JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D17109, doi: /2009jd013596, 2010

Size: px
Start display at page:

Download "JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D17109, doi: /2009jd013596, 2010"

Transcription

1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi: /2009jd013596, 2010 Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño Southern Oscillation South Asian monsoon relationship in a coupled general circulation model Wei Chen, 1 Buwen Dong, 2 and Riyu Lu 1 Received 23 November 2009; revised 27 April 2010; accepted 6 May 2010; published 9 September [1] The multidecadal variability of El Niño Southern Oscillation (ENSO) South Asian monsoon relationship is elucidated in a 1000 year control simulation of a coupled general circulation model. The results indicate that the Atlantic Multidecadal Oscillation (AMO), resulting from the natural fluctuation of the Atlantic Meridional Overturning Circulation (AMOC), plays an important role in modulating the multidecadal variation of the ENSO monsoon relationship. The sea surface temperature anomalies associated with the AMO induce not only significant climate impact in the Atlantic but also the coupled feedbacks in the tropical Pacific regions. The remote responses in the Pacific Ocean to a positive phase of the AMO which is resulted from enhanced AMOC in the model simulation and are characterized by statistically significant warming in the North Pacific and in the western tropical Pacific, a relaxation of tropical easterly trades in the central and eastern tropical Pacific, and a deeper thermocline in the eastern tropical Pacific. These changes in mean states lead to a reduction of ENSO variability and therefore a weakening of the ENSO monsoon relationship. This study suggests a nonlocal mechanism for the low frequency fluctuation of the ENSO monsoon relationship, although the AMO explains only a fraction of the ENSO South Asian monsoon variation on decadalmultidecadal timescale. Given the multidecadal variation of the AMOC and therefore of the AMO exhibit decadal predictability, this study highlights the possibility that a part of the change of climate variability in the Pacific Ocean and its teleconnection may be predictable. Citation: Chen, W., B. Dong, and R. Lu (2010), Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño Southern Oscillation South Asian monsoon relationship in a coupled general circulation model, J. Geophys. Res., 115,, doi: /2009jd Introduction [2] Interaction between the El Niño Southern Oscillation (ENSO) and South Asian monsoon is one of the most dominant coupled phenomena in the climate system, a drier than normal South Asian summer monsoon preceding peak El Niño condition [Elliot and Angell, 1987; Webster and Yang, 1992]. This interaction fluctuates on a decadalmultidecadal timescale and it has weakened substantially since the late 1970s [Krishna Kumar et al., 1999]. The mechanism behind this weakened ENSO monsoon relationship has been a subject of considerable attention because of its impact on South Asian summer monsoon predictability. Various hypotheses have been proposed, including the 1 State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics and Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. 2 National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, UK. Copyright 2010 by the American Geophysical Union /10/2009JD changes of atmospheric circulation in the North Pacific [Kinter et al., 2002], the variability of Pacific Decadal Oscillation [Krishinan and Sugi, 2003], and the tropical South Atlantic sea surface temperature (SST) anomalies concurring with the ENSO [Kucharski et al., 2007]. [3] Furthermore, some recent studies suggested that the enhanced ENSO variability, which is associated with the change of background mean states, may concur with the intensification of the ENSO monsoon relationship. Lu et al. [2008] suggested that an enhanced ENSO variability could intensify the ENSO monsoon relationship in the background of a substantially weakened AMOC. On the other hand, Turner et al. [2005] indicated an enhanced ENSO variability and ENSO monsoon interaction in a version of a coupled general circulation model (CGCM) that uses equatorial flux adjustments and suggested that this enhancement is due to the improvement of mean states in the Indo Pacific oceans. Actually, the amplitude of ENSO in observations also varies on decadal multidecadal timescale, and this variation is related to the changes of the background mean states of the tropical Pacific [e.g., Gu and Philander, 1995, 1997; Wang and An, 2001, 2002]. It is known that the basic states of the 1of12

2 ocean thermal structure can influence the ENSO growth and modulate the ENSO variance [Zebiak and Cane, 1987; Kirtman and Schopf, 1998]. However, the cause of the changes in the mean states remains unknown. [4] Several studies [e.g., Dong and Sutton, 2002; Zhang and Delworth, 2005; Timmermann et al., 2005; Dong et al., 2006; Sutton and Hodson, 2007] have demonstrated the influence of the Atlantic Ocean on the mean states in the tropical Pacific. The observed SSTs in the Atlantic exhibit an oscillation with a period of years on the multidecadal timescale, which is referred to as the AMO [Delworth and Mann, 2000; Kerr, 2000], and is thought to be related to multidecadal fluctuation of the AMOC [Delworth and Mann, 2000; Knight et al., 2005]. Coupled modeling studies suggested that a negative phase of the AMO (or a weakened AMOC) induces cold SST anomalies in the North Atlantic and warm anomalies in the South Atlantic [e.g., Delworth et al., 1993; Dong and Sutton, 2002, 2007; Timmermann et al., 2005, 2007; Zhang and Delworth, 2005]. A wide range of regional climate signals have been linked to the AMO, including important changes in Atlantic cyclone activity [e.g., Goldenberg et al., 2001; Wang et al., 2008] and North American and European summer climate [Sutton and Hodson, 2005]. There is further evidence that the variations in Atlantic SST associated with the AMO not only restrict in the Atlantic basin but also may influence the climatology of the Asian summer monsoon [Zhang and Delworth, 2005; Lu et al., 2006; Lu and Dong, 2008], and mean states of the tropical Pacific [Zhang and Delworth, 2005; Dong et al., 2006; Timmermann et al., 2007] and therefore modulate the interannual variability of ENSO [e.g., Dong and Sutton, 2007; Timmermann et al., 2007]. [5] Furthermore, as previously mentioned, a substantially weakened AMOC intensifies the ENSO South Asian monsoon relationship [Lu et al., 2008]. In these studies, the AMOC is substantially weakened through water hosing experiments in which an extra freshwater flux is artificially applied in the North Atlantic. Using a coupled model simulation without external forcing, Knight et al. [2005] demonstrated that the multidecadal fluctuation of the Atlantic SSTs associated with the fluctuation of the AMOC is similar to the observed AMO in both the SST pattern and the magnitude. Is there a low frequency variation of the ENSOmonsoon interaction in this simulation? If so, what factors affect this low frequency variability? Does the AMO play a role? These questions will be investigated in this study by using the same model simulation as Knight et al. [2005]. [6] The paper is organized as follows: Section 2 briefly describes the model experiment and observational data used. Section 3 presents the validation of the simulated mean climate and ENSO monsoon relationship. Section 4 investigates the multidecadal fluctuation of ENSO variability and the ENSO monsoon interaction. Section 5 elucidates the processes that are responsible for the impact of the Atlantic Ocean on the multidecadal modulation of ENSO variability and the ENSO monsoon relationship. Section 6 provides concluding remarks. 2. Model and Experiment [7] The model we used is a version of the UK Hadley Centre CGCM known as HadCM3 [Gordon et al., 2000]. The atmospheric component of this model is run with a horizontal latitude longitude grid spacing of and 19 vertical levels using a hybrid vertical coordinate. A detailed description of the atmospheric model formulation and its performance in a simulation forced with observed SSTs is described in the work of Pope et al. [2000]. The oceanic component of the model is a 20 level version of the model used in the work of Cox et al. [1999] on a latitude longitude grid. The vertical levels are distributed to provide enhanced resolution near the ocean surface. The two components are coupled once a day. Heat and water fluxes are conserved exactly in the transfer between their different grids. The coupled model uses preindustrial atmospheric trace gas concentrations, and incoming solar radiation provides the only external forcing; the model has been run without the use of flux adjustments for more than 1000 years without appreciable drift in the model s climate [Gordon et al., 2000]. In this study, we analyze the results in 1000 year integration of the model. [8] The observed data used in this study to evaluate model performance include the monthly precipitation data from 1979 to 2005 derived by the Global Precipitation Climatology Project [Adler et al., 2003] and the monthly wind data from European Centre for Medium Range Weather Forecasts reanalysis data set (ERA 40), covering the period from 1957 to In addition, the All Indian Rainfall (AIR) data set [Parthasarathy et al., 1994] is used to provide one measure of South Asian summer monsoon variability. This data set is based on rain gauge data, and the detailed information of rain gauge stations can be found through the website: 3. Mean Climate and ENSO South Asian Summer Monsoon Relationship in the Model Simulation [9] The basic states play an important role in the ENSOmonsoon relationship [e.g., Turner et al., 2005]. Thus, we evaluate the model s ability to reproduce climatological features in summer in this section. Figure 1 shows the climatological mean 850 hpa wind and precipitation for observations and 1000 year simulation in summer (June, July, and August (JJA)). Compared to observations, the model simulates well the main features of the anticyclonic circulation over the Indian Ocean, which is characterized by the cross equatorial Somali jet in the western Indian Ocean and the southwesterly mean Indian monsoon flow over the Indian subcontinent. The basic features of precipitation in the Indian monsoon region are reasonably reproduced, including the two precipitation centers over the western Indian Ocean and the Bay of Bengal. However, the precipitation over the Maritime Continent is stronger in the simulation. In the Pacific Basin, the model reconstructs easterly trades and the subtropical anticyclone over the western North Pacific. Also, the Intertropical Convergence Zone (ITCZ) north of the equator is well simulated as well as the rain band over East Asia and the western Pacific. [10] In this study, we take the area averaged SST anomalies in the Niño 3 region (5 S 5 N, 150 W 90 W) as an ENSO index [AchutaRao and Sperber, 2002; Collins et al., 2001]. Figure 2a shows the lead lag correlation coefficients between JJA mean AIR and seasonal mean Niño 3 2of12

3 Figure 1. Climatological distribution of the 850 hpa winds (vector) and precipitation (shading) in JJA: (a) observations and (b) model simulation. Unit is in mm d 1 for precipitation and m s 1 for winds. index. The significant inverse correlation between the AIR and the Niño 3 index in the model is consistent with that based on observations. This inverse correlation means that the warm SST anomalies in the eastern tropical Pacific are associated with weak monsoon rainfall in the Indian peninsula. Although the time evolution of the ENSO monsoon relationship in the simulation differs somewhat from observations and the model overestimates the relationship when ENSO leads and underestimates the relationship when monsoon leads [e.g., Turner et al., 2005], the negative simultaneous correlation between ENSO and monsoon in JJA is well captured by the model. Another measure of South Asian monsoon variability is a dynamical monsoon index (DMI), defined as the vertical shear of the horizontal mean zonal wind [u(850 hpa) u(200 hpa)] in the region (40 E 110 E, 5 N 20 N), which was first suggested by Webster and Yang [1992]. Figure 2b shows the lead lag correlation coefficients between JJA mean DMI and seasonal mean Niño 3 index. The model also reproduces the dynamically weak Indian monsoon associated with El Niño. [11] To investigate the spatial pattern of climate variables associated with ENSO in the 1000 year simulation, JJA mean SST, precipitation, and 850 hpa wind are regressed onto the simultaneous Niño 3 index; the results are shown in Figure 3. The strong warm SST anomalies occur in the central and eastern tropical Pacific, despite the fact that the SST anomalies associated with El Niño extend too far westward into the warm pool [Collins et al., 2001]. There are also warmer, although weak, SSTs in the Indian Ocean influenced by the warm events in the tropical Pacific (Figure 3a). Meanwhile, the strong westerly anomalies in the equatorial Pacific correspond to the warm SST anomalies there. The easterly anomalies in the tropical Indian Ocean weaken the climatological mean flow, and the anticyclone anomaly appears over the Bay of Bengal (Figure 3b). These circulation anomalies give arise to the small but significant negative precipitation anomalies over the Indian monsoon region (Figure 3c). Compared with observations (not shown), the spatial pattern of the inversed ENSO monsoon relationship is reasonably captured by this model. [12] The interannual variability of ENSO and the South Asian summer monsoon is evaluated by calculating stan- Figure 2. (a) Lead lag correlation coefficients between JJA mean AIR and seasonal mean Niño 3 index in the 1000 year simulation (solid line) and in observations (dashed line). (b) Same as Figure 2a but for JJA mean DMI instead of AIR. 3of12

4 Figure 3. (a) Regression of SST, (b) 850 hpa wind, and (c) precipitation onto the Niño 3 index. Shading indicates the regions where the anomalies are significant at the 95% confidence level using the F test. dard deviations of Niño 3, AIR, and DMI indices (Table 1). The intensity of ENSO and monsoon measured by DMI in the control experiment is similar to observations, but the standard deviation of the AIR index is underestimated in the model, indicating the model s deficiency in simulating the regional precipitation variability even if it can simulate the correct magnitude of the large scale circulation variability. 4. Multidecadal Fluctuations of ENSO Variability and ENSO Monsoon Interaction [13] To investigate the multidecadal modulation of the ENSO monsoon relationship, a 41 year running mean is used to depict the low frequency oscillation, and a 41 year sliding window is used to show the low frequency fluctuation of correlation and interannual variability. It is worth pointing out that similar results and conclusions are obtained by using the 21 year, 31 year, and 51 year running mean or sliding window. [14] Figure 4a shows the correlation between JJA mean DMI and Niño 3 index with a 41 year sliding window. The correlation exhibits a clear decadal multidecadal fluctuation ranging from 0.63 to This running correlation is significant over many epochs that are about half of the whole 1000 year period. The power spectrum of the correlation time series shows two significant peaks: around 60 years and years (Figure 4b), indicating that the multidecadal fluctuation of the ENSO monsoon relationship has dominant periods. The correlation coefficient for the whole 1000 years is 0.31, significant at the 99.9% level using the t test. [15] The intensity of ENSO varies on the multidecadal timescale as well. The standard deviation of annual mean Niño 3 index with a 41 year sliding window is also plotted in Figure 4a, and its power spectrum also indicates two significant peaks at the multidecadal timescale (Figure 4c), similar to the power peak of the ENSO monsoon correlation. As Figure 4a indicates, the two time series are in principle reversely correlated on the multidecadal timescale. The correlation coefficient between the two is 0.37, significant at the 99% level with the number of independent samples being 55 using the t test, indicating that the fluctuation of the ENSO South Asian monsoon relationship concurs with the ENSO intensity on the multidecadal timescale. The negative correlation between them indicates that strong ENSO amplitude enhances the ENSO monsoon teleconnection, which is consistent with previous studies [Turner et al., 2005; Lu et al., 2008]. [16] The power spectrum shown in Figures 4b and 4c indicates a preferred multidecadal fluctuation of years in both the ENSO monsoon relationship and ENSO variability. This timescale is close to the multidecadal timescale of Atlantic SST variability associated with the AMO that resulted from naturally occurring AMOC fluctuation identified by Knight et al. [2005]. Are the AMO, the fluctuation of ENSO variability, and therefore ENSO monsoon interaction related to each other? [17] The time series of the AMO index (defined as the averaged SST anomalies in the region 75 W 7.5 W, 0 60 N) in the 1000 year simulation is shown in Figure 5a. Also shown is the time series of AMOC index in the 1000 year simulation, which is consistent with the multidecadal fluctuation of AMO (Figure 5a). The correlation coefficient between AMO and AMOC is 0.8, which indicates the modulation of naturally occurring AMOC to the multidecadal variability of AMO. The power spectrum of the AMO index exhibits significant periods at 60 years and years (Figure 5c). The multidecadal fluctuation of the AMO index is basically consistent with the ENSO monsoon relationship; the correlation coefficient between them is 0.26, significant at the 99% level with the number of independent samples being 55 using the t test (Figure 5b). The positive correlation suggests that warm phases of the AMO Table 1. Standard Deviation of the JJA Mean Niño 3, AIR, and DMI in Observations and 1000 Year Control Simulation Niño 3 AIR DMI Observation CNTL of12

5 Figure 4. (a) 41 year sliding correlation coefficients between JJA mean DMI and Niño 3 index (thick line). The dashed straight line represents the 95% confidence level of the running correlation coefficients. Also shown is the standard deviation of the annual mean Niño 3 index with a 41 year sliding window (thin line). The correlation coefficient between the two series is 0.37, significant at the 99% confidence level with the number of independent samples being 55 using the t test. (b) The power spectrum of correlation coefficients between JJA mean DMI and Niño 3 index with a 41 year sliding window (the thick line in Figure 4a). (c) Same as Figure 4b but for the standard deviation of the Niño 3 index with a 41 year sliding window (the thin line in Figure 4a). concur with weakened ENSO monsoon relationship. This result is consistent with the work of Lu et al. [2008], who indicated that an artificially substantially weakened AMOC, which may be considered as the extreme case of cold phase of the AMO, intensifies the ENSO monsoon relationship. The results indicate that the multidecadal fluctuation of the ENSO monsoon relationship might be modulated by the variation of the AMO resulting from the naturally occurring AMOC fluctuation in the HadCM3 control simulation. In addition, the correlation coefficient between AMO and ENSO variability is The negative correlation indicates that the weak (strong) ENSO variability coincides with the positive (negative) phase of the AMO, consistent with previous results [Dong et al., 2006; Dong and Sutton, 2007]. [18] The spatial pattern of the inverse relationship between ENSO and South Asian monsoon in positive (warm) and negative (cold) phase of the AMO is investigated. A period in which the AMO index is greater (less) than 0.8 ( 0.8) standard deviation from the time mean has been defined as a positive (negative) phase of the AMO and is combined into two records for both AMO positive and negative phases, respectively. We perform the composites of precipitation and 850 hpa wind anomalies associated with the strong ENSO events for positive and negative records, and the results are illustrated in Figure 6. The major features of precipitation and lower tropospheric circulation patterns in positive and negative phases of the AMO are similar to those shown in Figure 3. However, in the negative phase of the AMO, the strong ENSO monsoon relationship is indicated by the significant large negative precipitation anomalies over the Indian subcontinent (Figure 6b) than that in the positive phase of the AMO (Figure 6a). This large decrease in precipitation over India associated with El Niño 5of12

6 Figure 5. (a) The thick (thin) line is the annual mean AMOC (AMO) index with a 41 year running mean smoothing. The AMOC index (Sv) is defined as the averaged meridional overturning circulation over the latitude band (30 N 60 N) at the depth of 996 m. The AMO index ( C) is defined as the average SST anomalies in the region 75 W 7.5 W, 0 N 60 N. The correlation coefficient between the two series is 0.8, significant at the 99% confidence level with the number of independent samples being 40 using the t test. (b) The thick line is the same as that shown in Figure 4a, and the thin line is the AMO index (same as shown in Figure 5a). The correlation coefficient between the two series is 0.26, significant at the 95% confidence level with the number of independent samples being 55 using the t test. (c) The power spectrum of the AMO index (the thin line in Figure 5a or 5b). 6of12

7 Figure 6. Composites of precipitation and 850 hpa wind anomalies related to the strong ENSO for (a, c) positive and (b, d) negative phases of the AMO. AMO positive (negative) phase is defined as the period that the AMO index is greater (less) than 0.8 ( 0.8) standard deviation from the time mean. The ENSO is defined as the year that the Niño 3 index is greater than 1.5 standard deviation. Shading indicates the regions where anomalies are significant at the 95% confidence level using the t test. in negative phase of the AMO is related to larger zonal wind divergence on the west side of the Indian peninsula (Figure 6d) than that for the positive phase of the AMO (Figure 6c). In addition, the precipitation anomalies in the western tropical Pacific for the negative phase of AMO is also stronger than that for the positive phase of AMO. These strong tropical responses indicate the stronger ENSO for the negative phase of AMO. 5. Mechanisms of Multidecadal Fluctuation of ENSO Monsoon Interaction [19] The results in previous section indicate multidecadal fluctuations of the ENSO monsoon relationship and ENSO variability with a preferred timescale of years. What processes contribute to this multidecadal fluctuation of ENSO variability and the ENSO monsoon relationship? Shown in Figure 7 are SST, precipitation, lower tropospheric wind, and stream function changes associated with the AMO. In the Atlantic, associated with the positive phase of the AMO are warmer SSTs in the North Atlantic and colder SSTs in the South Atlantic. This interhemispheric asymmetry leads to a strong cross equatorial gradient of SST anomalies and a northward shift of the ITCZ. The latter induces an increase of precipitation north of the equator and a decrease of precipitation south of the equator. Corresponding to the SST and precipitation anomalies are the stronger trades in the tropical South Atlantic and weaker trades in the tropical North Atlantic [e.g., Knight et al., 2006]. A pair of cyclones is formed in the northeastern and southeastern tropical Pacific, consistent with a Gill type response to the heating anomalies slightly north of the tropical Atlantic [Heckley and Gill, 1984; Lee et al., 2009; Wang et al., 2010]. As indicated in Figure 7, SST and circulation anomalies are not confined in the Atlantic sector but extend to the Pacific. The remote SST anomalies are characterized by warm SST anomalies in the North and northeast Pacific and the western and central tropical Pacific [e.g., Knight et al., 2005]. This is associated with the weakened easterly trades in the tropical Pacific, similar to the remote responses demonstrated in an atmospheric model with prescribed SST in the Atlantic [Sutton and Hodson, 2007] and the coupled feedbacks that further shape the remote responses [Dong et al., 2006]. The strong anomalous westerly in the eastern equatorial Pacific is due to a Gill type response excited by the anomalous diabatic heating in the tropical Atlantic [Dong et al., 2006]. The anomalous westerly weakens the easterly trades and reduces upwelling on the eastern side of the tropical Pacific. [20] Besides the changes of SST and lower tropospheric circulation in the tropical Pacific, the thermocline structure in the eastern Pacific basin is also changed. The depth of 20 C isothermal line (D20) in the ocean is used to repre- 7of12

8 is associated with shallow thermocline in the tropical Pacific. These changes in the equatorial Pacific thermocline associated the strong ENSO variability are consistent with the work of Zebiak and Cane [1987], indicating the shallower equatorial thermocline is associated with the stronger vertical temperature gradient (strong thermocline feedback) in the tropical Pacific and stronger influence on SSTs by oceanic Kelvin wave. The more active Bjerknes feedback leads to stronger coupled instability for ENSO to grow and therefore stronger ENSO variance. The present results suggest that the AMO plays a role in the multidecadal fluctuations of ENSO variability and ENSO monsoon interaction. Figure 7. Regression of (a) SST, (b) precipitation, (c) 850 hpa wind, and (d) 850 hpa stream function onto the 41 year running mean AMO index. Shading indicates the regions where anomalies are significant at the 95% confidence level using the F test. sent the thermocline and regressed onto the AMO index (Figure 8a). It shows that the positive phase of the AMO is associated with deeper thermocline in the eastern equatorial Pacific. The thermocline structure changes associated with the multidecadal fluctuation in the ENSO monsoon relationship is given in Figure 8b. The positive value in Figure 8b indicates that the shallow thermocline in the central and eastern Pacific is associated with an enhanced ENSO monsoon relationship because ENSO and monsoon are negatively correlated with the strong negative correlation indicating a strong relationship. The similarity of thermocline anomalies in Figures 8a and 8b suggests that the positive phase of the AMO and weakened ENSO monsoon relationship are both related to the deeper thermocline in the central and eastern equatorial Pacific. In addition, the regression pattern of D20 onto standard deviation of Niño 3 index (Figure 8c) indicates that enhanced ENSO variability Figure 8. Regression of D20 (a) onto the 41 year running mean AMO index, (b) onto correlation coefficients between DMI and Niño 3 with a 41 year sliding window, and (c) onto standard deviation of Niño 3 index with a 41 year sliding window. The D20 represents the depth of 20 C isothermal line in the ocean. Shading indicates the regions where anomalies are significant at the 95% confidence level using the F test. 8of12

9 Figure 9. Composites of precipitation, 850 hpa wind, and SST anomalies for (a, c, e) strong and (b, d, f) weak ENSO. Strong (weak) ENSO is defined as the year that the Niño 3 index is greater than 1.2 (less than 1.2 but greater than 0.5) standard deviation from the time mean. Shading indicates the regions where anomalies are significant at the 99% confidence level using the t test. Warm AMO phase is associated with deeper thermocline in the central and eastern tropical Pacific. The deeper equatorial thermocline weakens the coupled instability and reduces ENSO variability, which is related to the weak ENSO South Asian monsoon relationship. [21] We have shown that the ENSO monsoon relationship concurs with ENSO variability on the multidecadal timescale in the previous section. Why are they strongly correlated when ENSO variability is strong? The composites of precipitation, 850 hpa wind, and SST anomalies for the strong and weak ENSO are shown in Figure 9. The precipitation and wind anomalies associated with the strong ENSO are stronger than those associated with the weak ENSO, and the magnitudes of both precipitation and wind anomalies are not linearly scaled with the amplitude of ENSO. These results indicate the nonlinearity of atmospheric responses to ENSO amplitude and suggest the strong ENSO is associated with large changes of monsoon. The fact that the correlation coefficient between Niño 3 index and DMI index is 0.51 for strong ENSO while it is 0.23 for the weak ENSO and a scatter diagram of Niño 3 index and DMI index (not shown) further demonstrate the 9of12

10 Figure 10. The schematic diagram of the major elements of the mechanism by which the AMO modulates the ENSO South Asian monsoon relationship in HadCM3. Dark (light) areas in the Atlantic are regions of positive (negative) SST and precipitation anomalies. The curved arrow means the anomalous cyclonic circulation. The grey arrow is the easterly trades and the dashed arrow is the westerly anomalies. The dash line is the climatological thermocline and the solid line is the thermocline related to the positive phase of AMO. nonlinearity of the ENSO monsoon relationship with respect to the amplitude of ENSO. 6. Conclusion and Remarks [22] In this study, we have investigated the multidecadal variability of ENSO South Asian monsoon relationship in a long term control simulation by a CGCM and shown that the AMO (the low frequency fluctuation of SSTs in the Atlantic Ocean) might play an important role. The SST anomalies associated with the AMO can influence the basic states not only in the Atlantic, but also in the Pacific. The remote response of thermocline in the tropical Pacific to the AMO bears a similarity to the change of thermocline depth associated with the low frequency of ENSO variability. Therefore, the AMO can affect the ENSO monsoon relationship through modulating the multidecadal fluctuation of ENSO intensity. The teleconnective processes from AMO to the ENSO monsoon relationship is shown as a schematic diagram in Figure 10. The key processes involved in AMO modulating the ENSO monsoon relationship can be summarized as follows: [23] 1. The warm AMO in the Atlantic is associated with an anomalous cross equatorial SST gradient with positive SST anomalies in the North Atlantic and negative SST anomalies in the South Atlantic. The impact of the AMO is not confined in the Atlantic Basin, but extends to the Pacific. The remote SST anomalies are characterized by warm SST anomalies in the north and western tropical Pacific. This is associated with the weakened easterly trades in the central and eastern tropical Pacific. [24] 2. The anomalous westerly winds on eastern side of the tropical Pacific reduce the upwelling that leads to a deep thermocline in the central and eastern tropical Pacific. The deep equatorial thermocline weakens the coupled instability and reduces ENSO variability. [25] 3. The weakened ENSO variability leads to the weakened ENSO South Asian monsoon relationship. The weak ENSO is associated with small monsoon changes through the nonlinear atmospheric response with respect to the sign and magnitude of SST anomalies associated with ENSO. [26] 4. There are clear contrasts of both precipitation and lower tropospheric circulation anomalies associated with ENSO for AMO positive phase against those for AMO negative phase. The large changes of precipitation over the Indian subcontinent associated with ENSO during AMO negative phases imply more intensive drought and flooding condition associated with weakening AMOC. [27] This work suggests that the fluctuation of the AMO can modulate the ENSO monsoon relationship on the decadal multidecadal timescale, which provides a nonlocal mechanism to understand the ENSO monsoon relationship. The modulation of the AMO on the ENSO monsoon teleconnection is also seen in observations. Figure 11 indicates that the strong ENSO monsoon relationship (i.e., negative anomaly of correlation coefficients) is related to the negative phase of the AMO during the most periods. The correlation coefficient between the two time series shown in Figure 11 is 0.44, being significant at the 95% confidence level by the t test. Therefore, the observational evidence supports the major conclusion drawn by using model results in this study. In addition, the correlation between the standard deviation of the Niño 3 index and the correlation between the AIR and the Niño 3 index with a 21 year sliding window is 0.33 in the past 134 years. This result indicates that the enhanced ENSO variability intensifies the strong ENSO monsoon relationship. On the other hand, in recent decades, the enhanced ENSO variability coincides with the weakened ENSO monsoon relationship [e.g., Krishna Kumar et al., 1999].Thus, the weakened ENSO monsoon teleconnection in recent decades in observations might be caused by other factors such as the decadal change in SST pattern associated with ENSO [e.g., Krishna Kumar et al., 2006] or the decadal fluctuation of interannual SST anomalies in south 10 of 12

11 Figure 11. The normalized correlation coefficients between JJA mean AIR and Niño 3 index with a 21 year sliding window in observations (thick line). Also shown is the normalized 21 year running mean AMO index based on observations (thin line). The AMO index is defined as the average SST anomalies in the region 75 W 7.5 W, 0 N 60 N. The correlation coefficient between the two series is 0.44, significant at the 95% confidence using t test. equatorial Atlantic concurring with ENSO [e.g., Kucharski et al., 2007] rather than ENSO intensity. [28] The results presented in this study are obtained by using one model. It is likely that remote responses to the AMO associated with fluctuation of the AMOC may vary, to some extent, with the model [e.g., Van Oldenborgh et al., 2009]. Similar analysis of other models would be helpful to test whether the findings identified in this paper are robust features of the remote response to the AMO fluctuation associated with the AMOC. [29] Acknowledgments. We thank anonymous reviewers for their constructive comments. This article was supported by the National Natural Science Foundation of China (grants and ). Financial support by the EU FP6 Integrated Project ENSEMBLES (contract ) is gratefully acknowledged. B.D. is supported by the UK National Centre for Atmospheric Sciences Climate. References AchutaRao, K., and K. Sperber (2002), Simulation of the El Niño Southern Oscillation: Results from the coupled model intercomparison project, Clim. Dyn., 19, Adler, R. F., G. J. Huffman, and A. Chang (2003), The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979 present), J. Hydrometeorol., 4(6), Collins, M., S. F. B. Tett, and C. Cooper (2001), The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments, Clim. Dyn., 17, Cox, P., R. Betts, C. Bunton, R. Essery, P. R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity, Clim. Dyn., 15, Delworth, T., and M. E. Mann (2000), Observed and simulated multidecadal variability in the Northern Hemisphere, Clim. Dyn., 16, Delworth, T., S. Manabe, and R. Stouffer (1993), Interdecadal variations of the thermohaline circulation in a coupled ocean atmosphere model, J. Clim., 6, Dong, B. W., and R. Sutton (2002), Adjustment of the coupled ocean atmosphere system to a sudden change in the thermohaline circulation, Geophys. Res. Lett., 29(15), 1728, doi: /2002gl Dong, B., and R. T. Sutton (2007), Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM, J. Clim., 20, Dong, B., R. T. Sutton, and A. A. Scaife (2006), Multidecadal modulation of El Niño Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures, Geophys. Res. Lett., 33, L08705, doi: / 2006GL Elliot, W. P., and J. K. Angell (1987), The relation between Indian monsoon rainfall, the southern oscillation, and hemispheric air and sea temperature: , J. Clim. Appl. Meteorol., 26, Goldenberg, S. B., C. W. Landsea, A. M. Mestas Nuñez, and W. M. Gray (2001), The recent increase in Atlantic hurricane activity: Causes and implications, Science, 293, Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, F. B. Mitchell, and R. A. Wood (2000), The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dyn., 16, Gu, D., and S. G. H. Philander (1995), Secular changer of annual and interannual variability in the tropics during the past century, J. Clim., 8, Gu, D., and S. G. H. Philander (1997), Interdecadal climate fluctuations that depend on exchanges between the tropics and extropics, Science, 275, Heckley, W. A., and A. E. Gill (1984), Some simple analytic solutions to the problems of forced equatorial long waves, Q. J. R. Meteorol. Soc., 110, Kerr, R. A. (2000), A North Atlantic climate pacemaker for the centuries, Science, 288, Kinter, J. L., K. Miyakoda, and S. Yang (2002), Recent change in the connection from the Asian monsoon to ENSO, J. Clim., 15, Kirtman, B. P., and P. S. Schopf (1998), Decadal variability in ENSO predictability and prediction, J. Clim., 11, Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann (2005), A signature of persistent natural thermohaline circulation cycles in observed climate, Geophys.Res.Lett., 32, L20708, doi: / 2005GL Knight, J. R., C. K. Folland, and A. A. Scaife (2006), Climate impacts of the Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 33, L17706, doi: /2006gl Krishinan, R., and M. Sugi (2003), Pacific decadal oscillation and variability of the Indian summer monsoon rainfall, Clim. Dyn., 21, Krishna Kumar, K., B. Rajagopalan, and M. A. Cane (1999), On the weakening relationship between the Indian monsoon and ENSO, Science, 284, Krishna Kumar, K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane (2006), Unraveling the mystery of Indian monsoon failure during El Niño, Science, 314, Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni (2007), Low frequency variability of the Indian monsoon ENSO relationship and the tropical Atlantic: The weakening of the 1980s and 1990s, J. Clim., 20, Lee, S. K.,C.Wang,andB.E.Mapes(2009),Asimpleatmospheric model of the local and teleconnection responses to tropical heating anomalies, J. Clim, 22, Lu, R., and B. Dong (2008), Response of the Asian summer monsoon to a weakening of Atlantic thermohaline circulation, Adv. Atmos. Sci., 25, Lu, R., B. Dong, and H. Ding (2006), Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon, Geophys. Res. Lett., 33, L24701, doi: /2006gl Lu, R., W. Chen, and B. Dong (2008), How does a weakened Atlantic thermohaline circulation lead to an intensification of the ENSO South Asian summer monsoon interaction?, Geophys. Res. Lett., 35, L08706, doi: /2008gl Parthasarathy, B., A. A. Munot, and D. R. Kothawale (1994), All India monthly and seasonal rainfall series: , Theor. Appl. Climatol., 49, Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton (2000), The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3, Clim. Dyn., 16, Sutton, R. T., and D. L. R. Hodson (2005), Atlantic Ocean forcing of North American and European summer climate, Science, 309, Sutton, R. T., and D. L. R. Hodson (2007), Climate response to basinscale warming and cooling of the north Atlantic ocean, J. Clim., 20, of 12

12 Timmermann, A., S. I. An, U. Krebs, and H. Goosse (2005), ENSO suppression due to a weakening of the north Atlantic thermohaline circulation, J. Clim., 18, Timmermann, A., et al. (2007), The influence of a weakening of the Atlantic meridional overturning circulation on ENSO, J. Clim., 20, Turner, A. G., P. M. Inness, and J. M. Slingo (2005), The role of the basic state in the ENSO monsoon relationship and implications for predictability, Q. J. R. Meteorol. Soc., 131, Van Oldenborgh, G. J., L. A. te Raa, H. A. Dijkstra, and S. Y. Philip (2009), Frequency or amplitude dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean, Ocean Sci., 5, Wang, B., and S. An (2001), Why the properties of El Niño changed during the late 1970s?, Geophys. Res. Lett., 28(19), , doi: / 2001GL Wang, B., and S. I. An (2002), A mechanism for decadal changes of ENSO behavior: Roles of background wind changes, Clim. Dyn., 18, Wang, C., S. K. Lee, and D. B. Enfield (2008), Atlantic Warm Pool acting as a link between Atlantic Multidecadal Oscillation and Atlantic tropical cyclone activity, Geochem. Geophys. Geosyst., 9, Q05V03, doi: / 2007GC Wang, C., S. K. Lee, and C. R. Mechoso (2010), Inter hemispheric influence of the Atlantic warm pool on the southeastern Pacific, J. Clim., 23, Webster, P. J., and S. Yang (1992), Monsoon and ENSO: Selectively interactive systems, Q. J. R. Meteorol. Soc., 118, Zebiak, S. E., and M. A. Cane (1987), A model El Niño Southern Oscillation, Mon. Weather Rev., 115, Zhang, R., and T. L. Delworth (2005), Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation, J. Clim., 18, W. Chen and R. Lu, State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics and Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40, Huayanli, Chaoyang District, Beijing , China. (lr@mail.iap.ac.cn) B. Dong, National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, RG6 6BB, UK. 12 of 12

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation 5. Introduction The Asian summer monsoon is one of the most vigorous and energetic

More information

Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon

Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon Chinese Science Bulletin 2009 SCIENCE IN CHINA PRESS Springer Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon QI YanJun 1,2,3, ZHANG RenHe 2, LI

More information

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter 5th Session of the East Asia winter Climate Outlook Forum (EASCOF-5), 8-10 November 2017, Tokyo, Japan Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high

More information

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events Vijay Pottapinjara 1*, Roxy Mathew Koll2, Raghu Murtugudde3, Girish Kumar M

More information

Thesis Committee Report 6

Thesis Committee Report 6 Thesis Committee Report 6 Andrew Turner Supervisors: Prof. Julia Slingo, Dr Pete Inness, Dr Franco Molteni (ICTP, Trieste) Thesis Committee: Dr D. Grimes (chair), Prof. A. Illingworth 13 July 2005 ENSO-Monsoon

More information

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon 2.1 Introduction The Indian summer monsoon displays substantial interannual variability, which can have profound

More information

Changes of The Hadley Circulation Since 1950

Changes of The Hadley Circulation Since 1950 Changes of The Hadley Circulation Since 1950 Xiao-Wei Quan, Henry F. Diaz, Martin P. Hoerling (NOAA-CIRES CDC, 325 Broadway, Boulder, CO 80305) Abstract The Hadley circulation is changing in response to

More information

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO Effect of late 97 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO 7. Introduction Biennial variability has been identified as one of the major modes of interannual

More information

Lecture 33. Indian Ocean Dipole: part 2

Lecture 33. Indian Ocean Dipole: part 2 Lecture 33 Indian Ocean Dipole: part 2 Understanding the processes I continue the discussion of the present understanding of the processes involved in the evolution of the mean monthly SST, and convection

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 8 March 2010 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Decadal changes in the relationship between Indian and Australian summer monsoons

Decadal changes in the relationship between Indian and Australian summer monsoons Decadal changes in the relationship between Indian and Australian summer monsoons By C. Nagaraju 1, K. Ashok 2, A. Sen Gupta 3 and D.S. Pai 4 1 CES, C-DAC Pune, India 2 CCCR, IITM, Pune, India 3 Universities

More information

Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability

Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability 2017 US AMOC Science Team Meeting May 24 th, 2017 Presenter: Hosmay Lopez 1,2 Collaborators:

More information

Lecture 14. Heat lows and the TCZ

Lecture 14. Heat lows and the TCZ Lecture 14 Heat lows and the TCZ ITCZ/TCZ and heat lows While the ITCZ/TCZ is associated with a trough at low levels, it must be noted that a low pressure at the surface and cyclonic vorticity at 850 hpa

More information

Understanding El Nino-Monsoon teleconnections

Understanding El Nino-Monsoon teleconnections Understanding El Nino-Monsoon teleconnections Dr Neena Joseph Mani Earth & Climate Science INSA Anniversary General meeting, Session: Science in IISER Pune 27 th December 2017 Mean State of the equatorial

More information

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE By William S. Kessler and Richard Kleeman Journal of Climate Vol.13, 1999 SWAP, May 2009, Split, Croatia Maristella Berta What does give

More information

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability Tim Li IPRC and Dept. of Meteorology, Univ. of Hawaii Acknowledgement. B. Wang, C.-P. Chang, P. Liu, X. Fu, Y. Zhang, Kug

More information

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The Delayed Oscillator Zebiak and Cane (1987) Model Other Theories Theory of ENSO teleconnections Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The delayed oscillator

More information

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP October 29, 2007 Outline Overview Recent

More information

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture!

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture! Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction Previous Lecture! Global Winds General Circulation of winds at the surface and aloft Polar Jet Stream Subtropical Jet Stream Monsoons 1 2 Radiation

More information

Increasing intensity of El Niño in the central equatorial Pacific

Increasing intensity of El Niño in the central equatorial Pacific Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044007, 2010 Increasing intensity of El Niño in the central equatorial Pacific Tong Lee 1 and Michael J. McPhaden 2

More information

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon 4.1 Introduction The main contributors to the interannual variability of Indian summer

More information

The Amplitude-Duration Relation of Observed El Niño Events

The Amplitude-Duration Relation of Observed El Niño Events ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2012, VOL. 5, NO. 5, 367 372 The Amplitude-Duration Relation of Observed El Niño Events Wu Yu-Jie 1,2 and DUAN Wan-Suo 1 1 State Key Laboratory of Numerical Modeling

More information

Trade winds How do they affect the tropical oceans? 10/9/13. Take away concepts and ideas. El Niño - Southern Oscillation (ENSO)

Trade winds How do they affect the tropical oceans? 10/9/13. Take away concepts and ideas. El Niño - Southern Oscillation (ENSO) El Niño - Southern Oscillation (ENSO) Ocean-atmosphere interactions Take away concepts and ideas What is El Niño, La Niña? Trade wind and Walker circulation. What is the Southern Oscillation? Tropical

More information

The slab ocean El Niño

The slab ocean El Niño GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044888, 2010 The slab ocean El Niño Dietmar Dommenget 1 Received 28 July 2010; revised 2 September 2010; accepted 3 September 2010; published 16

More information

Analysis of 2012 Indian Ocean Dipole Behavior

Analysis of 2012 Indian Ocean Dipole Behavior Analysis of 2012 Indian Ocean Dipole Behavior Mo Lan National University of Singapore Supervisor: Tomoki TOZUKA Department of Earth and Planetary Science, University of Tokyo Abstract The Indian Ocean

More information

Tianjun ZHOU.

Tianjun ZHOU. Ocean-Atmosphere interaction and Interannual monsoon variability Tianjun ZHOU zhoutj@lasg.iap.ac.cn 2 nd ACAM Training School: Observation & modeling of atmospheric chemistry & aerosols in the Asian monsoon

More information

How fast will be the phase-transition of 15/16 El Nino?

How fast will be the phase-transition of 15/16 El Nino? How fast will be the phase-transition of 15/16 El Nino? YOO-GEUN HAM D E P A R T M E N T O F O C E A N O G R A P H Y, C H O N N A M N A T I O N A L U N I V E R S I T Y 2015/16 El Nino outlook One of strongest

More information

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Jun ichi HIROSAWA Climate Prediction Division Japan Meteorological Agency SST anomaly in Nov. 1997 1 ( ) Outline

More information

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia Water Cycle between Ocean and Land and Its Influence on Climate Variability over the South American-Atlantic Regions as Determined by SeaWinds Scatterometers Rong Fu Hui Wang, Mike Young, and Liming Zhou

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 4 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors

Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors Hilary Spencer, Rowan Sutton and Julia Slingo CGAM, Reading University h.spencer@reading.ac.uk Monsoon -

More information

Propagation of planetary-scale zonal mean wind anomalies and polar oscillations

Propagation of planetary-scale zonal mean wind anomalies and polar oscillations Article Atmospheric Science July 2012 Vol.57 No.20: 2606 261 doi: 10.1007/s113-012-5168-1 SPECIAL TOPICS: Propagation of planetary-scale zonal mean wind anomalies and polar oscillations QIAN WeiHong *

More information

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models Iulia-Mădălina Ștreangă University of Edinburgh University of Tokyo Research Internship Program

More information

SERIES ARTICLE The Indian Monsoon

SERIES ARTICLE The Indian Monsoon The Indian Monsoon 4. Links to Cloud Systems over the Tropical Oceans Sulochana Gadgil Sulochana Gadgil is an honorary Professor at the Centre for Atmospheric and Oceanic Sciences at the Indian Institute

More information

5. El Niño Southern Oscillation

5. El Niño Southern Oscillation 5. El Niño Southern Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 5/1 Ocean-Atmosphere Coupling Tropical atmosphere/ocean,

More information

Abrupt seasonal variation of the ITCZ and the Hadley circulation

Abrupt seasonal variation of the ITCZ and the Hadley circulation GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L18814, doi:10.1029/2007gl030950, 2007 Abrupt seasonal variation of the ITCZ and the Hadley circulation Yongyun Hu, 1 Dawei Li, 1 and Jiping Liu 2 Received 16 June

More information

Are Hurricanes Becoming More Furious Under Global Warming?

Are Hurricanes Becoming More Furious Under Global Warming? Are Hurricanes Becoming More Furious Under Global Warming? Z H A N L I U N I V E R S I T Y O F U T A H A T M O S P H E R I C S C I E N C E S D E P A R T M E N T T U E S D A Y, M A R C H 1 6, 2 0 1 0 OUTLINE

More information

An ocean-atmosphere index for ENSO and its relation to Indian monsoon rainfall

An ocean-atmosphere index for ENSO and its relation to Indian monsoon rainfall An ocean-atmosphere index for ENSO and its relation to Indian monsoon rainfall A A MUNOT and G B PANT Indian Institute of Tropical Meteorology, Pune 411 008, India An Ocean-Atmosphere Index (OAI) for ENSO

More information

REMINDERS: UPCOMING REVIEW SESSIONS: - Thursday, Feb 27, 6:30-8:00pm in HSS 1330

REMINDERS: UPCOMING REVIEW SESSIONS: - Thursday, Feb 27, 6:30-8:00pm in HSS 1330 REMINDERS: Midterm 2: Friday, February 28 - lecture material covering chapters 6, 7, and 15 (since first midterm and through Wed lecture) - same Format as first midterm UPCOMING REVIEW SESSIONS: - Thursday,

More information

Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

Decadal amplitude modulation of two types of ENSO and its relationship with the mean state Clim Dyn DOI 10.1007/s00382-011-1186-y Decadal amplitude modulation of two types of ENSO and its relationship with the mean state Jung Choi Soon-Il An Sang-Wook Yeh Received: 14 February 2011 / Accepted:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature877 Background The main sis of this paper is that topography produces a strong South Asian summer monsoon primarily by insulating warm and moist air over India from cold and dry extratropics.

More information

Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies

Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L13703, doi:10.1029/2009gl038774, 2009 Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies Michael J. McPhaden

More information

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1 Discerning Patterns: Does the North Atlantic oscillate? Climate variability, or short term climate change, can wreak havoc around the world. Dramatic year to year shifts in weather can have unanticipated

More information

Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past five decades

Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past five decades Ann. Geophys., 25, 1929 1933, 2007 European Geosciences Union 2007 Annales Geophysicae Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past

More information

Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes

Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L02703, doi:10.1029/2006gl028579, 2007 Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes Chunzai Wang 1 and Sang-ki Lee

More information

Effect of sea surface temperature on monsoon rainfall in a coastal region of India

Effect of sea surface temperature on monsoon rainfall in a coastal region of India Loughborough University Institutional Repository Effect of sea surface temperature on monsoon rainfall in a coastal region of India This item was submitted to Loughborough University's Institutional Repository

More information

Andrew Turner Publication list. Submitted

Andrew Turner Publication list. Submitted Andrew Turner Publication list Submitted Jayakumar, A., Turner, A. G., Johnson, S. J., Rajagopal, E. N., Mohandas, S., and Mitra, A. K. (2016). Boreal summer sub-seasonal variability of the South Asian

More information

The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall

The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall Richard Levine Thanks to: Andy Turner, Deepthi Marathayil,

More information

Appendix E Mangaone Stream at Ratanui Hydrological Gauging Station Influence of IPO on Stream Flow

Appendix E Mangaone Stream at Ratanui Hydrological Gauging Station Influence of IPO on Stream Flow NZ Transport Agency Peka Peka to North Ōtaki Expressway Hydraulic Investigations for Expressway Crossing of Mangaone Stream and Floodplain Appendix E Mangaone Stream at Ratanui Hydrological Gauging Station

More information

Haibo Hu Jie He Qigang Wu Yuan Zhang

Haibo Hu Jie He Qigang Wu Yuan Zhang J Oceanogr (2011) 67:315 321 DOI 10.1007/s10872-011-0039-y ORIGINAL ARTICLE The Indian Ocean s asymmetric effect on the coupling of the Northwest Pacific SST and anticyclone anomalies during its spring

More information

The Great Paradox of Indian Monsoon Failure (Unraveling The Mystery of Indian Monsoon Failure During El Niño)

The Great Paradox of Indian Monsoon Failure (Unraveling The Mystery of Indian Monsoon Failure During El Niño) The Great Paradox of Indian Monsoon Failure (Unraveling The Mystery of Indian Monsoon Failure During El Niño) K. Krishna Kumar, B. Rajagopalan, M. Hoerling, G. Bates and M. Cane Point-by-point response

More information

The Air-Sea Interaction. Masanori Konda Kyoto University

The Air-Sea Interaction. Masanori Konda Kyoto University 2 The Air-Sea Interaction Masanori Konda Kyoto University 2.1 Feedback between Ocean and Atmosphere Heat and momentum exchange between the ocean and atmosphere Atmospheric circulation Condensation heat

More information

Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño?

Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño? ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 2, 70 74 Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño? LI Gen, REN Bao-Hua,

More information

Lecture 24. El Nino Southern Oscillation (ENSO) Part 1

Lecture 24. El Nino Southern Oscillation (ENSO) Part 1 Lecture 24 El Nino Southern Oscillation (ENSO) Part 1 The most dominant phenomenon in the interannual variation of the tropical oceanatmosphere system is the El Nino Southern Oscillation (ENSO) over the

More information

1 2 http://ds.data.jma.go.jp/tcc/tcc/index.html http://ds.data.jma.go.jp/tcc/tcc/index.html Climate in Japan World Climate Extratropics Tropics Oceanograhpic conditions World Climate Page 2 Extratropics

More information

Periodic Forcing and ENSO Suppression in the Cane- Zebiak Model

Periodic Forcing and ENSO Suppression in the Cane- Zebiak Model Journal of Oceanography, Vol. 61, pp. 109 to 113, 2005 Periodic Forcing and ENSO Suppression in the Cane- Zebiak Model AIJUN PAN 1 *, QINYU LIU 1 and ZHENGYU LIU 2,1 1 Physical Oceanography Laboratory,

More information

C.-P. Chang and Tim Li 1 Department of Meteorology, Naval Postgraduate School, Monterey, CA Abstract

C.-P. Chang and Tim Li 1 Department of Meteorology, Naval Postgraduate School, Monterey, CA Abstract TROPCAL TROPOSPHERC BENNAL OSCLLATON AND ENSO C.-P. Chang and Tim Li 1 Department of Meteorology, Naval Postgraduate School, Monterey, CA 93943 Abstract The tropospheric biennial oscillation (TBO) and

More information

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves Georges (1998) 3. Climatic Variability El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves ENVIRONMENTAL CONDITIONS FOR TROPICAL CYCLONES TO FORM AND GROW Ocean surface waters

More information

The Child. Mean Annual SST Cycle 11/19/12

The Child. Mean Annual SST Cycle 11/19/12 Introduction to Climatology GEOGRAPHY 300 El Niño-Southern Oscillation Tom Giambelluca University of Hawai i at Mānoa and Pacific Decadal Oscillation ENSO: El Niño-Southern Oscillation PDO: Pacific Decadal

More information

Effect of Orography on Land and Ocean Surface Temperature

Effect of Orography on Land and Ocean Surface Temperature Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, Eds., T. Matsuno and H. Kida, pp. 427 431. by TERRAPUB, 2001. Effect of Orography on Land and Ocean Surface Temperature

More information

Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO)

Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO) Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO) Gerald Meehl National Center for Atmospheric Research Julie Arblaster, Johannes Loschnigg,

More information

An ITCZ-like convergence zone over the Indian Ocean in boreal late autumn

An ITCZ-like convergence zone over the Indian Ocean in boreal late autumn Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L10811, doi:10.1029/2006gl028341, 2007 An ITCZ-like convergence zone over the Indian Ocean in boreal late autumn N. Sato, 1 K. Yoneyama,

More information

Exploring relationships between regional climate and Atlantic Hurricanes Mark R. Jury

Exploring relationships between regional climate and Atlantic Hurricanes Mark R. Jury Exploring relationships between regional climate and Atlantic Hurricanes Mark R. Jury Physics Department University of Puerto Rico - Mayagüez Mayaguez, PR, 00681 Data employed: hurricane index: 1850-2004

More information

Interannual variation of northeast monsoon rainfall over southern peninsular India

Interannual variation of northeast monsoon rainfall over southern peninsular India Indian Journal of Geo-Marine Science Vol. 40(1), February 2011, pp 98-104 Interannual variation of northeast monsoon rainfall over southern peninsular India * Gibies George 1, Charlotte B. V 2 & Ruchith

More information

The effect of doubled CO 2 and model basic state biases on the monsoon-enso system. Part A: Mean response and interannual variability

The effect of doubled CO 2 and model basic state biases on the monsoon-enso system. Part A: Mean response and interannual variability Q. J. R. Meteorol. Soc. (27), 133, pp. 1 2 doi: 1.1256/qj.82 The effect of doubled CO 2 and model basic state biases on the monsoon-enso system. Part A: Mean response and interannual variability By A.

More information

Review for the second quarter. Mechanisms for cloud formation

Review for the second quarter. Mechanisms for cloud formation Review for the second quarter Mechanisms for cloud formation 1 Rising air expands and cools; Sinking air compresses and warms. (18) (24) Dry adiabatic lapse rate (10 o C/km): the rate of temperature decrease

More information

Long-term warming trend over the Indian Ocean

Long-term warming trend over the Indian Ocean Long-term warming trend over the Indian Ocean RIO WIO 1. Western Indian Ocean experienced strong, monotonous warming during the last century 2. Links to asymmetry and skewness in ENSO forcing 3. Strong

More information

UNIFIED MECHANISM OF ENSO CONTROL ON INDIAN MONSOON RAINFALL SUNEET DWIVEDI

UNIFIED MECHANISM OF ENSO CONTROL ON INDIAN MONSOON RAINFALL SUNEET DWIVEDI UNIFIED MECHANISM OF ENSO CONTROL ON INDIAN MONSOON RAINFALL SUNEET DWIVEDI K Banerjee Centre of Atmospheric and Ocean Studies, M N Saha Centre of Space Studies University of Allahabad, Allahabad, INDIA

More information

El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies

El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D19, 4372, doi:10.1029/2001jd000393, 2002 El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress

More information

Chapter 10: Global Wind Systems

Chapter 10: Global Wind Systems Chapter 10: Global Wind Systems Three-cell model of atmospheric circulation Intertropical Convergence Zone (ITCZ) Typical surface wind patterns Upper-level pressure and winds Climatological sea-level pressure

More information

Role of Thermal Condition over Asia in the Weakening Asian Summer Monsoon under Global Warming Background

Role of Thermal Condition over Asia in the Weakening Asian Summer Monsoon under Global Warming Background 1MAY 2012 Z U O E T A L. 3431 Role of Thermal Condition over Asia in the Weakening Asian Summer Monsoon under Global Warming Background ZHIYAN ZUO Chinese Academy of Meteorological Sciences, Beijing, China

More information

LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS

LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS Vol.22 No.2 JOURNAL OF TROPICAL METEOROLOGY June 2016 Article ID: 1006-8775(2016) 02-0172-10 LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS DONG Di ( ) 1, 2,

More information

The General Circulation and El Niño. Dr. Christopher M. Godfrey University of North Carolina at Asheville

The General Circulation and El Niño. Dr. Christopher M. Godfrey University of North Carolina at Asheville The General Circulation and El Niño Dr. Christopher M. Godfrey University of North Carolina at Asheville Global Circulation Model Air flow broken up into 3 cells Easterlies in the tropics (trade winds)

More information

The Role of the Wind-Evaporation-Sea Surface Temperature (WES) Feedback in Tropical Climate Variability

The Role of the Wind-Evaporation-Sea Surface Temperature (WES) Feedback in Tropical Climate Variability The Role of the Wind-Evaporation-Sea Surface Temperature (WES) Feedback in Tropical Climate Variability R. Saravanan Depart ment of At mospheric Sciences, Texas A&M University, College Station Collaborators:

More information

El Niño and La Niña amplitude asymmetry caused by

El Niño and La Niña amplitude asymmetry caused by El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks Claudia Frauen 1 and Dietmar Dommenget 2 1 IFM-GEOMAR, Leibniz Institute of Marine Sciences (at Kiel University) 2 School of Mathematical

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

An Evolution of the Asian Summer Monsoon Associated with Mountain Uplift Simulation with the MRI Atmosphere-Ocean Coupled GCM

An Evolution of the Asian Summer Monsoon Associated with Mountain Uplift Simulation with the MRI Atmosphere-Ocean Coupled GCM Journal of the Meteorological Society of Japan, Vol. 81, No. 5, pp. 909--933, 2003 909 An Evolution of the Asian Summer Monsoon Associated with Mountain Uplift Simulation with the MRI Atmosphere-Ocean

More information

Recent Atmospheric and Oceanic Circulation Changes Affecting Winter Weather in North America. Dr. Art Douglas Professor Emeritus Creighton University

Recent Atmospheric and Oceanic Circulation Changes Affecting Winter Weather in North America. Dr. Art Douglas Professor Emeritus Creighton University Recent Atmospheric and Oceanic Circulation Changes Affecting Winter Weather in North America Dr. Art Douglas Professor Emeritus Creighton University Outline 1. The 2018 El Nino: A Northern Hemisphere induced

More information

Indian Ocean warming its extent, and impact on the monsoon and marine productivity

Indian Ocean warming its extent, and impact on the monsoon and marine productivity Indian Ocean warming its extent, and impact on the monsoon and marine productivity RIO WIO Indian Ocean warming: o Western Indian Ocean experienced strong, monotonous warming during the last century o

More information

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO Jin-Yi Yu 1*, Hsun-Ying Kao 1, and Tong Lee 2 1. Department of Earth System Science, University of California, Irvine, Irvine,

More information

The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon

The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon SUST Journal of Science and Technology, Vol. 20, No. 6, 2012; P:89-98 The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon (Submitted: July 18, 2012; Accepted for

More information

LONG- TERM CHANGE IN PRE- MONSOON THERMAL INDEX OVER CENTRAL INDIAN REGION AND SOUTH WEST MONSOON VARIABILITY

LONG- TERM CHANGE IN PRE- MONSOON THERMAL INDEX OVER CENTRAL INDIAN REGION AND SOUTH WEST MONSOON VARIABILITY LONG- TERM CHANGE IN PRE- MONSOON THERMAL INDEX OVER CENTRAL INDIAN REGION AND SOUTH WEST MONSOON VARIABILITY *S.S. Dugam Indian Institute of Tropical Meteorology, Pune-411008 *Author for Correspondence

More information

Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China

Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 6, 2007, 993 1023 Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China HUANG Ronghui ( ), CHEN Jilong

More information

TROPICAL METEOROLOGY. Intertropical Convergence Zone. Introduction. Mean Structure

TROPICAL METEOROLOGY. Intertropical Convergence Zone. Introduction. Mean Structure TROPICAL METEOROLOGY / Intertropical Convergence Zone 1 TROPICAL METEOROLOGY 0417-P0005 0417-P0010 Intertropical Convergence Zone D E Waliser, State University of New York, Stony Brook, NY, USA Copyright

More information

The Asian Australian Monsoon and El Niño Southern Oscillation in the NCAR Climate System Model*

The Asian Australian Monsoon and El Niño Southern Oscillation in the NCAR Climate System Model* 1356 JOURNAL OF CLIMATE VOLUME 11 The Asian Australian Monsoon and El Niño Southern Oscillation in the NCAR Climate System Model* GERALD A. MEEHL AND JULIE M. ARBLASTER National Center for Atmospheric

More information

Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations*

Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations* 3206 JOURNAL OF CLIMATE VOLUME 15 Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations* YONGSHENG ZHANG International Pacific Research Center, School of Ocean

More information

OCN 201 Lab Fall 2009 OCN 201. Lab 9 - El Niño

OCN 201 Lab Fall 2009 OCN 201. Lab 9 - El Niño OCN 201 Lab Fall 2009 OCN 201 Lab 9 - El Niño El Niño is probably one of the most widely publicized oceanic phenomena. If there s one single reason for that it s probably the fact that El Niño s presence

More information

NOTES AND CORRESPONDENCE. Contributions of Indian Ocean and Monsoon Biases to the Excessive Biennial ENSO in CCSM3

NOTES AND CORRESPONDENCE. Contributions of Indian Ocean and Monsoon Biases to the Excessive Biennial ENSO in CCSM3 1850 J O U R N A L O F C L I M A T E VOLUME 22 NOTES AND CORRESPONDENCE Contributions of Indian Ocean and Monsoon Biases to the Excessive Biennial ENSO in CCSM3 JIN-YI YU, FENGPENG SUN,* AND HSUN-YING

More information

NOTES AND CORRESPONDENCE. Timing of El Niño Related Warming and Indian Summer Monsoon Rainfall

NOTES AND CORRESPONDENCE. Timing of El Niño Related Warming and Indian Summer Monsoon Rainfall 1 JUNE 2008 N O T E S A N D C O R R E S P O N D E N C E 2711 NOTES AND CORRESPONDENCE Timing of El Niño Related Warming and Indian Summer Monsoon Rainfall CHIE IHARA, YOCHANAN KUSHNIR, MARK A. CANE, AND

More information

Currents. History. Pressure Cells 3/13/17. El Nino Southern Oscillation ENSO. Teleconnections and Oscillations. Neutral Conditions

Currents. History. Pressure Cells 3/13/17. El Nino Southern Oscillation ENSO. Teleconnections and Oscillations. Neutral Conditions Teleconnections and Oscillations Teleconnection climate anomalies being related to each other over a large scale Oscillations: Macroscale movement of atmospheric systems that can influence weather, climate,

More information

Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models

Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053322, 2012 Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models Yue Li, 1 Nicolas C. Jourdain,

More information

Western Pacific Interannual Variability Associated with the El Nino Southern Oscillation

Western Pacific Interannual Variability Associated with the El Nino Southern Oscillation University of South Florida Scholar Commons Marine Science Faculty Publications College of Marine Science 3-15-1999 Western Pacific Interannual Variability Associated with the El Nino Southern Oscillation

More information

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events Jin-Yi Yu 1*, Hsun-Ying Kao 2, Tong Lee 3, and Seon Tae Kim 1 1 Department of Earth System

More information

Global Circulations. GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10

Global Circulations. GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10 Global Circulations GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10 Last lecture Microscale (turbulence) Mesoscale (land/sea breeze) Synoptic scale (monsoon) Global scale (3 cell circulation) Three Cell Model

More information

- terminology. Further Reading: Chapter 07 of the text book. Outline. - characteristics of ENSO. -impacts

- terminology. Further Reading: Chapter 07 of the text book. Outline. - characteristics of ENSO. -impacts (1 of 14) Further Reading: Chapter 07 of the text book Outline - terminology - characteristics of ENSO -impacts (2 of 14) Today: Introduction We want to look at another source of variability in the atmosphere

More information

J1.2 LINKAGES BETWEEN EL NIÑO AND RECENT TROPICAL WARMING

J1.2 LINKAGES BETWEEN EL NIÑO AND RECENT TROPICAL WARMING J1.2 LINKAGES BETWEEN EL NIÑO AND RECENT TROPICAL WARMING Fei-Fei Jin 1, Soon-Il An 1, Axel Timmermann 2, Jingxia Zhao 1 1 School of Ocean and Earth Science and Technology, University of Hawaii at Manoa,

More information

Increasing trend of break-monsoon conditions over India - Role of ocean-atmosphere processes in the Indian Ocean

Increasing trend of break-monsoon conditions over India - Role of ocean-atmosphere processes in the Indian Ocean Author versions: IEEE Geosci. Remote Sens. Lett.: 6(2); 2009; 332-336 Increasing trend of break-monsoon conditions over India - Role of ocean-atmosphere processes in the Indian Ocean M.R.Ramesh Kumar 1,

More information

MFE 659 Lecture 2b El Niño/La Niña Ocean-Atmosphere Interaction. El Niño La Niña Ocean-Atmosphere Interaction. Intro to Ocean Circulation

MFE 659 Lecture 2b El Niño/La Niña Ocean-Atmosphere Interaction. El Niño La Niña Ocean-Atmosphere Interaction. Intro to Ocean Circulation MFE 659 Lecture 2b El Niño/La Niña Ocean-Atmosphere Interaction El Niño La Niña Ocean-Atmosphere Interaction Outline Ocean Circulation El Niño La Niña Southern Oscillation ENSO 1 2 Intro to Ocean Circulation

More information

What happened to the South Coast El Niño , squid catches? By M J Roberts Sea Fisheries Research Institute, Cape Town

What happened to the South Coast El Niño , squid catches? By M J Roberts Sea Fisheries Research Institute, Cape Town What happened to the South Coast El Niño 1997-98, squid catches? By M J Roberts Sea Fisheries Research Institute, Cape Town Introduction FROM ALL ACCOUNTS, the intense 1997-98 c impacted most regions in

More information

Response of tropical cyclone potential intensity over the north Indian Ocean to global warming

Response of tropical cyclone potential intensity over the north Indian Ocean to global warming Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L03709, doi:10.1029/2008gl036742, 2009 Response of tropical cyclone potential intensity over the north Indian Ocean to global warming

More information