Vertical Wind Energy Engineering Design and Evaluation of a Twisted Savonius Wind Turbine

Size: px
Start display at page:

Download "Vertical Wind Energy Engineering Design and Evaluation of a Twisted Savonius Wind Turbine"

Transcription

1 Design and Evaluation of a Twisted Savonius Wind Turbine Ian Duffett Jeff Perry Blaine Stockwood Jeremy Wiseman

2 Outline Problem Definition Introduction Concept Selection Design Fabrication Testing Results Conclusions Recommendations

3 Problem Definition Design and test a vertical axis wind turbine (VAWT). This design should meet the following objectives: Design will be novel and untested Design will be self-starting Design will produce reliable power in harsh weather conditions

4 Wind Energy The conversion of wind energy into various other useful forms such as electricity is known as wind power Studying wind energy is desirable because: Wind energy is renewable There is ample supply of wind energy Suitable wind patterns are available worldwide Production costs of wind energy are declining Wind energy produces minimal greenhouse gas emissions

5 Wind Turbines Horizontal Axis Wind Turbines (HAWT) Advantages Higher efficiency Can furl out of the wind to reduce wind speed seen by the blades High towers reduce turbulence caused by nearby structures Disadvantages Tower mounting makes maintenance more difficult Requires large structures Installation requires heavy equipment Requires additional controls to furl and rotate to orient blades in the wind direction Vertical Axis Wind Turbines (VAWT) Advantages Ground mounting makes maintenance easier Can be installed in areas of wind funnelling and high wind speeds Lower noise signature Requires lower starting speeds Disadvantages Lower efficiency May require guys to support rotation axis Can create an inconsistent torque (pulse)

6 Major Types of VAWT 1. Darrieus Wind Turbine Uses lift to create rotation Good efficiency Torque ripple Not self-starting 2. Savonius Wind Turbine Uses drag forces to create rotation Low efficiency High reliability Self-starting A very large Darrieus wind turbine on the Gaspé peninsula, Quebec, Canada Savonius wind turbine

7 Twisted Savonius Increases efficiency of standard savonius wind turbine Consistent torque created by symmetrical helical shape Rotates regardless of wind direction Self-starting

8 Concept Selection Modified Twisted Savonius Turbine Provides consistent torque Will be self-starting Will only rotate at the wind speed allowing for greater reliability in high wind Design is untested Closed around shaft

9 Prototype Modelling Bottom Plane Independent Design Parameters: Long Radius α Short Radius Angle of Twist Short Radius Bottom Plane r Short Radius R r Long Radius Bottom Plane α R Top Plane Long Radius Top Plane

10 CFD Analysis FloWorks simulation developed to test static torque on various foil designs: Constant velocity air stream, 15m/s Measure torque generated on shaft

11 CFD Analysis Elliptical Circular Foil Design Circular Foil Design Torque (N m) Maximum 360 Twist Angle 0.47 N m 0.2 Elliptical Foil Design 0.2 Maximum 360 Twist Angle, mm Long Radius N m Torque (N m) Torque (N m) Circular Foil Design Angle of Twist ( ) Elliptical Foil Design Long Radius (mm) Long Angle Radius of Twist (mm)) ( )

12 Prototype Fabrication Rapid Prototyping Fused Deposition Modeling Turns computer-aided design (CAD) geometry into solid state structures. Max Build Size 10 x 10 Sectioned Prototype Required Build time ~ 36 hours per section Two Section Shaft $6300

13 Prototype Fabrication Design Plan

14 Prototype Fabrication Prototyping Challenges Prototyper Size Constraints Problem: Limitations in nozzle movement prevented achieving maximum cross-section Solution: 5% Reduction in CAD Model Size Problem: Damage to nozzle heads due to overheating of material in the semi-liquid state Solution: Reduced size (by height) of individual foil sections to decrease run time and prevent overheating

15 Prototype Fabrication Prototyping Challenges Assembly Problem: Shrinkage of the material during cooling from the semiliquid state Solution: Use of body filler during assemblage to create continuous foil surface Problem: Rotational unbalance within the foil due to body filler and flexibility of shaft Solution: Replacement of two shaft aluminum design with single steel shaft

16 Wind Tunnel Setup Memorial University s Wind Tunnel - Wind Speed Range 1.2 m/s (Full Closed) to 10.6 m/s (Fully Open) - Rectangular test section 20.0 x 0.93 x 1.04 meters

17 Wind Tunnel Setup Setup 1 Installed centered and vertically in the wind tunnel with both ends of the shaft extruding through the bottom and top of the tunnel (2 x Alum 1/2 OD x 36, inserted at both ends) Low friction polyblock bearings Setup 1 Problems Large vibrations during rotation of Blade Not installed: Friction Brake Dynamometer Anemometer LED Tac

18 Wind Tunnel Setup Setup 2 Installed centered and vertically within the wind tunnel with a shorter shaft (Steel 7/16 OD x 36 ) Low friction shaft bearings Instrumentation setup: LED Tac / Handheld Tac Friction Brake Dynamometer Anemometer Setup 2 Problems Vibration of Friction Brake Dynamometer Pulse loading on load cell LED Tac sampling rate limited to 50 Hz Unable to capture flywheel rotations fast enough

19 Setup 2 - Pictures

20 Wind Tunnel Setup Setup 3 Installed centered and vertically within the wind tunnel with a shorter shaft (Steel 7/16 OD x 36 ) Low friction shaft bearings Instrumentation setup: Handheld Tac Friction Brake Dynamometer Anemometer Setup 3 Problems Vibration of Friction Brake Dynamometer Pulse loading on load cell

21 Setup 3 - Pictures

22 Testing Matrix - Number of Tests -> 36

23 Testing Predictions Predicted Results Two important design features are: Tip Speed Ratio (TSR or λ) Is the ratio between the rotational speed of the tip of a blade and the actual velocity of the wind Power Coefficient (Cp) The power coefficient tells how efficiently a turbine converts wind energy into electricity

24 CFD / Testing Comparison FloWorks simulations were developed over a range of wind speed for static torque and compared to static test acquired throughout testing

25 Testing Results Cp vs. Tip Speed Power Output vs. Wind Speed Cp Power Output [Watts] TSR Wind Speed [m/s]

26 Summary Successful test of novel design Design determined to be self starting under varying wind conditions Maximum 15% efficiency achieved Maximum Power Output of 13 Watts Cp vs. TSR Plot follows a similar profile of the predicted Power and torque output increases as wind speed increases

27 Plan Forward & Next Steps Improve testing set-up for more reliable results Use high frequency DAQ to accurately measure rotation speed Review friction brake design to measure more consistent loads Test under Newfoundland environmental conditions Icing and snow tests Higher wind speeds Longer term effect of sea spray and fog on system performance

28 Special Thanks to: Dr. Iqbal Steve Steel Matt Curtis Craig Mitchell Don Taylor

29 This Concludes our Presentation Questions? Thank you for your Attention

PRELIMINARY PROJECT EVALUATION OF TWISTED SAVONIUS WIND TURBINE

PRELIMINARY PROJECT EVALUATION OF TWISTED SAVONIUS WIND TURBINE 2009 Vertical Wind Energy Engineering Ian Duffett 009723628 Jeff Perry 200211837 Blaine Stockwood 009224597 Jeremy Wiseman - 200336428 PRELIMINARY PROJECT EVALUATION OF TWISTED SAVONIUS WIND TURBINE Initial

More information

Wind Energy Technology. What works & what doesn t

Wind Energy Technology. What works & what doesn t Wind Energy Technology What works & what doesn t Orientation Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical Axis Horizontal Axis Vertical Axis Turbines

More information

Modulation of Vertical Axis Wind Turbine

Modulation of Vertical Axis Wind Turbine Modulation of Vertical Axis Wind Turbine Apurwa Gokhale 1, Nehali Gosavi 2, Gurpreet Chhabda 3, Vikrant Ghadge 4, Dr. A.P.Kulkarni 5 1,2,3,4 Vishwakarma Institute of Information Technology, Pune. 5 Professor,

More information

TOPICS TO BE COVERED

TOPICS TO BE COVERED UNIT-3 WIND POWER TOPICS TO BE COVERED 3.1 Growth of wind power in India 3.2 Types of wind turbines Vertical axis wind turbines (VAWT) and horizontal axis wind turbines (HAWT) 3.3 Types of HAWTs drag and

More information

FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS

FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS 87 CHAPTER-4 FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS 88 CHAPTER-4 FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS

More information

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

CFD Analysis of Giromill Type Vertical Axis Wind Turbine 242 CFD Analysis Giromill Type Vertical Axis Wind Turbine K. Sainath 1, T. Ravi 2, Suresh Akella 3, P. Madhu Sudhan 4 1 Associate Pressor, Department Mechanical Engineering, Sreyas Inst. Engg. & Tech.,

More information

AN ISOLATED SMALL WIND TURBINE EMULATOR

AN ISOLATED SMALL WIND TURBINE EMULATOR AN ISOLATED SMALL WIND TURBINE EMULATOR Md. Arifujjaman Graduate Student Seminar: Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NL, Canada

More information

A Numerical Simulation Comparing the Efficiencies of Tubercle Versus Straight Leading Edge Airfoils for a Darrieus Vertical Axis Wind Turbine

A Numerical Simulation Comparing the Efficiencies of Tubercle Versus Straight Leading Edge Airfoils for a Darrieus Vertical Axis Wind Turbine A Numerical Simulation Comparing the Efficiencies of Tubercle Versus Straight Leading Edge Airfoils for a Darrieus Vertical Axis Wind Turbine By: Ross Neal Abstract: The efficiencies of sinusoidal and

More information

Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion

Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion In Seong Hwang, Seung Yong Min, In Oh Jeong, Yun Han Lee and Seung Jo Kim* School of Mechanical &

More information

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 1-10 TJPRC Pvt. Ltd., PRESSURE DISTRIBUTION OF SMALL WIND TURBINE

More information

Development process of a vertical axis wind turbine

Development process of a vertical axis wind turbine 7th World Summit for Small Wind (WSSW2016) / Technology Development Development process of a vertical axis wind turbine Daniel Lehser-Pfeffermann Wind energy lab, htw saar Germany Day 2 18.03.2016 7th

More information

JJT WIND AMPLIFIER

JJT WIND AMPLIFIER JJT-001-2014 WIND AMPLIFIER Sevvel P 1, Santhosh P 2 1 Assoicate Professor, Department of Mechanical Engineering, Magna College of Engineering Email.Id : sevvel_ready@yahoo.co.in 2 Final year Mechanical

More information

Influence of the Number of Blades on the Mechanical Power Curve of Wind Turbines

Influence of the Number of Blades on the Mechanical Power Curve of Wind Turbines European Association for the Development of Renewable Energies, Environment and Power quality International Conference on Renewable Energies and Power Quality (ICREPQ 9) Valencia (Spain), 15th to 17th

More information

Increasing the power output of the Darrieus Vertical Axis Wind Turbine

Increasing the power output of the Darrieus Vertical Axis Wind Turbine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36. Increasing the power output of the Darrieus Vertical Axis Wind Turbine R. Ramkissoon 1 and K. Manohar

More information

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES 5 th International Advanced Technologies Symposium (IATS 09), May 13-15, 2009, Karabuk, Turkey COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES Emrah KULUNK a, * and Nadir YILMAZ b a, * New

More information

Small Scale Wind Technologies Part 2. Centre for Renewable Energy at Dundalk IT CREDIT

Small Scale Wind Technologies Part 2. Centre for Renewable Energy at Dundalk IT CREDIT Small Scale Wind Technologies Part 2 Centre for Renewable Energy at Dundalk IT CREDIT 1 Part 2 Small and large scale wind turbine technologies 2 Overview of small scale grid connected system Wind Turbine

More information

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel Journal of Scientific SARAVANAN & Industrial et al: Research PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADES WITH WINGLET Vol. 71, June 01, pp. 45-49 45 Pressure distribution of rotating small wind

More information

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b 06 International Conference on Mechanics Design, Manufacturing and Automation (MDM 06) ISBN: 978--60595-354-0 Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a,

More information

A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment

A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment J.-Y. Park*, S. Lee* +, T. Sabourin**, K. Park** * Dept. of Mechanical Engineering, Inha University, Korea + KR Wind Energy Research

More information

International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013

International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013 PERFORMANCE PREDICTION OF HORIZONTAL AXIS WIND TURBINE BLADE HardikPatel 1, SanatDamania 2 Master of Engineering Student, Department of Mechanical Engineering, Government Engineering College, Valsad, Gujarat,

More information

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS L. Vita, U.S.Paulsen, T.F.Pedersen Risø-DTU Technical University of Denmark, Roskilde, Denmark luca.vita@risoe.dk Abstract: A novel concept

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK FABRICATION AND TESTING OF CLOSE CASING VERTICAL AXIS WIND TURBINE WITH TUNNELLING

More information

CIRCULATION CONTROLLED AIRFOIL ANALYSIS THROUGH 360 DEGREES ANGLE OF ATTACK

CIRCULATION CONTROLLED AIRFOIL ANALYSIS THROUGH 360 DEGREES ANGLE OF ATTACK Proceedings of the ASME 2009 3rd International Conference of Proceedings Energy Sustainability of ES2009 Energy Sustainability ES2009 July July 19-23, 2009, 2009, San San Francisco, California, USA ES2009-90341

More information

Wind Energy Resource and Technologies

Wind Energy Resource and Technologies Wind Energy Resource and Technologies Dr. Ram Chandra DBT s Energy Bioscience Overseas Fellow Centre for Rural Development and Technology Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016

More information

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ISSN : 2250-3021 Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ARVIND SINGH RATHORE 1, SIRAJ AHMED 2 1 (Department of Mechanical Engineering Maulana

More information

LECTURE 18 WIND POWER SYSTEMS. ECE 371 Sustainable Energy Systems

LECTURE 18 WIND POWER SYSTEMS. ECE 371 Sustainable Energy Systems LECTURE 18 WIND POWER SYSTEMS ECE 371 Sustainable Energy Systems 1 HISTORICAL DEVELOPMENT The first wind turbine used to generate electricity was built by La Cour of Denmark in 1891 2 HISTORICAL DEVELOPMENT

More information

Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India)

Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India) International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 4ǁ April 2014ǁ PP.49-54 Aerodynamically Efficient Wind Turbine Blade S Arunvinthan

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

DEVELOPMENT OF SAFE VERTICAL AXIS WIND TURBINE

DEVELOPMENT OF SAFE VERTICAL AXIS WIND TURBINE The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 29, Taipei, Taiwan DEVELOPMENT OF SAFE VERTICAL AXIS WIND TURBINE FOR OVER SPEED ROTATION Minoru Noda 1, Fumiaki Nagao 2 and Akira

More information

Increasing Efficiency of a Twisted Blade Vertical Axis Wind Turbine (VAWT) by Changing Various Parameter

Increasing Efficiency of a Twisted Blade Vertical Axis Wind Turbine (VAWT) by Changing Various Parameter Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 215 (ICMERE215) 26 29 ovember, 215, Chittagong, Bangladesh ICMERE215-PI-226 Increasing Efficiency of a Twisted

More information

PREDICTION THE EFFECT OF TIP SPEED RATIO ON WIND TURBINE GENERATOR OUTPUT PARAMETER

PREDICTION THE EFFECT OF TIP SPEED RATIO ON WIND TURBINE GENERATOR OUTPUT PARAMETER Int. J. Mech. Eng. & Rob. Res. 2012 Hari Pal Dhariwal et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved PREDICTION THE EFFECT OF TIP

More information

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine Matheus C. Fernandes 1, David H. Matthiesen PhD *2 1 Case Western Reserve University Dept. of Mechanical Engineering,

More information

2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil

2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil 2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil Akshay Basavaraj1 Student, Department of Aerospace Engineering, Amrita School of Engineering, Coimbatore 641 112, India1 Abstract: This

More information

Power efficiency and aerodynamic forces measurements on the Dettwiler-wind turbine

Power efficiency and aerodynamic forces measurements on the Dettwiler-wind turbine Institut für Fluiddynamik ETH Zentrum, ML H 33 CH-8092 Zürich P rof. Dr. Thomas Rösgen Sonneggstrasse 3 Telefon +41-44-632 2646 Fax +41-44-632 1147 roesgen@ifd.mavt.ethz.ch www.ifd.mavt.ethz.ch Power efficiency

More information

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS www.mechieprojects.com CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS PRESENTATION OUTLINE AIM INTRODUCTION LITERATURE SURVEY CFD ANALYSIS OF AEROFOIL RESULTS CONCLUSIONS www.mechieprojects.com

More information

Effect of Blade Design on Angular Velocity of Vertical Axis Wind Turbine CFD Analysis

Effect of Blade Design on Angular Velocity of Vertical Axis Wind Turbine CFD Analysis Journal of Informatics and Mathematical Sciences Vol. 10, Nos. 1 & 2, pp. 279 285, 2018 ISSN 0975-5748 (online); 0974-875X (print) Published by RGN Publications http://www.rgnpublications.com http://dx.doi.org/10.26713/jims.v10i1-2.1053

More information

Vertical Axis Wind Turbine Strut and Blade Design for Rural Alaska. Author: Josh Heppner

Vertical Axis Wind Turbine Strut and Blade Design for Rural Alaska. Author: Josh Heppner Vertical Axis Wind Turbine Strut and Blade Design for Rural Alaska Author: Josh Heppner Table of Contents 1. Abstract 2 2. Introduction 3 1. History 3 2. Vertical Axis Types 3 3. Aerodynamics 4 3. Project

More information

Numerical Study of Giromill-Type Wind Turbines with Symmetrical and Non-symmetrical Airfoils

Numerical Study of Giromill-Type Wind Turbines with Symmetrical and Non-symmetrical Airfoils European International Journal of Science and Technology Vol. 2 No. 8 October 2013 Numerical Study of Giromill-Type Wind Turbines with Symmetrical and Non-symmetrical Airfoils Prathamesh Deshpande and

More information

Urban wind turbines do they have a future? Or will they be white elephants?

Urban wind turbines do they have a future? Or will they be white elephants? Urban wind turbines do they have a future? Or will they be white elephants? Presented by Brian Kirke As part of the What On Earth series, UniSA, 1 November 2012 WWEA* is optimistic about small wind (defined

More information

WESEP 594 Research Seminar

WESEP 594 Research Seminar WESEP 594 Research Seminar Aaron J Rosenberg Department of Aerospace Engineering Iowa State University Major: WESEP Co-major: Aerospace Engineering Motivation Increase Wind Energy Capture Betz limit: 59.3%

More information

A STUDY OF THE INFLUENCE OF GUIDE VANE DESIGN ON SAVONIUS WIND TURBINE PERFORMANCE. Thesis

A STUDY OF THE INFLUENCE OF GUIDE VANE DESIGN ON SAVONIUS WIND TURBINE PERFORMANCE. Thesis A STUDY OF THE INFLUENCE OF GUIDE VANE DESIGN ON SAVONIUS WIND TURBINE PERFORMANCE Thesis Organized to fulfill the requirement to achieve Postgraduate degree of Mechanical Engineering ELSADIC SALIM.A.

More information

A COMPUTATIONAL FRAMEWORK FOR THE DESIGN AND ANALYSIS OF SAVONIUS WIND TURBINE

A COMPUTATIONAL FRAMEWORK FOR THE DESIGN AND ANALYSIS OF SAVONIUS WIND TURBINE A COMPUTATIONAL FRAMEWORK FOR THE DESIGN AND ANALYSIS OF SAVONIUS WIND TURBINE A report submitted by Sailesh Kolachana (ED07B015) in partial fulfillment of the requirements for the award of the degree

More information

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Razeen Ridhwan, Mohamed Alshaleeh, Arunvinthan S Abstract: In the Aerodynamic performance of wind turbine blade by

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is an author produced version of a paper published in Renewable Energy. White

More information

Articulating Wind Turbine

Articulating Wind Turbine Articulating Wind Turbine A Major Qualifying Project to be submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the degree of Bachelor of Science Submitted

More information

Experimental Investigation of End Plate Effects on the Vertical Axis Wind Turbine Airfoil Blade

Experimental Investigation of End Plate Effects on the Vertical Axis Wind Turbine Airfoil Blade Experimental Investigation of End Plate Effects on the Vertical Axis Wind Turbine Airfoil Blade Rikhi Ramkissoon 1, Krishpersad Manohar 2 Ph.D. Candidate, Department of Mechanical and Manufacturing Engineering,

More information

Development of a Reciprocating Aerofoil Wind Energy Harvester

Development of a Reciprocating Aerofoil Wind Energy Harvester Development of a Reciprocating Aerofoil Wind Energy Harvester Russell hillips a and Danie Hattingh a Received 9 September 8, in revised form 6 November 9 and accepted December 9 Theoretical predictions

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY September 2009 ALDEN RESEARCH LABORATORY, INC.

More information

Aerodynamic Design, Fabrication and Testing of Wind Turbine Rotor Blades

Aerodynamic Design, Fabrication and Testing of Wind Turbine Rotor Blades Aerodynamic Design, Fabrication and Testing of Wind Turbine Rotor Blades T.Mahendrapandian Department of Mechanical Engineering P.G. Student, Regional Centre of Anna University, Tirunelveli, Tamilnadu,

More information

Aerodynamics of a wind turbine

Aerodynamics of a wind turbine Aerodynamics of a wind turbine Author: Kosmacheva Anna Supervisor: Jari Hämäläinen Lappeenranta University of Technology Technomatematics Introduction Wind turbine is a device that converts kinetic energy

More information

Conventional Ship Testing

Conventional Ship Testing Conventional Ship Testing Experimental Methods in Marine Hydrodynamics Lecture in week 34 Chapter 6 in the lecture notes 1 Conventional Ship Testing - Topics: Resistance tests Propeller open water tests

More information

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Nicolas BRUMIOUL Abstract This thesis deals with the optimization of the aerodynamic design of a small

More information

Windmills using aerodynamic drag as propelling force; a hopeless concept. ing. A. Kragten. April 2009 KD 416

Windmills using aerodynamic drag as propelling force; a hopeless concept. ing. A. Kragten. April 2009 KD 416 Windmills using aerodynamic drag as propelling force; a hopeless concept It is allowed to copy this report for private use. ing. A. Kragten April 2009 KD 416 Engineering office Kragten Design Populierenlaan

More information

Energy Utilisation of Wind

Energy Utilisation of Wind Ing. Pavel Dostál, Ph.D., Ostrava University 1 Energy Utilisation of Wind Choice of locality Energy and wind output Wind-power installations Wind-power installations: types and classification Basic parts

More information

A resistance type vertical axis wind turbine for building integration

A resistance type vertical axis wind turbine for building integration 1 2 3 A resistance type vertical axis wind turbine for building integration 4 5 6 7 8 9 10 11 12 13 14 15 Authors: Gerald Müller, Associate Professor, Faculty of Engineering and the Environment, University

More information

Aerodynamic Analysis of a Symmetric Aerofoil

Aerodynamic Analysis of a Symmetric Aerofoil 214 IJEDR Volume 2, Issue 4 ISSN: 2321-9939 Aerodynamic Analysis of a Symmetric Aerofoil Narayan U Rathod Department of Mechanical Engineering, BMS college of Engineering, Bangalore, India Abstract - The

More information

Wind loads investigations of HAWT with wind tunnel tests and site measurements

Wind loads investigations of HAWT with wind tunnel tests and site measurements loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,

More information

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer: Anemometry Anemometry Function of an anemometer: Measure some or all of the components of the wind vector In homogeneous terrain, vertical component is small express wind as -D horizontal vector For some

More information

Model tests of wind turbine with a vertical axis of rotation type Lenz 2

Model tests of wind turbine with a vertical axis of rotation type Lenz 2 Model tests of wind turbine with a vertical axis of rotation type Lenz 2 Jaroslaw Zwierzchowski 1,*, Pawel Andrzej Laski 1, Slawomir Blasiak 1, Jakub Emanuel Takosoglu 1, Dawid Sebastian Pietrala 1, Gabriel

More information

Optimising Hydraulic Energy to Dramatically Improve Lateral Reach

Optimising Hydraulic Energy to Dramatically Improve Lateral Reach Optimising Hydraulic Energy to Dramatically Improve Lateral Reach What Affects Reach? Build angle Size of completion CT size Drag Mechanical Fluid Debris in well BHA size End load CT size End load Buoyancy

More information

ASME International Mechanical Engineering Congress & Exhibition IMECE 2013 November 15-21, 2013, San Diego, California, USA

ASME International Mechanical Engineering Congress & Exhibition IMECE 2013 November 15-21, 2013, San Diego, California, USA ASME International Mechanical Engineering Congress & Exhibition IMECE 2013 November 15-21, 2013, San Diego, California, USA IMECE2013-62734 AERODYNAMIC CHARACTERISTICS OF HORIZONTAL AXIS WIND TURBINE WITH

More information

Simulation and Parameter Evaluation of Wind Turbine Blade

Simulation and Parameter Evaluation of Wind Turbine Blade International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Simulation and Parameter Evaluation of Wind Turbine Blade Parth Rathod 1, Hiren Shah 2 * Mechanical Department, CGPIT, Uka Tarsadia

More information

Design of Naca63215 Airfoil for a Wind Turbine

Design of Naca63215 Airfoil for a Wind Turbine IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 10, Issue 2 (Nov. - Dec. 2013), PP 18-26 Design of Naca63215 Airfoil for a Wind Turbine 1 N.Manikandan,

More information

DESIGN AND ANALYSIS OF 5 KW SAVONIUS ROTOR BLADE

DESIGN AND ANALYSIS OF 5 KW SAVONIUS ROTOR BLADE GLOBAL ENGINEERS & TECHNOLOGISTS REVIEW www.getview.org DESIGN AND ANALYSIS OF 5 KW SAVONIUS ROTOR BLADE WIDODO 1, W.S., CHIN 2, A.C., HAERYIP SIHOMBING 3, and YUHAZRI 4, M.Y. 1, 2, 3, 4 Faculty of Manufacturing

More information

Power Performance of an Inversely Tapered Wind Rotor and its Air Flow Visualization Analysis Using Particle Image Velocimetry (PIV)

Power Performance of an Inversely Tapered Wind Rotor and its Air Flow Visualization Analysis Using Particle Image Velocimetry (PIV) American Journal of Physics and Applications 2015; 3(1): 6-14 Published online February 2, 2015 (http://www.sciencepublishinggroup.com/j/ajpa) doi: 10.11648/j.ajpa.20150301.12 ISSN: 2330-4286 (Print);

More information

Performance Evaluation of Small Wind Turbine Using CFD

Performance Evaluation of Small Wind Turbine Using CFD International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.01, pp 148-155, 2018 Performance Evaluation of Small Wind Turbine Using CFD P Arunkumar*,

More information

PERFORMANCE CHARACTERISTICS OF AN INDUSTRIAL CROSS FLOW WIND TURBINE

PERFORMANCE CHARACTERISTICS OF AN INDUSTRIAL CROSS FLOW WIND TURBINE International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 1071 1083, Article ID: IJMET_08_05_111 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=5

More information

Wind tunnel tests of a non-typical stadium roof

Wind tunnel tests of a non-typical stadium roof Wind tunnel tests of a non-typical stadium roof G. Bosak 1, A. Flaga 1, R. Kłaput 1 and Ł. Flaga 1 1 Wind Engineering Laboratory, Cracow University of Technology, 31-864 Cracow, Poland. liwpk@windlab.pl

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN George Feng, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga, Ontario Vadim Akishin, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga,

More information

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2 Fluid Structure Interaction Modelling of A Novel 10MW Vertical-Axis Wind Turbine Rotor Based on Computational Fluid Dynamics and Finite Element Analysis Lin Wang 1*, Athanasios Kolios 1, Pierre-Luc Delafin

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Computational studies on small wind turbine performance characteristics

Computational studies on small wind turbine performance characteristics Journal of Physics: Conference Series PAPER OPEN ACCESS Computational studies on small wind turbine performance characteristics To cite this article: N Karthikeyan and T Suthakar 2016 J. Phys.: Conf. Ser.

More information

Wind turbine Varying blade length with wind speed

Wind turbine Varying blade length with wind speed IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 01-05 www.iosrjournals.org Wind turbine Varying blade length with wind speed Mohammed Ashique

More information

Background. that may differ from the rest of the world.

Background. that may differ from the rest of the world. Background ¾Climate Change impacts in the Pacific very serious and will impact the lives and livelihoods of the people people. ¾Sea level rise is a major threat need to help reduce carbon emission. One

More information

10/8/2013. AFS (Agilent Floating Suspension) Technology. Contents. Traditional Cantilever Bearing Suspension

10/8/2013. AFS (Agilent Floating Suspension) Technology. Contents. Traditional Cantilever Bearing Suspension innovation competence added value Contents (Agilent Floating Suspension) Technology Traditional Cantilever Bearing Suspension Technology & Innovation Mechanical Design Comparison with Conventional Suspension

More information

Speed Control of Horizontal Axis Wind Turbine

Speed Control of Horizontal Axis Wind Turbine Speed Control of Horizontal Axis Wind Turbine G Priyadharshini 1, E Pavithra 2, M Sanjay 3 1,2,3Electronics and Instrumentation Engineering, Bannari Amman Institute of Technology, Erode, India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio Spark 101 Educator Resource Copyright 2013 Defining Key Concepts What is wind power?

More information

Aerodynamic Control of Flexible Structures in the Natural Wind

Aerodynamic Control of Flexible Structures in the Natural Wind Ian Castro 65 th Birthday Workshop, Southampton University, 28-29. 3. 12. Aerodynamic Control of Flexible Structures in the Natural Wind Mike Graham Department of Aeronautics, Imperial College London.

More information

DESIGN, DEVELOPMENT, FABRICATION AND TESTING OF SMALL VERTICAL AXIS WIND TURBINE USING 7% CAMBERED PLATE

DESIGN, DEVELOPMENT, FABRICATION AND TESTING OF SMALL VERTICAL AXIS WIND TURBINE USING 7% CAMBERED PLATE DESIGN, DEVELOPMENT, FABRICATION AND TESTING OF SMALL VERTICAL AXIS WIND TURBINE USING 7% CAMBERED PLATE Vilas Warudkar *, Baijnath Ahirwar, Dharmendra Kumar Shah and Siraj Ahmed Department of Mechanical

More information

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD Vivek V. Kulkarni Department of Mechanical Engineering KLS Gogte Institute of Technology, Belagavi, Karnataka Dr. Anil T.R. Department

More information

CFD Analysis on Two Bladed Savonius Wind Turbine With and Without Splitter

CFD Analysis on Two Bladed Savonius Wind Turbine With and Without Splitter CFD Analysis on Two Bladed Savonius Wind Turbine With and Without Splitter Deviprasad N Mirashi 1, Dr. S. Kumarappa 2 1PG student, Dept. of Mechanical Engineering, BIET Davangere, Karnataka, India 2Professor

More information

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder (AET- 29th March 214) RESEARCH ARTICLE OPEN ACCESS Experimental Investigation Of Flow Past A Rough Surfaced Cylinder Monalisa Mallick 1, A. Kumar 2 1 (Department of Civil Engineering, National Institute

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

Design and Analysis of Archimedes Aero-Foil Wind Turbine Blade for Light and Moderate Wind Speeds

Design and Analysis of Archimedes Aero-Foil Wind Turbine Blade for Light and Moderate Wind Speeds Design and Analysis of Archimedes Aero-Foil Wind Turbine Blade for Light and Moderate Wind Speeds Dr S. Srinivasa Rao #1 Kota Shanmukesh #2, M K Naidu 3, Praveen Kalla 4 1,3,4 Associate Professor, 2 Postgraduate

More information

Volume 8, ISSN (Online), Published at:

Volume 8, ISSN (Online), Published at: EW PERSPECTIVE VERSIO OF BI-DARRIES WIDTRBIE Ainakul Yershina Kazakh ational niversity named by al-farabi, Research Institute of Mechanics & Matematics. (Avenue al-farabi 71, Almaty, Kazakhstan) Abstract

More information

Design and fabrication and testing of a low speed wind turbine generator using tapered type rotor blade made from fibre reinforced plastic

Design and fabrication and testing of a low speed wind turbine generator using tapered type rotor blade made from fibre reinforced plastic International Journal of Renewable and Sustainable Energy 2014; 3(1): 20-25 Published online February 20, 2014 (http://www.sciencepublishinggroup.com/j/ijrse) doi: 10.11648/j.ijrse.20140301.14 Design and

More information

CACTUS MOON EDUCATION, LLC

CACTUS MOON EDUCATION, LLC CACTUS MOON EDUCATION, LLC ENERGY FROM THE WIND WIND ENERGY TECHNOLOGIES EDUCATION MODULE www.cactusmooneducation.com TEACHER S NOTES (wnd01tn) _ Cactus Moon Education, LLC. ENERGY FROM THE WIND WIND ENERGY

More information

Designing Wave Energy Converting Device. Jaimie Minseo Lee. The Academy of Science and Technology The Woodlands College Park High School, Texas

Designing Wave Energy Converting Device. Jaimie Minseo Lee. The Academy of Science and Technology The Woodlands College Park High School, Texas Designing Wave Energy Converting Device Jaimie Minseo Lee The Academy of Science and Technology The Woodlands College Park High School, Texas Table of Contents Abstract... i 1.0 Introduction... 1 2.0 Test

More information

Exercise 3. Power Versus Wind Speed EXERCISE OBJECTIVE DISCUSSION OUTLINE. Air density DISCUSSION

Exercise 3. Power Versus Wind Speed EXERCISE OBJECTIVE DISCUSSION OUTLINE. Air density DISCUSSION Exercise 3 Power Versus Wind Speed EXERCISE OBJECTIVE When you have completed this exercise, you will know how to calculate the power contained in the wind, and how wind power varies with wind speed. You

More information

IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY

IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY Department Of Mechanical Engineering IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY 9 Wind Data and Energy Estimation wind Energy Conversion Systems Wind Energy generators and

More information

TWIST ANGLE ANALYSIS OF HELICAL VERTICAL AXIS WIND TURBINE (VAWT) USING Q-BLADE

TWIST ANGLE ANALYSIS OF HELICAL VERTICAL AXIS WIND TURBINE (VAWT) USING Q-BLADE TWIST ANGLE ANALYSIS OF HELICAL VERTICAL AXIS WIND TURBINE (VAWT) USING Q-BLADE MR. M.P. JAGTAP. Sr. Lecturer, Department of Mechanical Engineering, Late Annasaheb Patil Polytechnic, Nashik, saijagtapmp@gmail.com

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

Effect of Pitch Angle and Reynolds Number on Aerodynamic Characteristics of a Small Horizontal Axis Wind Rotor

Effect of Pitch Angle and Reynolds Number on Aerodynamic Characteristics of a Small Horizontal Axis Wind Rotor Journal of Applied Fluid Mechanics, Vol. 11, No. 3, pp. 613-620, 2018. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.73.246.28246 Effect of Pitch Angle

More information

The Influence of Blade Camber on the Performance of a Vertical Axis Wind Turbine in Fluctuating Wind

The Influence of Blade Camber on the Performance of a Vertical Axis Wind Turbine in Fluctuating Wind , June 29 - July 1, 2016, London, U.K. The Influence of Blade Camber on the Performance of a Vertical Axis Wind Turbine in Fluctuating Wind Michael D. Bausas, and Louis Angelo M. Danao, Member, IAENG Abstract

More information

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record Liu, X., Azarpeyvand, M., & Joseph, P. (2015). On the acoustic and aerodynamic performance of serrated airfoils. Paper presented at The 22nd International Congress on Sound and Vibration, Florence, France.

More information

APPLICATION OF RESEARCH RESULTS AT LM WIND POWER

APPLICATION OF RESEARCH RESULTS AT LM WIND POWER APPLICATION OF RESEARCH RESULTS AT LM WIND POWER Herning / March 27 / 2014 By Jesper Madsen Chief Engineer Aerodynamics and Acoustics AGENDA 1. EUDP Projects 1. DANAERO MW 2. Optimization of vortex generators

More information

Increasing the power output of the Darrieus Vertical Axis Wind Turbine

Increasing the power output of the Darrieus Vertical Axis Wind Turbine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37. Increasing the power output of the Darrieus Vertical Axis Wind Turbine R. Ramkissoon 1 and K. Manohar

More information

Avai 193 Fall 2016 Laboratory Greensheet

Avai 193 Fall 2016 Laboratory Greensheet Avai 193 Fall 2016 Laboratory Greensheet Lab Report 1 Title: Instrumentation Test Technique Research Process: Break into groups of 4 people. These groups will be the same for all of the experiments performed

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information