymmetric Monsoon Transition as. Simulated in an AGCM Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM Zhuo Wang Department of Meteorology, Naval Postgraduate School, Monterey, California C.-P. Chang Department of Meteorology, Naval

More information

Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors

Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors Hilary Spencer, Rowan Sutton and Julia Slingo CGAM, Reading University h.spencer@reading.ac.uk Monsoon -

More information

1 2 http://ds.data.jma.go.jp/tcc/tcc/index.html http://ds.data.jma.go.jp/tcc/tcc/index.html Climate in Japan World Climate Extratropics Tropics Oceanograhpic conditions World Climate Page 2 Extratropics

More information

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture!

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture! Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction Previous Lecture! Global Winds General Circulation of winds at the surface and aloft Polar Jet Stream Subtropical Jet Stream Monsoons 1 2 Radiation

More information

The Role of the Wind-Evaporation-Sea Surface Temperature (WES) Feedback in Tropical Climate Variability

The Role of the Wind-Evaporation-Sea Surface Temperature (WES) Feedback in Tropical Climate Variability The Role of the Wind-Evaporation-Sea Surface Temperature (WES) Feedback in Tropical Climate Variability R. Saravanan Depart ment of At mospheric Sciences, Texas A&M University, College Station Collaborators:

More information

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1 Discerning Patterns: Does the North Atlantic oscillate? Climate variability, or short term climate change, can wreak havoc around the world. Dramatic year to year shifts in weather can have unanticipated

More information

Thesis Committee Report 6

Thesis Committee Report 6 Thesis Committee Report 6 Andrew Turner Supervisors: Prof. Julia Slingo, Dr Pete Inness, Dr Franco Molteni (ICTP, Trieste) Thesis Committee: Dr D. Grimes (chair), Prof. A. Illingworth 13 July 2005 ENSO-Monsoon

More information

Advances in Research of ENSO Changes and the Associated Impacts on Asian-Pacific Climate

Advances in Research of ENSO Changes and the Associated Impacts on Asian-Pacific Climate Asia-Pac. J. Atmos. Sci., 50(4), 405-422, 2014 pissn 1976-7633 / eissn 1976-7951 DOI:10.1007/s13143-014-0043-4 REVIEW Advances in Research of ENSO Changes and the Associated Impacts on Asian-Pacific Climate

More information

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves Georges (1998) 3. Climatic Variability El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves ENVIRONMENTAL CONDITIONS FOR TROPICAL CYCLONES TO FORM AND GROW Ocean surface waters

More information

Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO)

Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO) Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO) Gerald Meehl National Center for Atmospheric Research Julie Arblaster, Johannes Loschnigg,

More information

SST 1. ITCZ ITCZ. (Hastenrath and Heller 1977; Folland et al. 1986; Nobre and Shukla 1996; Xie and Carton 2004). 2. MIROC. (Namias 1972).

SST 1. ITCZ ITCZ. (Hastenrath and Heller 1977; Folland et al. 1986; Nobre and Shukla 1996; Xie and Carton 2004). 2. MIROC. (Namias 1972). SST ( ) ( ) 1. ITCZ. ITCZ (Hastenrath and Heller 1977; Folland et al. 1986; Nobre and Shukla 1996; Xie and Carton 2004). 1958 1000 (Namias 1972). ITCZ. ITCZ SST (CESG) (Xie and Carton 2004). CESG SST dipole.

More information

Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge

Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge JOURNAL OF CLIMATE VOLUME Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge C.-P. CHANG, YONGSHENG ZHANG,* AND TIM

More information

The Great Paradox of Indian Monsoon Failure (Unraveling The Mystery of Indian Monsoon Failure During El Niño)

The Great Paradox of Indian Monsoon Failure (Unraveling The Mystery of Indian Monsoon Failure During El Niño) The Great Paradox of Indian Monsoon Failure (Unraveling The Mystery of Indian Monsoon Failure During El Niño) K. Krishna Kumar, B. Rajagopalan, M. Hoerling, G. Bates and M. Cane Point-by-point response

More information

Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China

Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 6, 2007, 993 1023 Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China HUANG Ronghui ( ), CHEN Jilong

More information

Andrew Turner Publication list. Submitted

Andrew Turner Publication list. Submitted Andrew Turner Publication list Submitted Jayakumar, A., Turner, A. G., Johnson, S. J., Rajagopal, E. N., Mohandas, S., and Mitra, A. K. (2016). Boreal summer sub-seasonal variability of the South Asian

More information

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE By William S. Kessler and Richard Kleeman Journal of Climate Vol.13, 1999 SWAP, May 2009, Split, Croatia Maristella Berta What does give

More information

Lecture 33. Indian Ocean Dipole: part 2

Lecture 33. Indian Ocean Dipole: part 2 Lecture 33 Indian Ocean Dipole: part 2 Understanding the processes I continue the discussion of the present understanding of the processes involved in the evolution of the mean monthly SST, and convection

More information

Surface chlorophyll bloom in the Southeastern Tropical Indian Ocean during boreal summer-fall as reveal in the MODIS dataset

Surface chlorophyll bloom in the Southeastern Tropical Indian Ocean during boreal summer-fall as reveal in the MODIS dataset Surface chlorophyll bloom in the Southeastern Tropical Indian Ocean during boreal summer-fall as reveal in the MODIS dataset Iskhaq Iskandar 1 and Bruce Monger 2 1 Jurusan Fisika, Fakultas MIPA, Universitas

More information

Pacific East Asian Teleconnection: How Does ENSO Affect East Asian Climate?*

Pacific East Asian Teleconnection: How Does ENSO Affect East Asian Climate?* 1MAY 2000 WANG ET AL. 1517 Pacific East Asian Teleconnection: How Does ENSO Affect East Asian Climate?* BIN WANG, RENGUANG WU, AND XIOUHUA FU Department of Meteorology and International Pacific Research

More information

Modelled ENSO-driven precipitation changes under global warming in the tropical Pacific

Modelled ENSO-driven precipitation changes under global warming in the tropical Pacific Modelled ENSO-driven precipitation changes under global warming in the tropical Pacific www.cawcr.gov.au Christine Chung Scott Power Julie Arblaster Harun Rashid Greg Roff ACCESS SST-forced experiments

More information

Monsoon variability over South and East Asia: statistical downscaling from CMIP5 models

Monsoon variability over South and East Asia: statistical downscaling from CMIP5 models Monsoon variability over South and East Asia: statistical downscaling from CMIP5 models AMITA PRABHU* Jaiho OH, P. Bhaskar, R.H. Kripalani Indian Institute of Tropical Meteorology Pune 411008, India *Presenter:

More information

The slab ocean El Niño

The slab ocean El Niño GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044888, 2010 The slab ocean El Niño Dietmar Dommenget 1 Received 28 July 2010; revised 2 September 2010; accepted 3 September 2010; published 16

More information

Mesoscale air-sea interaction and feedback in the western Arabian Sea

Mesoscale air-sea interaction and feedback in the western Arabian Sea Mesoscale air-sea interaction and feedback in the western Arabian Sea Hyodae Seo (Univ. of Hawaii) Raghu Murtugudde (UMD) Markus Jochum (NCAR) Art Miller (SIO) AMS Air-Sea Interaction Workshop Phoenix,

More information

Remote and Local SST Forcing in Shaping Asian-Australian Monsoon Anomalies

Remote and Local SST Forcing in Shaping Asian-Australian Monsoon Anomalies Journal of the Meteorological Society of Japan, Vol. 83, No. 2, pp. 153--167, 2005 153 Remote and Local SST Forcing in Shaping Asian-Australian Monsoon Anomalies Tim LI IPRC and Department of Meteorology,

More information

NOTES AND CORRESPONDENCE. El Niño Modoki and the Summer Precipitation Variability over South Korea: A Diagnostic Study

NOTES AND CORRESPONDENCE. El Niño Modoki and the Summer Precipitation Variability over South Korea: A Diagnostic Study October Journal of 2012 the Meteorological Society of Japan, Vol. 90, J.-S. No. KIM 5, pp. et al. 673 684, 2012 673 DOI: 10.2151/jmsj.2012-507 NOTES AND CORRESPONDENCE El Niño Modoki and the Summer Precipitation

More information

Response of tropical cyclone potential intensity over the north Indian Ocean to global warming

Response of tropical cyclone potential intensity over the north Indian Ocean to global warming Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L03709, doi:10.1029/2008gl036742, 2009 Response of tropical cyclone potential intensity over the north Indian Ocean to global warming

More information

NOTES AND CORRESPONDENCE. Timing of El Niño Related Warming and Indian Summer Monsoon Rainfall

NOTES AND CORRESPONDENCE. Timing of El Niño Related Warming and Indian Summer Monsoon Rainfall 1 JUNE 2008 N O T E S A N D C O R R E S P O N D E N C E 2711 NOTES AND CORRESPONDENCE Timing of El Niño Related Warming and Indian Summer Monsoon Rainfall CHIE IHARA, YOCHANAN KUSHNIR, MARK A. CANE, AND

More information

Contrasting Madden Julian Oscillation activity during various stages of EP and CP El Niños

Contrasting Madden Julian Oscillation activity during various stages of EP and CP El Niños ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 16: 32 37 (2015) Published online 4 July 2014 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/asl2.516 Contrasting Madden Julian Oscillation activity

More information

Asian Monsoon in a Global Perspective

Asian Monsoon in a Global Perspective Asian Monsoon in a Global Perspective Tianjun ZHOU zhoutj@lasg.iap.ac.cn 2 nd ACAM Training School: Observation & modeling of atmospheric chemistry & aerosols in the Asian monsoon region 10-12 June 2017,

More information

The Asian Australian Monsoon and El Niño Southern Oscillation in the NCAR Climate System Model*

The Asian Australian Monsoon and El Niño Southern Oscillation in the NCAR Climate System Model* 1356 JOURNAL OF CLIMATE VOLUME 11 The Asian Australian Monsoon and El Niño Southern Oscillation in the NCAR Climate System Model* GERALD A. MEEHL AND JULIE M. ARBLASTER National Center for Atmospheric

More information

Tropical Cyclone Climate in the Asia- Pacific Region and the Indian Oceans

Tropical Cyclone Climate in the Asia- Pacific Region and the Indian Oceans Tropical Cyclone Climate in the Asia- Pacific Region and the Indian Oceans Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong Annual

More information

Objective determination of the onset and withdrawal of the South China Sea summer monsoon

Objective determination of the onset and withdrawal of the South China Sea summer monsoon ATMOSPHERIC SCIENCE LETTERS Published online 29 May 217 in Wiley Online Library (wileyonlinelibrary.com) DOI: 1.12/asl.753 Objective determination of the onset and withdrawal of the South China Sea summer

More information

LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS

LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS Vol.22 No.2 JOURNAL OF TROPICAL METEOROLOGY June 2016 Article ID: 1006-8775(2016) 02-0172-10 LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS DONG Di ( ) 1, 2,

More information

Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past five decades

Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past five decades Ann. Geophys., 25, 1929 1933, 2007 European Geosciences Union 2007 Annales Geophysicae Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past

More information

How rare are the positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective

How rare are the positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L08702, doi:10.1029/2009gl037982, 2009 How rare are the 2006 2008 positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective W. Cai, 1 A. Sullivan,

More information

THE COMPARISON BETWEEN SUMMER MONSOON COMPONENTS OVER EAST ASIA AND SOUTH ASIA

THE COMPARISON BETWEEN SUMMER MONSOON COMPONENTS OVER EAST ASIA AND SOUTH ASIA Journal of Geosciences of China Vol.4 No.3-4, Dec.2002 http://www.geosciences.net THE COMPARISON BETWEEN SUMMER MONSOON COMPONENTS OVER EAST ASIA AND SOUTH ASIA Weihong QIAN and Yafen ZHU Department of

More information

The Asian Monsoon, the Tropospheric Biennial Oscillation and the Indian Ocean Zonal Mode in the NCAR CSM

The Asian Monsoon, the Tropospheric Biennial Oscillation and the Indian Ocean Zonal Mode in the NCAR CSM The Asian Monsoon, the Tropospheric Biennial Oscillation and the Indian Ocean Zonal Mode in the NCAR CSM Johannes Loschnigg International Pacific Research Center y School of Ocean and Earth Science and

More information

Effect of sea surface temperature on monsoon rainfall in a coastal region of India

Effect of sea surface temperature on monsoon rainfall in a coastal region of India Loughborough University Institutional Repository Effect of sea surface temperature on monsoon rainfall in a coastal region of India This item was submitted to Loughborough University's Institutional Repository

More information

Appendix E Mangaone Stream at Ratanui Hydrological Gauging Station Influence of IPO on Stream Flow

Appendix E Mangaone Stream at Ratanui Hydrological Gauging Station Influence of IPO on Stream Flow NZ Transport Agency Peka Peka to North Ōtaki Expressway Hydraulic Investigations for Expressway Crossing of Mangaone Stream and Floodplain Appendix E Mangaone Stream at Ratanui Hydrological Gauging Station

More information

Weakening of the Winter Monsoon and Abrupt Increase of Winter Rainfalls over Northern Taiwan and Southern China in the Early 1980s

Weakening of the Winter Monsoon and Abrupt Increase of Winter Rainfalls over Northern Taiwan and Southern China in the Early 1980s 1MAY 2010 H U N G A N D K A O 2357 Weakening of the Winter Monsoon and Abrupt Increase of Winter Rainfalls over Northern Taiwan and Southern China in the Early 1980s CHIH-WEN HUNG Department of Geography,

More information

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The Delayed Oscillator Zebiak and Cane (1987) Model Other Theories Theory of ENSO teleconnections Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The delayed oscillator

More information

Second peak in the far eastern Pacific sea surface temperature anomaly following strong El Niño events

Second peak in the far eastern Pacific sea surface temperature anomaly following strong El Niño events GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 4751 4755, doi:10.1002/grl.50697, 2013 Second peak in the far eastern Pacific sea surface temperature anomaly following strong El Niño events WonMoo Kim 1 and Wenju

More information

The Tropospheric Biennial Oscillation and Asian Australian Monsoon Rainfall

The Tropospheric Biennial Oscillation and Asian Australian Monsoon Rainfall 722 JOURNAL OF CLIMATE The Tropospheric Biennial Oscillation and Asian Australian Monsoon Rainfall GERALD A. MEEHL AND JULIE M. ARBLASTER National Center for Atmospheric Research,* Boulder, Colorado (Manuscript

More information

The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon

The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon SUST Journal of Science and Technology, Vol. 20, No. 6, 2012; P:89-98 The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon (Submitted: July 18, 2012; Accepted for

More information

Atmosphere Warm Ocean Interaction and Its Impacts on Asian Australian Monsoon Variation*

Atmosphere Warm Ocean Interaction and Its Impacts on Asian Australian Monsoon Variation* 1195 Atmosphere Warm Ocean Interaction and Its Impacts on Asian Australian Monsoon Variation* BIN WANG International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa,

More information

Evaluation of ACME coupled simulation Jack Reeves Eyre, Michael Brunke, and Xubin Zeng (PI) University of Arizona 4/19/3017

Evaluation of ACME coupled simulation Jack Reeves Eyre, Michael Brunke, and Xubin Zeng (PI) University of Arizona 4/19/3017 Evaluation of ACME coupled simulation Jack Reeves Eyre, Michael Brunke, and Xubin Zeng (PI) University of Arizona 4/19/3017 1. Introduction We look at surface variables in the tropical Pacific from a coupled

More information

Climate model errors over the South Indian Ocean thermocline dome and their. effect on the basin mode of interannual variability.

Climate model errors over the South Indian Ocean thermocline dome and their. effect on the basin mode of interannual variability. Climate model errors over the South Indian Ocean thermocline dome and their effect on the basin mode of interannual variability Gen Li* State Key Laboratory of Tropical Oceanography, South China Sea Institute

More information

Long-term warming trend over the Indian Ocean

Long-term warming trend over the Indian Ocean Long-term warming trend over the Indian Ocean RIO WIO 1. Western Indian Ocean experienced strong, monotonous warming during the last century 2. Links to asymmetry and skewness in ENSO forcing 3. Strong

More information

Summer monsoon onset in the subtropical western North Pacific

Summer monsoon onset in the subtropical western North Pacific Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L18810, doi:10.1029/2009gl040168, 2009 Summer monsoon onset in the subtropical western North Pacific Chi-Hua Wu, 1 Wen-Shung Kau, 1 and

More information

Abrupt seasonal variation of the ITCZ and the Hadley circulation

Abrupt seasonal variation of the ITCZ and the Hadley circulation GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L18814, doi:10.1029/2007gl030950, 2007 Abrupt seasonal variation of the ITCZ and the Hadley circulation Yongyun Hu, 1 Dawei Li, 1 and Jiping Liu 2 Received 16 June

More information

Role of Thermal Condition over Asia in the Weakening Asian Summer Monsoon under Global Warming Background

Role of Thermal Condition over Asia in the Weakening Asian Summer Monsoon under Global Warming Background 1MAY 2012 Z U O E T A L. 3431 Role of Thermal Condition over Asia in the Weakening Asian Summer Monsoon under Global Warming Background ZHIYAN ZUO Chinese Academy of Meteorological Sciences, Beijing, China

More information