Earth and Planetary Sciences 5 Midterm Exam March 10, 2010

Size: px
Start display at page:

Download "Earth and Planetary Sciences 5 Midterm Exam March 10, 2010"

Transcription

1 Earth and Planetary Sciences 5 Midterm Exam March 10, 2010 Name: Teaching Fellow: INSTRUCTIONS PUT YOUR NAME ON EACH PAGE. The exam will last 80 minutes. Complete the problems directly on the exam. Extra paper is available if needed. Please show ALL your work so partial credit can be given! Neatness is appreciated. Scoring: Problem Score Multiple Choice / 12 Avatar / 15 Jekyll Island / 15 TOTAL SCORE / 42

2 Section I: Multiple choice questions. Circle the best answer. (1 point each) 1. The following figure shows the energy balance of the Earth. If the Earth is in radiative equilibrium, and as shown has 100 units of incoming solar radiation, how many units of outgoing infrared radiation at the top of the atmosphere will it have? a. 100 b. 95 c. 75 d The average albedo of the moon is This means that, on average, a. 7% of the sunlight that strikes the moon is absorbed by the lunar surface. b. 7% of the sunlight that strikes the moon is reflected by the lunar surface. c. 7% of the radiation emitted by the moon is absorbed by the lunar atmosphere. d. In the N-layer model for the moon, N = Which of the following is a NEGATIVE feedback for a change in Surface Temperature? a. Temperature increases polar ice melts albedo decreases? b. Temperature increases atmospheric water vapor increases atmospheric IR absorption increases? c. Temperature increases forest fires increase more dark soot is emitted? d. Temperature increases deserts expand albedo increases? 4. Which of the following will certainly result in an increase in pressure of a gas? a. Decrease volume & increase temperature b. Decrease volume & decrease temperature c. Increase volume & increase temperature d. Increase volume & decrease temperature

3 5. The following figure shows the infrared emission spectrum of the Earth measured by a satellite over the Mediterranean Sea. Based on this figure, what is the approximate temperature at the surface of the Mediterranean? a. 220 K b. 260 K c. 280 K d. We can t tell from this figure. 6. An object with POSITIVE buoyancy (net force on it is up): I. Has a smaller volume than the volume of fluid it displaces (V OBJECT < V DISPLACED ) II. Has a lower density than the density of fluid it displaces (ρ OBJECT < ρ DISPLACED ) III. Has a smaller weight than the weight of fluid it displaces (ρ OBJECT * V OBJECT *g < ρ DISPLACED *V DISPLACED *g) a. II only b. I and III only c. II and III only d. I, II, and III 7. Which statement about the Hadley circulation is NOT true? a. The lower level winds are directed from west to east in both hemispheres b. The circulation is thermally driven c. The Earth s rotation restricts the Hadley cells to the tropics d. The circulation leads to subsidence and an arid climate around 30 degrees latitude 8. Which of the following describes circulation around low pressure systems? a. Clockwise flow in the Northern Hemisphere & clockwise flow in the Southern Hemisphere b. Clockwise flow in the Northern Hemisphere & counterclockwise flow in the Southern Hemisphere c. Counterclockwise flow in the Northern Hemisphere & clockwise flow in the Southern Hemisphere d. Counterclockwise flow in the Northern Hemisphere & counterclockwise flow in the Southern Hemisphere

4 9. Where is the atmosphere stable? a. Region I only b. Region II only c. Region III only d. Region I & II e. Region I & III 10. Which of the following is a potential final resting point for a block with density 500 kg m -3 suspended in three fluids with the following different densities. a. b. c. d. 11. Which gas is the most dense for a given pressure and temperature? The atomic weight of N is 14 g mol -1 and of O is 16 g mol -1. a. NO b. NO 2 c. N 2 O d. N 2 e. O Which of the following does not represent a partial pressure of water vapor of 1 hpa? a. 50% RH and 2 hpa saturation vapor pressure b. 25% RH and 4 hpa saturation vapor pressure c. 0.1% mixing ratio and 1000 hpa atmospheric pressure d. 0.5% mixing ratio and 500 hpa atmospheric pressure

5 Section II: Problems Show ALL your work so partial credit can be given! I. Avatar (15 points) In the film Avatar, James Cameron created an entire world on a fictional moon called Pandora. Let s explore how realistic some elements of Pandora were. a.) Pandora is supposedly about km from its star, Alpha Centauri A. Alpha Centauri A has a radius of km and a radiating temperature of 5790 K. Calculate the solar constant (F, in W.m -2 ) at Pandora. (3 points) We use the equation for the solar constant with the parameters defined in the problem: F = σt 4 2 α 4πR α = ( Wm 2 K 4 )(5790K) 4 ( km) 2 2 4πd P ( km) 2 = 84.4Wm 2 b.) If we use the solar constant from part (a) and make some assumptions about the albedo of Pandora, we can calculate Pandora s effective temperature, a chilly -146 C! But the surface temperature must be much warmer to sustain liquid water and the planet s biosphere. Assume the surface temperature of Pandora is actually 20 C. Using the N-layer model, calculate the number of atmospheric layers (N) that Pandora atmosphere must have. (3 points) We use the equation for the N-layer model of the atmosphere with the given temperatures: T surface = (N +1) 1/ 4 T eff (N +1) 1/ 4 = T surface N +1= T 4 surface T eff T N = T 4 surface eff T 1 eff So, N = 1 = c.) Regardless of your answer to part (b), describe what it means to have an N-layer atmosphere and explain how having an atmosphere can increase the surface temperature of a planet or moon like Pandora. (3 points) The N-layer model describes the atmosphere as a series of layers that each absorb outgoing longwave radiation. Each layer absorbs radiation from the layer above and below and re-radiates that energy both upwards and downwards. As a result, each layer warms the layers below (and as a result, the surface below the lowest layer) with energy that would otherwise have been lost to space if the layer didn t exist.

6 d.) One of the most spectacular features of Pandora is the floating Hallelujah Mountains. How they float is never explained one possible explanation might be buoyancy. Let s assume: the mass of a mountain is kg the mountains are located at 1 km altitude each mountain has volume of 0.40 km 3 the atmospheric density at 1 km is 1.05 kg/m 3 the gravitational acceleration (g) is the same on Pandora as on Earth (9.81 m/s 2 ) What is the buoyant force on the mountains due to the atmosphere? Is the buoyancy sufficient to make the mountains float? (3 points) The mountains will float if they experience no net force at 1 km. We can therefore compare the force due to gravity (F g ) and the buoyant force (F b ): F g = m mountain g = ( kg)(9.81 m/s 2 ) = N F b = ρ displaced V displaced g = ρ air V mountain g = (1.05 kg/m 3 )(0.4 km 3 )(1000 m / 1 km) 3 (9.81 m/s 2 ) = N The gravitational force is much larger than the buoyant force (3 orders of magnitude)! So buoyancy is not enough to support the floating mountains, and there must be another force acting on them. In fact, fans of the movie suggest some sort of superconductivity effect is at play (of course, no need to know that to get this question right!). e.) In the movie, the Hallelujah Mountains are often shown enshrouded in clouds. We can calculate the likely height of cloud formation on Pandora. If the temperature at sea level on a given day is 20 C and the dew point temperature is 9 C, at what altitude will clouds begin to form? Is the base of the Hallelujah Mountains (at 1 km above sea level) above the level where the clouds form? You can assume the lapse rates are the same as on Earth: Γ dry = 9.8 K km -1, Γ moist = 6.0 K km -1, Γ dew = 2.0 K km -1. (3 points) We want to know the altitude of cloud formation; i.e. when the temperature of an air parcel and the dew point temperature are equal. Because the air parcel rises below the cloud base, its motion is governed by the dry adiabatic lapse rate: T air = T surface - Γ dry (z z surface ) T air = 20 C (9.8 C/km)z (since z surface = 0 km) We can similarly describe the dew point temperature at an arbitrary altitude: T dew = T dew,urface - Γ dew (z z surface ) T dew = 9 C (2.0 C/km)z When these are equal: T air = T dew 20 C (9.8 C/km)z = 9 C (2.0 C/km)z 11 C = (7.8 C/km)z z = (11/7.8) km z = 1.4 km At the altitude of the mountains (z = 1 km), cloud formation will not yet have begun. So the mountaintops may be in the clouds but the bases won t at least in these weather conditions!

7 II. Jekyll Island (15 points) Jekyll Island, Georgia is vacation destination located at 31 N, 81 W. In this problem, we ll think about what s going on in the atmosphere when you go to Jekyll Island for vacation. a.) It's a warm summer day with temperature 30 C on your beach vacation. The relative humidity is 70%. What is the saturation partial pressure of water vapor? To what temperature would the air need to cool to in order for condensation to occur? Use the figure below. (3 points) We first read P H2O,sat from the graph, then calculate P H2O RH = (P H2O / P H2O, sat ) * 100% P H2O = (RH/100) * P H2O, sat P H2O = (70/100) * 40hPa = 28hPa We then read T dew from the graph: T dew = 23 o C b.) The air above the ocean just offshore is a slightly cooler 25 C. What is the scale height over the island? What is the scale height over the ocean? The average molar mass of dry air is 29 g mol -1. (3 points) H = (RT)/(M a g) or (kt)/(mg) Island: H = (8.314 J mol -1 K -1 * 303 K )/(0.029 kg mol -1 * 9.8 m s -2 ) = 8.86 km Ocean: H = (8.314 J mol -1 K -1 * 298 K )/(0.029 kg mol -1 * 9.8 m s -2 ) = 8.72 km

8 c.) In which direction (toward land or sea) does the wind blow at the surface as you lay on the beach in the afternoon? Why? (3 points) The breeze blows from sea to land. This is a land-sea breeze problem during daytime. The scale height is greater over the island, so the pressure falls off less quickly with altitude relative to the ocean. This sets up a pressure gradient at altitude in which air blows from the higher pressure over land to the lower pressure over the sea. There is rising air over the warm land and sinking air over the cool sea. There is a return flow at the surface from ocean toward land. d.) You re worried that your beach vacation may be under threat. While watching the local news, you saw the following satellite image of Tropical Storm Fay headed your way (left). Given all the clouds in the image, is the pressure at the center of the storm higher or lower than the surrounding pressure? The map on the right shows the storm track for Fay. When Fay is located at position A, which direction will you feel the wind blowing at Jekyll Island (assuming geostrophic balance applies)? What about when Fay is at position B? (3 points) A tropical storm (or any storm) is a low pressure system (and you can tell that from all the cloud formation!). In the Northern Hemisphere, flow around a low is counterclockwise. At A, the storm is to the south of the island, and wind is from east to west. At B, the storm is to the west of the island, and wind is from south to north. e.) Fay was associated with sustained winds of 113 km/hr, much stronger than those in typical mid-latitude storms. Using your knowledge of geostrophy, do you expect the pressure gradient between Fay and the surrounding area to be larger or smaller than the pressure gradient between a typical storm and its surrounding area? Justify your answer. (3 points) The pressure gradient is much stronger. Wind speed is directly related to the magnitude of the pressure gradient force a stronger pressure gradient leads to a stronger force on the air, causing increased wind speeds. Hurricanes and other tropical storms typically have very low pressures at their centers.

9 FORMULAS Ideal gas law: pv=nkt p=ρkt/m a p=nkt Stefan-Boltzmann Law: Energy flux = σt 4 Solar Constant: (blackbody, energy at all wavelengths) F S = σt 4 2 SUN 4πR SUN 2 4πd EARTH SUN 1/ 4 F(1 A) Effective temperature: T eff = 4σ Surface Temperature: T g = (N +1) 1/ 4 T eff Barometric Law: Scale height: Dry Adiabatic Lapse Rate: P(z) = P 0 e z H H = RT g = kt mg Γ dry = ΔT Δz = g C p Angular velocity: Ω = 2π t Coriolis Force: F C = 2mvΩsin(λ) Geostrophic Velocity: 1 ΔP v = 2Ωρsinλ Δx UNITS AND CONVERSIONS 1 m = 100 cm = 1000 mm = km 1 kg = 1000 g K = C mole = molecules 1 mb = 1000 N m -2 1 Pa = 1 N m -2 1 cm 3 = 10-3 L 1 J = 1 N m 1 Watt = 1 J s -1 CONSTANTS Stefan-Boltzmann constant σ W m -2 K -4 Earth s radius R Earth m Radius of the Earth s orbit around the Sun R Sun-Earth 1.5x10 11 m Solar constant for the Earth: F S 1380 W/m 2 Acceleration due to gravity g 9.81 m s -2 Pressure at sea level P surf Pa Angular velocity for the Earth Ω s -1 Boltzmann s constant k J K -1 Universal gas constant R J mol -1 K -1 Avogadro s number A v molecules mol -1 Dry adiabatic lapse rate for the Earth Γ dry 9.8 K km -1

Scott Denning CSU CMMAP 1

Scott Denning CSU CMMAP 1 Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic Lapse Rates Dry and Moist Convective Motions Present Atmospheric Composition What

More information

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4 Wednesday, September 20, 2017 Reminders Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4 PLEASE don t memorize equations, but know how to recognize them

More information

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each)

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each) NAME: Section A. Circle the letter corresponding to the best answer. (1 point each) 1. Rainbows result from: a. refraction and reflection of sunlight by water droplets b. reflection of sunlight by oceans

More information

Atmospheric & Ocean Circulation- I

Atmospheric & Ocean Circulation- I Atmospheric & Ocean Circulation- I First: need to understand basic Earth s Energy Balance 1) Incoming radiation 2) Albedo (reflectivity) 3) Blackbody Radiation Atm/ Ocean movement ultimately derives from

More information

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Exam 1 Review Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Location on Earth (L04) Latitude & Longitude great circles, prime meridian, time zones, cardinal points, azimuth

More information

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 3, Lecture 1 Mass emission rate, Atmospheric Stability Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Review homework Review quiz Mass emission

More information

PHSC 3033: Meteorology Stability

PHSC 3033: Meteorology Stability PHSC 3033: Meteorology Stability Equilibrium and Stability Equilibrium s 2 States: Stable Unstable Perturbed from its initial state, an object can either tend to return to equilibrium (A. stable) or deviate

More information

MET Lecture 8 Atmospheric Stability

MET Lecture 8 Atmospheric Stability MET 4300 Lecture 8 Atmospheric Stability Stability Concept Stable: Ball returns to original position Neutral: Ball stays wherever it is placed Unstable: Displacement grows with time. Atmospheric Stability

More information

Horizontal movement of air between cooler and warmer regions. - horizontal movement of air Convection over areas where is

Horizontal movement of air between cooler and warmer regions. - horizontal movement of air Convection over areas where is Winds and Water Chapter 9 continued... Uneven Heating The various materials of the earth absorb and emit energy at different rates Convection Heated air expands; density reduced; air rises Upward movement

More information

Atmospheric & Ocean Circulation-

Atmospheric & Ocean Circulation- Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds

More information

Fluid Circulation (Student Mastery Objectives) -The most frequent type of heat transfer of energy in the atmosphere is convection.

Fluid Circulation (Student Mastery Objectives) -The most frequent type of heat transfer of energy in the atmosphere is convection. Fluid Circulation (Student Mastery Objectives) -The most frequent type of heat transfer of energy in the atmosphere is convection. -Differences in density affect the circulation of fluids. Cold air is

More information

(a) Deflection to the left, slower velocity means greater deflection, greatest deflection at the south pole

(a) Deflection to the left, slower velocity means greater deflection, greatest deflection at the south pole 1 Test 2 Aid Sheet Exam: A single 8.5 by 11 inch aid sheet (both sides) and Type 2 nonprogrammable calculators are permitted. The time allowed for this Test (Part A plus Part B combined) is 90 minutes.

More information

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams arise because the Coriolis force prevents Hadley-type

More information

The atmospheric circulation system

The atmospheric circulation system The atmospheric circulation system Key questions Why does the air move? Are the movements of the winds random across the surface of the Earth, or do they follow regular patterns? What implications do these

More information

Atmosphere Circulation

Atmosphere Circulation Atmosphere Circulation Winds What Causes Winds? Difference in air pressure due to unequal heating of the atmosphere. Temperatures vary according to the amount of sun it gets. Uneven heating of the Earth

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 3 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Natural convection and turbulence are most likely to occur when: a) temperature decreases rapidly with

More information

Weather Unit Study Guide

Weather Unit Study Guide Weather Unit Study Guide - 2018 Weather vs Climate What does weather measure? The condition of the earth's atmosphere at a particular time and place. How are climate and weather different? Climate is the

More information

ATOMOSPERIC PRESSURE, WIND & CIRCULATION

ATOMOSPERIC PRESSURE, WIND & CIRCULATION ATOMOSPERIC PRESSURE, WIND & CIRCULATION A. INTRODUCTION Important because: pressure patterns drive wind patterns which in turn drive oceanic circulation patterns o atmospheric & oceanic circulation: major

More information

Meteorology I Pre test for the Second Examination

Meteorology I Pre test for the Second Examination Meteorology I Pre test for the Second Examination MULTIPLE CHOICE 1. A primary reason why land areas warm up more rapidly than water areas is that a) on land, all solar energy is absorbed in a shallow

More information

Small- and large-scale circulation

Small- and large-scale circulation The Earth System - Atmosphere II Small- and large-scale circulation Atmospheric Circulation 1. Global atmospheric circulation can be thought of as a series of deep rivers that encircle the planet. 2. Imbedded

More information

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65)

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Weather fronts (p 63) General circulation on a rotating Earth (p 65) Geostrophy force balance (p 66) Local effects (no coriolis force)

More information

Chapter: Atmosphere Section 3: Air Movement

Chapter: Atmosphere Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 3: Air Movement We will learn about Air Movement=Wind -Why different latitudes on Earth will receive different amounts of Solar Energy -The Coriolis Effect

More information

Read each slide, some slides have information to record on your organizer. Some slides have numbers that go with the question or red and underlined

Read each slide, some slides have information to record on your organizer. Some slides have numbers that go with the question or red and underlined Read each slide, some slides have information to record on your organizer. Some slides have numbers that go with the question or red and underlined to use for answering the questions. Essential Question:

More information

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle from: USGS http://water.usgs.gov/edu/watercycle.html Evaporation: enough water to cover the entire surface of Earth to 1 meter cycles

More information

Wind is caused by differences in air pressure created by changes in temperature and water vapor content.

Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Topic 8: Weather Notes, Continued Workbook Chapter 8 Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Wind blows from high pressure areas to low

More information

ENVIRONMENTAL PHYSICS

ENVIRONMENTAL PHYSICS ENVIRONMENTAL PHYSICS Atmospheric Stability An understanding of why and how air moves in the atmosphere is fundamental to the prediction of weather and climate. What happens to air as it moves up and down

More information

Exploring Wind Energy

Exploring Wind Energy 2013-2014 Exploring Wind Energy Student Guide SECONDARY Introduction to Wind What is Wind? Wind is simply air in motion. It is produced by the uneven heating of the Earth s surface by energy from the sun.

More information

Earth s Atmosphere. Earth s atmosphere is a key factor in allowing life to survive here.

Earth s Atmosphere. Earth s atmosphere is a key factor in allowing life to survive here. Chapter 10.2 Earth s Atmosphere Earth s atmosphere is a key factor in allowing life to survive here. This narrow band of air has the right ingredients and maintains the correct temperature, to allow life

More information

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately.

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately. Instructor: Prof. Seiberling PHYSICS DEPARTMENT MET 1010 2nd Midterm Exam October 28, 2002 Name (print, last rst): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions.

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions. Santa Ana Winds Surface weather map showing typical Santa Ana conditions. High Desert Elevation ~1500-2000 ft Santa Ana Winds ~1500 meters 0 meters Santa Ana Winds ~875 mb ~1500 meters ~875 mb Horizontal

More information

air water Road map to EPS 5 Lectures5: Pressure, barometric law, buoyancy fluid moves

air water Road map to EPS 5 Lectures5: Pressure, barometric law, buoyancy fluid moves Road map to EPS 5 Lectures5: Pressure, barometric law, buoyancy water air fluid moves Fig. 7.6: Pressure in the atmosphere (compressible) and ocean (incompressible). Lecture 5. EPS 5: 08 February 2010

More information

Cool Science Convection.. Take away concepts and ideas. State Properties of Air

Cool Science Convection.. Take away concepts and ideas. State Properties of Air Thermal Structure of the Atmosphere: Lapse Rate, Convection, Clouds Cool Science 2007 Lamont Open House Saturday, October 4th 10am - 4pm Free Shuttle buses to / from Amsterdam & 118th: 9:30am, every 30

More information

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation The tmosphere Write answers on your own paper 1. What is the primary energy source that drives all weather events, including precipitation, hurricanes, and tornados?. the Sun. the Moon C. Earth s gravity

More information

CHAPTER 6 Air-Sea Interaction

CHAPTER 6 Air-Sea Interaction CHAPTER 6 Air-Sea Interaction What causes Earth s seasons? Tilt (23.5 ) responsible for seasons 2011 Pearson Education, Inc. Distribution of Solar Energy Distribution of Solar Energy Atmosphere absorbs

More information

Assessment Schedule 2016 Earth and Space Science: Demonstrate understanding of processes in the ocean system (91413)

Assessment Schedule 2016 Earth and Space Science: Demonstrate understanding of processes in the ocean system (91413) NCEA Level 3 Earth & Space Science (91413) 2016 page 1 of 6 Assessment Schedule 2016 Earth and Space Science: Demonstrate processes in the ocean system (91413) Evidence Statement Q Evidence with with Excellence

More information

CHAPTER 8 WIND AND WEATHER MULTIPLE CHOICE QUESTIONS

CHAPTER 8 WIND AND WEATHER MULTIPLE CHOICE QUESTIONS CHAPTER 8 WIND AND WEATHER MULTIPLE CHOICE QUESTIONS 1. is the movement of air measured relative to the Earth's surface. a. Gravity b. The pressure gradient force c. The Coriolis Effect d. The centripetal

More information

Lecture 3. Science A February 2008 Finish discussion of the perfect gas law from Lecture Review pressure concepts: weight of overlying

Lecture 3. Science A February 2008 Finish discussion of the perfect gas law from Lecture Review pressure concepts: weight of overlying Lecture 3. Science A-30 07 February 2008 Finish discussion of the perfect gas law from Lecture 2. 1. Review pressure concepts: weight of overlying fluid ("hydrostatic"), force of molecules bouncing off

More information

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Structure Consists of Layers Separated by Temperature Stratosphere: Temperature

More information

Circulation Patterns

Circulation Patterns Nov. 1, 2017 Today Finish Vertical Atmospheric Structure, Origin, Escape Start Atmospheric Circulation (may finish in 2nd lecture, on Friday) A few words of introduction on Pluto Friday 11AM: Student presentations

More information

Convection Current Exploration:

Convection Current Exploration: Heat on Earth 8.10A RECOGNIZE THAT THE SUN PROVIDES THE ENERGY THAT DRIVES CONVECTION WITHIN THE ATMOSPHERE AND OCEANS, PRODUCING WINDS AND OCEAN CURRENTS [INCORPORATE 6.6B INTO CONVECTION] A few reminders

More information

An adiabatic unsaturated air parcel is displaced downwards a short distance and accelerates upwards towards its original if the density of the air

An adiabatic unsaturated air parcel is displaced downwards a short distance and accelerates upwards towards its original if the density of the air An adiabatic unsaturated air parcel is displaced downwards a short distance and accelerates upwards towards its original if the density of the air parcel after displacement is (greater/less) than the density

More information

The Real Atmosphere. The Real Atmosphere. The Real Atmosphere. The Real Atmosphere

The Real Atmosphere. The Real Atmosphere. The Real Atmosphere. The Real Atmosphere Effect of Seasons & Continents Disrupt global continuity of latitudinal belts of high and low pressure Effect of Seasons & Continents Water has a greater heat capacity than land More energy needed to raise

More information

Copy and answer the following in your marble composition book. 1. Which direction is the wind deflected in the northern hemisphere?

Copy and answer the following in your marble composition book. 1. Which direction is the wind deflected in the northern hemisphere? Copy and answer the following in your marble composition book. 1. Which direction is the wind deflected in the northern hemisphere? 2. Which direction is the wind deflected in the southern hemisphere?

More information

AT350 EXAM #2 November 18, 2003

AT350 EXAM #2 November 18, 2003 AT350 EXAM #2 November 18, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the 50 questions by using a No. 2 pencil to completely fill

More information

Lesson: Atmospheric Dynamics

Lesson: Atmospheric Dynamics Lesson: Atmospheric Dynamics By Keith Meldahl Corresponding to Chapter 8: Atmospheric Circulation Our atmosphere moves (circulates) because of uneven solar heating of the earth s surface, combined with

More information

Chapter: Atmosphere Section 3: Air Movement

Chapter: Atmosphere Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 3: Air Movement We will learn about: -Air Movement=Wind -Why different latitudes on Earth will receive different amounts of Solar Energy -The Coriolis Effect

More information

Background physics concepts (again)

Background physics concepts (again) Background physics concepts (again) position coordinate for location, say x (1-D) velocity changing position over time (magnitude and ) acceleration changing velocity v = x t = x 2 x 1 t 2 t 1 a = v t

More information

The Hydrological Cycle

The Hydrological Cycle Introduction to Climatology GEOGRAPHY 300 The Hydrological Cycle Tom Giambelluca University of Hawai i at Mānoa Atmospheric Moisture Changes of Phase of Water Changes of Phase of Water 1 Changes of Phase

More information

Water on Earth. How do oceans relate to weather and the atmosphere? Solar Radiation and Convection Currents

Water on Earth. How do oceans relate to weather and the atmosphere? Solar Radiation and Convection Currents Earth is often called the Blue Planet because so much of its surface (about 71%) is covered by water. Of all the water on Earth, about 96.5% is held in the world s oceans. As you can imagine, these oceans

More information

Atmosphere & Weather. Earth Science

Atmosphere & Weather. Earth Science Atmosphere & Weather Earth Science Energy Transfer in the Atmosphere Earth s energy is provided by the SUN! Energy is important to us because it 1. Drives winds and ocean currents. 2. Allows plants to

More information

REMINDERS: Problem Set 2: Due Monday (Feb 3)

REMINDERS: Problem Set 2: Due Monday (Feb 3) REMINDERS: Problem Set 2: Due Monday (Feb 3) Midterm 1: Next Wednesday, Feb 5 - Lecture material covering chapters 1-5 - Multiple Choice, Short Answers, Definitions - Practice midterm will be on course

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

EARTH SCIENCE 5.9 (WIND) WEATHER

EARTH SCIENCE 5.9 (WIND) WEATHER EARTH SCIENCE 5.9 (WIND) WEATHER Video Notes Key Points: 1. According to the video, what two factors cause wind: a. b. 2. Fill in the blanks from this quote from the video: Energy from the Sun heats the,

More information

ATMO 551b Spring Flow of moist air over a mountain

ATMO 551b Spring Flow of moist air over a mountain Flow of moist air over a mountain To understand many of the implications of the moist and dry adiabats and the control of moisture in the atmosphere and specifically why there are deserts, it is useful

More information

Isaac Newton ( )

Isaac Newton ( ) Introduction to Climatology GEOGRAPHY 300 Isaac Newton (1642-1727) Tom Giambelluca University of Hawai i at Mānoa Atmospheric Pressure, Wind, and The General Circulation Philosophiæ Naturalis Principia

More information

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 EXAM NUMBER NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 Name: SID: S Instructions: Write your name and student ID on ALL pages of the exam. In the multiple-choice/fill in the

More information

ESCI 107/109 The Atmosphere Lesson 9 Wind

ESCI 107/109 The Atmosphere Lesson 9 Wind Reading: Meteorology Today, Chapter 8 ABOUT WIND Wind is the motion of the air. ESCI 107/109 The Atmosphere Lesson 9 Wind The direction of the wind is given by which direction it is blowing from. For example,

More information

Adiabatic Lapse Rates and Atmospheric Stability

Adiabatic Lapse Rates and Atmospheric Stability 8 Adiabatic Lapse Rates and Atmospheric Stability Learning Goals After studying this chapter, students should be able to: 1. describe adiabatic processes as they apply to the atmosphere (p. 174); 2. apply

More information

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation.

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation. Chapter 6: Stability Concept of Stability Concept of Stability Lapse Rates Determine Stability and Stability Indices Air Parcel Expands as It Rises Air Parcel Expands As It Rises Air pressure decreases

More information

Chapter 9 Fluids and Buoyant Force

Chapter 9 Fluids and Buoyant Force Chapter 9 Fluids and Buoyant Force In Physics, liquids and gases are collectively called fluids. 3/0/018 8:56 AM 1 Fluids and Buoyant Force Formula for Mass Density density mass volume m V water 1000 kg

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Chapter 24 Solid to Liquid The process of changing state, such as melting ice, requires that energy be transferred in the form of heat. Latent heat is the energy absorbed or released

More information

PGF. Pressure Gradient. Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 2/14/2017

PGF. Pressure Gradient. Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 2/14/2017 Winds Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 1. Pressure gradient force a. High pressure flows to low pressure b. Pressure gradient = difference in pressure

More information

ATMOSPHERIC CIRCULATION

ATMOSPHERIC CIRCULATION Name ATMOSPHERIC CIRCULATION (adapted from Dr. S. Postawko, U. of Ok.) INTRODUCTION Why does the wind blow? Why do weather systems in the mid-latitudes typically move from west to east? Now that we've

More information

10.2 Energy Transfer in the Atmosphere

10.2 Energy Transfer in the Atmosphere 10.2 Energy Transfer in the Atmosphere Learning Outcomes Understand the different layers of the atmosphere Understand how energy moves in, out, and around our atmosphere er Composi

More information

Atmospheric Forces and Force Balances METR Introduction

Atmospheric Forces and Force Balances METR Introduction Atmospheric Forces and Force Balances METR 2021 Introduction In this lab you will be introduced to the forces governing atmospheric motions as well as some of the common force balances. A common theme

More information

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW.

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. ATMOSPHERIC CIRCULATION WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. Pressure differences result from variations in temperature. AIR

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams ATS 351 Lecture 6 Stability & Skew-T Diagrams To demonstrate stability, a parcel of air is used Expands and contracts freely Always has uniform properties throughout Air Parcel Air Parcel Movement: Why

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the air temperature remains constant, evaporating water into the air will the dew point and the relative

More information

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology EVE 402/502 Air Pollution Generation and Control Chapter #3 Meteorology Introduction Meteorology is the study and forecasting of weather changes resulting from large-scale atmospheric circulation Characteristics

More information

Chapter 3 Atmospheric Thermodynamics

Chapter 3 Atmospheric Thermodynamics Chapter 3 Atmospheric Thermodynamics Spring 2017 Partial Pressure and Dalton Dalton's law of partial pressure: total pressure exerted by a mixture of gases which do not interact chemically is equal to

More information

Greenhouse Effect Activity

Greenhouse Effect Activity Greenhouse Effect Activity Objectives: The student will: 1. Read and use weather instruments. 2. Collect and record temperature readings. 3. Describe the concept of the greenhouse effect. Materials: Fish

More information

Chapter. Air Pressure and Wind

Chapter. Air Pressure and Wind Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure

More information

Finish Characteristics of Climate

Finish Characteristics of Climate Bell Ringer Finish Characteristics of Climate Wind Coriolis Effect Newton s second law: a body in motion will continue in motion (unchanged) unless acted upon by an outside force. Liquid (water) and gas

More information

Chapter 13 Lecture Outline. The Atmosphere in Motion

Chapter 13 Lecture Outline. The Atmosphere in Motion Chapter 13 Lecture Outline The Atmosphere in Motion Understanding Air Pressure Air pressure is the force exerted by weight of air above Weight of the air at sea level 14.7 psi or 1 kg/cm 2 Decreases with

More information

Atmospheric Circulation. Density of Air. Density of Air: H 2 O and Pressure effects

Atmospheric Circulation. Density of Air. Density of Air: H 2 O and Pressure effects Today s topics: Atmospheric circulation: generation of wind patterns on a rotating Earth Seasonal patterns of climate: Monsoons and Sea Breezes Tropical Cyclones: Hurricanes and typhoons Atmospheric Circulation

More information

6.1 Introduction to Weather Weather air mass Weather factors Temperature Pressure What is wind? Wind Convection in the atmosphere Thermals thermal

6.1 Introduction to Weather Weather air mass Weather factors Temperature Pressure What is wind? Wind Convection in the atmosphere Thermals thermal 6.1 Introduction to Weather Weather is a term that describes the condition of the atmosphere in terms of temperature, atmospheric pressure, wind, and water. The major energy source for weather events is

More information

Unit Test Study Guide:

Unit Test Study Guide: Name: Homeroom: Date: Unit 6: Meteorology Study Guide Unit Test Study Guide: Atmosphere & Weather Use the summary points below as a resource to help you study for our unit test Monday! EARTH S ATMOSPHERE:

More information

Review for the second quarter. Mechanisms for cloud formation

Review for the second quarter. Mechanisms for cloud formation Review for the second quarter Mechanisms for cloud formation 1 Rising air expands and cools; Sinking air compresses and warms. (18) (24) Dry adiabatic lapse rate (10 o C/km): the rate of temperature decrease

More information

PHSC 3033: Meteorology Air Forces

PHSC 3033: Meteorology Air Forces PHSC 3033: Meteorology Air Forces Pressure Gradient P/ d = Pressure Gradient (Change in Pressure/Distance) Horizontal Pressure Gradient Force (PGF): Force due to pressure differences, and the cause of

More information

VI. Static Stability. Consider a parcel of unsaturated air. Assume the actual lapse rate is less than the dry adiabatic lapse rate: Γ < Γ d

VI. Static Stability. Consider a parcel of unsaturated air. Assume the actual lapse rate is less than the dry adiabatic lapse rate: Γ < Γ d VI. Static Stability Consider a parcel of unsaturated air. Assume the actual lapse rate is less than the dry adiabatic lapse rate: Γ < Γ d VI. Static Stability Consider a parcel of unsaturated air. Assume

More information

Water Budget I: Precipitation Inputs

Water Budget I: Precipitation Inputs Water Budget I: Precipitation Inputs Forest Cover Global Mean Annual Precipitation (MAP) Biomes and Rainfall Forests won t grow where P < 15 / yr Forest type depends strongly on rainfall quantity, type

More information

The Coriolis force, geostrophy, Rossby waves and the westward intensification

The Coriolis force, geostrophy, Rossby waves and the westward intensification Chapter 3 The Coriolis force, geostrophy, Rossby waves and the westward intensification The oceanic circulation is the result of a certain balance of forces. Geophysical Fluid Dynamics shows that a very

More information

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere Lornshill Academy Geography Department Higher Revision Physical Environments - Atmosphere Physical Environments Atmosphere Global heat budget The earth s energy comes from solar radiation, this incoming

More information

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D non-metallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights

More information

Full Name: Class: Period: Date:

Full Name: Class: Period: Date: Topic/Objective: Essential Question: Full Name: Class: Period: Date: Tutor Use Only: Air Pressure and Wind (Chapter 19) Air Pressure the weight of the atmosphere pushing down on the Earth exerting a force

More information

Chapter 7 Weather and Climate

Chapter 7 Weather and Climate Chapter 7 Weather and Climate *Describe what weather is, what affects it, and where it occurs. *Explain the connection between air pressure and wind. * *Many factors affect a region s weather. * *atmosphere

More information

Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT

Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT Grade Level: 9-10 Social Studies Curriculum Topic Standards: Subject Keywords:

More information

Ocean Currents that Redistribute Heat Globally

Ocean Currents that Redistribute Heat Globally Ocean Currents that Redistribute Heat Globally Ocean Circulation Ocean Currents Fig. CO7 OCEAN CURRENTS Surface ocean currents are similar to wind patterns: 1. Driven by Coriolis forces 2. Driven by winds

More information

+ - Water Planet, Water Crisis 2010 Class Notes Topic 2. Water in the earth system Part A: Properties of H 2 O: Why it's so important to us.

+ - Water Planet, Water Crisis 2010 Class Notes Topic 2. Water in the earth system Part A: Properties of H 2 O: Why it's so important to us. Water Planet, Water Crisis 2010 Class Notes Topic 2. Water in the earth system Part A: Properties of H 2 O: Why it's so important to us. Physical and Chemical properties of H 2 O: Arise from the structure

More information

Additional Information

Additional Information Buoyancy Additional Information Any object, fully or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes of Syracuse Archimedes principle

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer 18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.

More information

Enviro Sci 1A03 Quiz 3

Enviro Sci 1A03 Quiz 3 Enviro Sci 1A03 Quiz 3 Question 1 (1 point) Which of the following measure wind direction and speed? Question 1 options: a) aerovane b) anemometer c) wind vane d) all of the above Question 2 (1 point)

More information

Chapter 3: Atmospheric pressure and temperature

Chapter 3: Atmospheric pressure and temperature Chapter 3: Atmospheric pressure and temperature 3.1 Distribution of pressure with altitude The barometric law Atmospheric pressure declines with altitude, a fact familiar to everyone who has flown in an

More information

W3 Global Circulation Systems

W3 Global Circulation Systems W3 Global Circulation Systems Which regions of Earth receive the most energy from the Sun? If not for global circulation systems There would only be two narrow regions that would support life What

More information

Air Pressure and Winds

Air Pressure and Winds C H A P T E R 21 Air Pressure and Winds WORDS TO KNOW convection cell isobar monsoon convergence jet stream prevailing wind divergence land breeze radar Doppler radar low-pressure system sea breeze high-pressure

More information

IV. Intersection: what we know, would like to know, will never know, and what can we contribute to the debate. air water

IV. Intersection: what we know, would like to know, will never know, and what can we contribute to the debate. air water IV. Intersection: what we know, would like to know, will never know, and what can we contribute to the debate. III. Atmospheric & Ocean Biogeochemistry: Second element of climate and environmental science

More information

Weather and Climate. Climate the situation of the atmosphere during a long period of time and a big surface.

Weather and Climate. Climate the situation of the atmosphere during a long period of time and a big surface. Weather and Climate Weather and Climate Weather the situation of the atmosphere during a short period of time and a small surface of the Earth. It is very irregular and changes a lot. Climate the situation

More information

Coriolis Effect Movies

Coriolis Effect Movies Introduction to Oceanography Lecture 16: Wind 2 Wind speed and direction about 1.5 km above sea level By Trent Schindler (NASA) using satellite data. Public Domain https://svs.gsfc.nasa.gov/4571 Coriolis

More information