Name Hour. The Behavior of Gases. Practice B

Size: px
Start display at page:

Download "Name Hour. The Behavior of Gases. Practice B"

Transcription

1 Name Hour The Behavior of Gases Practice B B 1

2 Objective 1: Apply Boyle s Law, Charles s Law, and Gay-Lussac s Law to solve problems involving pressure and volume and temperature. 1. A high-altitude balloon contains 10 Liters of helium gas at 145 kpa. What is the volume when the balloon rises to an altitude where the pressure is only 0.55 atm? (Assume that the temperature remains constant.) 2. If a sample of gas occupies 15.3 Liters at 25 Celsius, what will be its volume at 125 Celsius if the pressure does not change? 3. The gas left in a used rigid aerosol can is at a pressure of 798 mm Hg at 35 Celsius. If this can is thrown onto a fire, what is the pressure of the gas, in kpa, when its temperature reaches 1958 Celsius? 4. Exactly 100 Liters of air at 70 Celsius is warmed to 130 Celsius. What is the new volume if the pressure remains constant? 5. A sample of gas occupies 1350 milliliters at a pressure of 5 atm. The gas is allowed to expand to 760 milliliters while holding temperature constant. What is the new pressure of the gas, in mm Hg? Score: 2

3 Objective 2: Apply the combined gas law to problems involving pressure, temperature and volume. 1. A gas at 98 kpa and 70 Celsius occupies a container with an initial volume of 20 Liters. By changing the volume, the pressure of the gas increases to 1.5 atm as the temperature is raised to 120 Celsius. What is the new volume? 2. A 20 Liter air sample at a temperature of 178 Celsius has a pressure of 3.75 atmospheres. What will be the new pressure if the temperature is raised to 40 Celsius and the volume expands to 50 Liters? 3. A given mass of air has a volume of 4 Liters at 760 mm Hg at a temperature of 15 Celsius. What will the new temperature be (in Celsius) if the gas is allowed to expand to 15 Liters and the pressure drops to 0.75 atmospheres? 4. A gas was collected over water, and the following data was obtained: Total pressure of both gases in container = 1.9 atm; temperature of water = 28 C; volume of gas = 25 ml. Calculate the volume of the DRY gas at STP conditions. 5. A gas was collected over water, and the following data was obtained: Atmospheric pressure = 795 mm Hg; volume of gas = 150 ml; temperature of the water = 25 C. Calculate the volume of the DRY gas at STP conditions Score: 3

4 Objective 3: Apply the ideal gas law to problems involving pressure, volume, temperature and the number of moles. 1. You fill a rigid steel cylinder that has a volume of 250 milliliters with chlorine gas to a final pressure of 15 atmospheres at 25 Celsius. How many grams of chlorine gas does the cylinder contain? 2. What pressure, in kpa, will be exerted by 50 grams of helium gas at 50 Celsius if it is contained in a 1.5 Liter vessel? 3. What volume will 10 grams of neon gas occupy at 45 Celsius and a pressure of 1.3 atm? 4. What is the temperature, in Celsius, of 20 grams of oxygen gas, exerting a pressure of 4.2 atm contained in a 1750 ml vessel? 5. How many moles of a gas are contained in a 150 ml vessel, exerting a pressure of 119 kpa, at a temperature of 30 Celsius degrees? Score: 4

5 Objective 4: Apply Graham s Law to solve problems involving rates of effusion of gases. 1. Place the following gases in order of increasing average molecular speed at 300 Kelvin. Carbon dioxide, sulfur pentafluoride, bromine gas, hydrogen chloride. Write their formulas in your answer. 2. Calculate the ratio of the velocity of neon atoms to the velocity of chlorine molecules at the same temperature. 3. A certain gas effuses 3.5 times as fast as oxygen gas. What is the molar mass of the gas? 4. During an effusion experiment, it took 90 seconds for a certain number of moles of an unknown gas to pass through a tiny hole. Under the same conditions, the same number of moles of oxygen gas passed through the hole in 50 seconds. What is the molar mass of the unknown gas? 5. A certain gas, A, traveled 30 cm in a gas diffusion tube in the same time that a different gas, B, traveled 60 cm. Calculate the experimental ratio of their velocities. Which gas is the lighter gas? Score: 5

6 Objective 5: Applications of the Ideal Gas Equation (Honors Only) 1. Calculate the density of sulfur tetrafluoride gas at 978 torr and 58 C. 2. Calculate the molar mass of a vapor that has a density of g/l at 102 C and 798 torr. 3. The molar mass of a volatile substance was determined by the Dumas-bulb method. The unknown vapor had a mass of grams; the volume of the bulb was 1550 cm 3, pressure 700 torr, and temperature of 80 C. Calculate the molar mass of the unknown vapor. 4. Calculate the density of dinitrogen pentoxide gas at atm and 140 C. 5. Calculate the molar mass of a gas if 25 grams occupies a volume of 7500 ml at 165 kpa and 145 C. Score: 6

7 Objective 6: The Gas Laws and Stoichiometry 1. Aluminum metal reacts with oxygen gas to form solid aluminum oxide. a. Write the balanced equation. b. If an enclosure of Liters has a partial pressure of oxygen of 5.5 x 10-3 torr at 47 C, what mass of aluminum will react? c. In the same reaction, how many grams of aluminum oxide form, assuming a 90% yield? 2. Consider the complete combustion of liquid hexane, C 6H 14. a. Write the balanced equation, (each product is gaseous). b. What volume of oxygen gas, measured at 50 C and atm, is needed to react with 30 grams of hexane? c. What volume of each product is produced under the same conditions? Score: 7

8 Objective 7: Distributed Practice Directions: Solve the following problems. Show all work, including units within the problem. 1. What is the density of chlorine gas at STP? 2. Hydrogen gas reacts with ethene (C 2H 4) to form ethane (C 2H 6) in a combination reaction. a. Write the balanced equation: b. What is the limiting reagent when 50 grams of C 2H 4 reacts with 4.5 grams of hydrogen gas, and how much C 2H 6 forms? c. How much excess reagent is left over at the end of this reaction? 3. When calcium metal reacts with hydrochloric acid, it generates 100 kj of heat energy. a. Write the balanced thermochemical equation. b. Draw an enthalpy diagram. c. How many grams of calcium must react to liberate 1500 kj of heat energy? Score: 8

A. What are the three states of matter chemists work with?

A. What are the three states of matter chemists work with? Chapter 10 and 12 The Behavior of Gases Chapter 10 The States of Matter A. What are the three states of matter chemists work with? Section 10.1 Pg 267 B. We will explain the behavior of gases using the

More information

2. Pressure Conversions (Add to your Conversion Sheet

2. Pressure Conversions (Add to your Conversion Sheet The Gas Law Reference Sheet 1. The Kelvin Temperature Scale Degrees Kelvin = C + 273 Convert to K 1) 27 C 2) 0. C 3) 48 C 4) 16 C 5) 106 C 2. Pressure Conversions (Add to your Conversion Sheet 1 mm Hg

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

4.) There are no forces of attraction or repulsion between gas particles. This means that

4.) There are no forces of attraction or repulsion between gas particles. This means that KINETIC MOLECULAR (K-M) THEORY OF MATTER NOTES - based on the idea that particles of matter are always in motion - assumptions of the K-M Theory 1.) Gases consist of large numbers of tiny particles that

More information

CHM 111 Unit 5 Sample Questions

CHM 111 Unit 5 Sample Questions Name: Class: Date: As you work these problems, consider and explain: A. What type of question is it? B. How do you know what type of question it is? C. What information are you looking for? D. What information

More information

Gas Laws Chapter 14. Complete the following pressure conversion. Be sure to show how units cancel.

Gas Laws Chapter 14. Complete the following pressure conversion. Be sure to show how units cancel. Gas Laws Chapter 14 Complete the following pressure conversion. Be sure to show how units cancel. 1 atm = 760 mm Hg = 760 torr = 101.3 kpa = 14.7 psi = 1.013 bar 1. The air pressure for a certain tire

More information

Date: Period: Gas Laws Worksheet #1 - Boyle s, Charles, Gay-Lussac s, and Combined Gas Law

Date: Period: Gas Laws Worksheet #1 - Boyle s, Charles, Gay-Lussac s, and Combined Gas Law Name: Date: Period: Gas Laws Worksheet #1 - Boyle s, Charles, Gay-Lussac s, and Combined Gas Law Boyle s Law: V1P1 = V2P2 1. A gas sample contained in a cylinder equipped with a moveable piston occupied

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases Chemistry HP Unit 6 Gases Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases 6-1. Define pressure using a mathematical equation. 6-2. Perform calculations involving pressure,

More information

Boyle s Law Practice

Boyle s Law Practice Boyle s Law Practice Boyle s Law is an indirect relationship. Most of these problems can be done in your head without showing your work. 1. Herman has 30.0 L of helium gas trapped in a cylinder by a piston.

More information

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

More information

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. Atmospheric pressure is 760 mm Hg. 2. The SI unit of pressure is

More information

NOTES: Behavior of Gases

NOTES: Behavior of Gases NOTES: Behavior of Gases Properties of Gases Gases have weight Gases take up space Gases exert pressure Gases fill their containers Gases are mostly empty space The molecules in a gas are separate, very

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Unit 8: Kinetic Theory Homework Packet (90 points)

Unit 8: Kinetic Theory Homework Packet (90 points) Name: Key Period: By the end of Unit 8, you should be able to: Kinetic Theory Chapter 13-14 4. Define kinetic theory of gases including collisions 5. Define pressure, including atmospheric pressure, vapor

More information

Funsheet [WHAT IS PRESSURE AND TEMPERATURE] Gu 2015

Funsheet [WHAT IS PRESSURE AND TEMPERATURE] Gu 2015 Funsheet 7.0 7.1 [WHAT IS PRESSURE AND TEMPERATURE] Gu 2015 1. Convert the following pressures. a) 101 kpa =? atm b) 55 Torr =? psi c) 60. mmhg =? bar d) 45 Torr =? kpa e) 5 psi =? atm f) 0.0056 atm =?

More information

UNIT 10 - GASES. Notes & Worksheets - Honors

UNIT 10 - GASES. Notes & Worksheets - Honors Ideal Gas Equation 1 WKSHT 1.) What is the pressure exerted by 2.0 moles of an ideal gas when it occupies a volume of 12.0 L at 373 K? 2.) A flashbulb of volume 2.6 cm 3 contains O 2 gas at a pressure

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

Gas Law Worksheets - WS: Boyle s and Charles Law

Gas Law Worksheets - WS: Boyle s and Charles Law Gas Law Worksheets - WS: Boyle s and Charles Law Boyle s Law states that the volume of a gas varies inversely with its pressure if temperature is held constant. (If one goes up the, other goes down.) We

More information

Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003

Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003 Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003 From textbook: 7-33 odd, 37-45 odd, 55, 59, 61 1. Which gaseous molecules (choose one species) effuse slowest? A. SO 2 (g) B. Ar(g) C. NO(g) D. Ne(g) E.

More information

Honors Chemistry Unit 7 Gas Laws Notes

Honors Chemistry Unit 7 Gas Laws Notes Honors Chemistry Unit 7 Gas Laws Notes Kinetic Molecular Theory 1. List the five assumptions: Assumption Description Extra Info 1 Basically means: the particles themselves have compared to the space between

More information

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT: AP Chemistry Ms. Ye Name Date Block Kinetic Molecular Theory Explains properties of gases, liquids, and solids in terms of energy using an ideal gas, an imaginary which fits all the assumptions of kinetic

More information

Ch. 14 The Behavior of Gases

Ch. 14 The Behavior of Gases Ch. 14 The Behavior of Gases 14.1 PROPERTIES OF GASES Compressibility Compressibility: a measure of how much the volume of matter decreases under pressure Gases are easily compressed because of the spaces

More information

Unit 8: Gases and States of Matter

Unit 8: Gases and States of Matter Unit 8: Gases and States of Matter Gases Particles that have no definite shape or volume. They adapt to the shape and volume of their container. Ideal gases are imaginary gases that comply with all the

More information

Behavior of Gases Chapter 12 Assignment & Problem Set

Behavior of Gases Chapter 12 Assignment & Problem Set Behavior of Gases Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Behavior of Gases 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure = Chapter 13 Gas Laws Chapter 13 Gases and Pressure Pressure and Force Pressure is the force per unit area on a surface. Pressure = Force Area Chapter 13 Gases and Pressure Gases in the Atmosphere The atmosphere

More information

2. Calculate the ratio of diffusion rates for carbon monoxide (CO) and carbon dioxide (CO2). υa = MB = 44 = 1.25

2. Calculate the ratio of diffusion rates for carbon monoxide (CO) and carbon dioxide (CO2). υa = MB = 44 = 1.25 Gas laws worksheet (2-08) (modified 3/17) Answer key Graham s Law 1. Calculate the ratio of effusion rates for nitrogen (N2) and neon (Ne). υa = MB = 20 = 0.845 υb MA 28 2. Calculate the ratio of diffusion

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot?

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot? Name Period HW 1 Worksheet (Goals 1-4) - Kinetic Molecular Theory 1. Describe how gases, liquids, and solids compare using the following table. Solids Liquids Gases Volume (definite or indefinite) Molecular

More information

Chapter 5. Nov 6 1:02 PM

Chapter 5. Nov 6 1:02 PM Chapter 5 Nov 6 1:02 PM Expand to fill their containers Fluid motion (they flow) Have low densities (1/1000 the density of equivalent liquids or solids) Compressible Can Effuse and Diffuse Effuse: The

More information

Name: Chapter 13: Gases

Name: Chapter 13: Gases Name: Chapter 13: Gases Gases and gas behavior is one of the most important and most fun things to learn during your year in chemistry. Here are all of the gas notes and worksheets in two packets. We will

More information

Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses.

Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses. Chemistry Ms. Ye Name Date Block Graham s Law of Diffusion- Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses. In other words, gas molecules

More information

Example 5.1 Converting between Pressure Units

Example 5.1 Converting between Pressure Units Example 5.1 Converting between Pressure Units For Practice 5.1 Your local weather report announces that the barometric pressure is 30.44 in Hg. Convert this pressure to psi. For More Practice 5.1 Convert

More information

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] Chapter 10 Gases We have talked a little about gases in Chapter 3 and we dealt briefly with them in our stoichiometric calculations in

More information

Chapter 12. The Gaseous State of Matter

Chapter 12. The Gaseous State of Matter Chapter 12 The Gaseous State of Matter The air in a hot air balloon expands When it is heated. Some of the air escapes from the top of the balloon, lowering the air density inside the balloon, making the

More information

PSI Chemistry: Gases Multiple Choice Review

PSI Chemistry: Gases Multiple Choice Review PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kinetic-molecular theory, particles of matterare in constant motion (A) have different shapes (B) have different

More information

Unit 9: Gas Laws REGENTS CHEMISTRY

Unit 9: Gas Laws REGENTS CHEMISTRY Name: Unit 9: Gas Laws REGENTS CHEMISTRY 1 Name: Unit 9: Gas Laws The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Expand to fill their containers, are highly compressible, have extremely low densities.

Expand to fill their containers, are highly compressible, have extremely low densities. Chem150 week6 Handout 1 Gases Characteristics of Gases: Unlike liquids and solids, they Expand to fill their containers, are highly compressible, have extremely low densities. Pressure is the amount of

More information

Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions

Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions Chapter 13 Gases Pressure/Temperature Conversions Convert the following: 1. 3.50 atm = kpa 2. 123 atm = mmhg 3. 970.0 mmhg = torr 4. 870.0 torr = kpa 5. 250.0 kpa = atm 6. 205.0 mmhg = kpa 7. 12.4 atm

More information

Unit 11 Gas Laws Chapters 13 of your textbook

Unit 11 Gas Laws Chapters 13 of your textbook Unit 11 Gas Laws Chapters 13 of your textbook Early Booklet E.C.: + 2 Unit 11 Hwk. Pts.: / 19 Unit 11 Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets for Unit 11 1.1 I can

More information

Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four

Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four Kinetic Molecular Theory Gases Gas particles are so small that their individual volume can be considered to be negligible Gas particles are in constant motion and the collisions of the particles with the

More information

Chemistry Chapter 11 Test Review

Chemistry Chapter 11 Test Review Chemistry Chapter 11 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Pressure is the force per unit a. volume. c. length. b. surface area.

More information

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg. Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

More information

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases.

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Chapter 8 Gases Practice Problems Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Summary: In a gas, particles are so far

More information

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

More information

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c).

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c). Section 8: Gases The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 8.01 Simple Gas Laws Chemistry (9)(A) 8.02 Ideal Gas Law Chemistry

More information

Chemistry Honors - Gases

Chemistry Honors - Gases Name: Class: Date: ID: A Chemistry Honors - Gases Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Why does a can collapse when a vacuum pump removes air

More information

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day!

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day! Name Unit 9 Notes: Gas Laws Period Skills: 1. Gases and Entropy 2. Distinguish between Ideal and Real gases 3. Understand KMT and Avogadro s Law 4. Identify and Solve Boyle s Law Problems 5. Identify and

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

temperature and pressure unchanging

temperature and pressure unchanging Gas Laws Review I. Variables Used to Describe a Gas A. Pressure (P) kpa, atm, mmhg (torr) -Pressure=force exerted per unit area (force/area) -Generated by collisions within container walls (more collisions=more

More information

CHEMISTRY - CLUTCH CH.5 - GASES.

CHEMISTRY - CLUTCH CH.5 - GASES. !! www.clutchprep.com CONCEPT: UNITS OF PRESSURE Pressure is defined as the force exerted per unit of surface area. Pressure = Force Area The SI unit for Pressure is the, which has the units of. The SI

More information

EXERCISES Gas Laws. Chooise the correct answer

EXERCISES Gas Laws. Chooise the correct answer Alícia Rosa EXERCISES Gas Laws Chooise the correct answer 1 Atmospheric pressure at an altitude of 10 km is 2.1x10 2 mm. What is the pressure in atmospheres at 10 km? 1.6x10 5 atm 3.6 atm 0.28 atm 2 Atmospheric

More information

Gases. Name: Class: Date: Matching

Gases. Name: Class: Date: Matching Name: Class: Date: Gases Matching Match each item with the correct statement below. a. Boyle's law d. Graham's law b. Charles's law e. Gay-Lussac's law c. Dalton's law f. ideal gas law 1. For a given mass

More information

General Properties of Gases

General Properties of Gases GASES Chapter 13 Importance of Gases Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide,, NaN 3. 2 NaN 3 ---> > 2 Na + 3 N 2 THREE STATES OF MATTER General

More information

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet Name: Unit 10- Gas Laws Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 5 Kinetic Molecular Theory Notes IC 1 6 8 Kinetic Molecular Theory and Pressure Worksheet IC 2 9 10 Gas Law

More information

Chapter 5 TEST: Gases

Chapter 5 TEST: Gases Chapter 5 TEST: Gases 1) Gases generally have A) low density B) high density C) closely packed particles D) no increase in volume when temperature is increased E) no decrease in volume when pressure is

More information

GAS LAW WORKSHEET 1 KEY

GAS LAW WORKSHEET 1 KEY 377 GAS LAW WORKSHEET 1 KEY 1. A sample of oxygen gas occupies a volume of 436. ml at 1.0 atm. If the temperature is held constant, what would the pressure of this gas be when the gas is compressed to

More information

PETER STARODUB - PALOS VERDES PENINSULA HIGH SCHOOL

PETER STARODUB - PALOS VERDES PENINSULA HIGH SCHOOL STARODUB CHEM. 2AP UNIT 2-2 CH. 5: Gases 1 UNIT 2-2: CH. 5 GASES READ P. 179 214 ASSIGNMENTS: #1 P. 7 #1-12 Pressure Problems #2 P. 14 #1-17 Gas Law Problems #3 P. 17 #1-12 Gas Density, Molar Mass, Stoichiometry

More information

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes Name Period CRHS Academic Chemistry Unit 11 Gas Laws Notes Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

More information

Unit 10: Gas Laws. Monday Tuesday Wednesday Thursday Friday. 10 Review for Cumulative Retest. 17 Chem Think Gas Laws Tutorial- Computer Lab-

Unit 10: Gas Laws. Monday Tuesday Wednesday Thursday Friday. 10 Review for Cumulative Retest. 17 Chem Think Gas Laws Tutorial- Computer Lab- Unit 10: Gas Laws Name: Monday Tuesday Wednesday Thursday Friday February 8 Stoichiometry Test Review 9 Stoichiometry Test 10 Review for Cumulative Retest 11 Cumulative Re-Test 12 Pressure & Kinetic Theory

More information

AP TOPIC 6: Gases. Revised August General properties and kinetic theory

AP TOPIC 6: Gases. Revised August General properties and kinetic theory AP OPIC 6: Gases General properties and kinetic theory Gases are made up of particles that have (relatively) large amounts of energy. A gas has no definite shape or volume and will expand to fill as much

More information

Kinetic-Molecular Theory of Matter

Kinetic-Molecular Theory of Matter Gases Properties of Gases Gas Pressure Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D. 1 2 Gases What gases are important for each of the following: O 2, CO 2

More information

CHAPTER 14. The Behavior of Gases Properties of Gases. Factors Affecting Gas Pressure

CHAPTER 14. The Behavior of Gases Properties of Gases. Factors Affecting Gas Pressure CHAPTER 14 The Behavior of Gases 14.1 Properties of Gases Compressibility:the volume of matter decreasing under pressure. Gases are easily compressed due to the large amount of space between gas particles.

More information

Gas Laws Packet Ideal Gas Law Worksheet PV = nrt

Gas Laws Packet Ideal Gas Law Worksheet PV = nrt Gas Laws Packet Ideal Gas Law Worksheet PV = nrt Use the ideal gas law, PV-nRT, and the universal gas constant R = 0.0821 L*atm to solve the following problems: K*mol If pressure is needed in kpa then

More information

Honors Chemistry - Unit 11

Honors Chemistry - Unit 11 Honors Chemistry - Unit 11 Chapters 10 & 11 Gases, Gas Laws, and Gas Stoichiometry Vocabulary Due: UT Quest(s): VOCABULARY: Quizzes: Test Date: Ideal gas standard atmospheric pressure standard temperature

More information

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very Properties of Gases Gases have Gases Gases exert Gases fill their containers Behavior of Gases Gases are mostly The molecules in a gas are separate, very small and very Kinetic Theory of Matter: Gas molecules

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

Accelerated Chemistry Study Guide Chapter 13: Gases

Accelerated Chemistry Study Guide Chapter 13: Gases Accelerated Chemistry Study Guide Chapter 13: Gases Terms, definitions, topics Diffusion Kinetic Molecular Theory Atmospheric pressure Barometer Manometer STP Absolute zero Page 1 of 42 Molar volume Partial

More information

Chemistry 1B Chapter 10 Worksheet - Daley. Name

Chemistry 1B Chapter 10 Worksheet - Daley. Name Name 1) The National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. The units the NWS uses for atmospheric pressure are inches of mercury. A barometric

More information

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure

More information

Unit 14 Gas Laws Funsheets

Unit 14 Gas Laws Funsheets Name: Period: Unit 14 Gas Laws Funsheets Part A: Vocabulary and Concepts- Answer the following questions. Refer to your notes and the PowerPoint for help. 1. List 5 different common uses for gases: a.

More information

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 11 Gases STUDY GUIDE Accelerated Chemistry SCANTRON Name /74 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements

More information

Gases. Unit 10. How do gases behave?

Gases. Unit 10. How do gases behave? Gases Unit 10 How do gases behave? Gases are perhaps the most mysterious of all of the phases of matter. For the most part gases are invisible to us, and it was once believed that in the air there is no

More information

2. Convert these pressures to atm: 1 atm! Or to mm Hg, 760 mm Hg! 760 mm Hg! 1 atm. 800 mm Hg 380 mm Hg 0.75 atm 0.25 atm

2. Convert these pressures to atm: 1 atm! Or to mm Hg, 760 mm Hg! 760 mm Hg! 1 atm. 800 mm Hg 380 mm Hg 0.75 atm 0.25 atm Chemistry L 3, Gas laws: Chapter 12: Name! Page 1 pg. 326-355 and Notes: Keep your Forces handout. We will not use kilopascals for pressure on worksheets or tests. Show your work on all worksheets!! Temperature

More information

Practice Packet Unit 8: Gases

Practice Packet Unit 8: Gases Regents Chemistry: Mr. Palermo Practice Packet Unit 8: Gases Vocabulary: Lesson 1: Lesson 2: Lesson 3: Study Guide: 1 Vocabulary For each word, provide a short but specific definition from YOUR OWN BRAIN!

More information

Practice Packet Unit 8: Gases

Practice Packet Unit 8: Gases Name: Regents Chemistry: Practice Packet Unit 8: Gases www.chempride.weebly.com Vocabulary: Absolute Zero: Avogadro s Hypothesis: (Normal) Boiling Point: Direct Relationship: Evaporating: Gas: Ideal Gas:

More information

Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10)

Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10) Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10) This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions outlined below. DO

More information

SCH3U7 Quantitative Chemistry

SCH3U7 Quantitative Chemistry SCH3U7 Quantitative Chemistry So far, we have looked at solids and liquids (solutions) Today we will look at gases and the laws that govern their behaviour in chemical reactions 4 Factors Affecting Gases

More information

Ideal Gas Law Worksheet PV = nrt

Ideal Gas Law Worksheet PV = nrt ame: Hour: Date: Ideal Gas Law Worksheet PV = nrt Use the ideal gas law, PV= nrt, and the universal gas constant R = 0.0821 L*atm to solve the following problems: K*mol P = pressure (in atm) V = volume

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

More information

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2 Chapter 6: Gases 6.1 Measurements on Gases MH5, Chapter 5.1 Let s look at a certain amount of gas, i.e. trapped inside a balloon. To completely describe the state of this gas one has to specify the following

More information

PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PROPERTIES OF GASES. [MH5; Ch 5, (only)] PROPERTIES OF GASES [MH5; Ch 5, 5.1-5.5 (only)] FEATURES OF A GAS Molecules in a gas are a long way apart (under normal conditions). Molecules in a gas are in rapid motion in all directions. The forces

More information

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas. Unit 4 THE GAS STATE CHAPTER KEY TERMS HOME WORK 9. Kinetic Molecular Theory States of Matter Solid, Liquid, gas Page 4 # to 4 9. Boyles Law P α /V PV = Constant P V = P V Pressure Atmospheric Pressure

More information

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them. Chapter 5 Gases Gas Gases are composed of particles that are moving around very fast in their container(s). These particles moves in straight lines until they collides with either the container wall or

More information

substitution Rearrangement solving for n/v Convert n to MASS (m) by multiplying BOTH sides by molar mass (M) d = m/v

substitution Rearrangement solving for n/v Convert n to MASS (m) by multiplying BOTH sides by molar mass (M) d = m/v 3.8.12 A 2.07 L cylinder contains 2.88 mol of Helium gas at 22 C. What the pressure in atmospheres of the gas in the cylinder? How could we find the density of this gas? HW solve the density of the above

More information

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn AP Chemistry Chapter 5 Sections 5. 5.9 Note Organizer Pressure, The Gas Laws of Boyle, Charles, and Avogadro, The Ideal Gas Law, Gas Stoichiometry, Dalton s Law of Partial Pressure, The Kinetic olecular

More information

Chapter 10. Physical Characteristics of Gases

Chapter 10. Physical Characteristics of Gases Chapter 10 Physical Characteristics of Gases Kinetic Molecular Theory An understanding of the behavior of atoms that make up matter Ideal gas: an imaginary gas that perfectly fits all assumptions of the

More information

Temperature Temperature

Temperature Temperature Temperature Temperature is a measure of how hot or cold an object is compared to another object. indicates that heat flows from the object with a higher temperature to the object with a lower temperature.

More information

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops C h e m i s t r y 1 2 C h a p t e r 11 G a s e s P a g e 1 Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops Gas Properties: Gases have high kinetic energy low

More information

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101.

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101. Simple Gas Laws To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and 101.3 kpa If assuming 1 mol, V = 22.4L SATP: 25 C (298 K) and 101.3 kpa If assuming 1 mol, V =

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

More information

Chapter 11. Recall: States of Matter. Properties of Gases. Gases

Chapter 11. Recall: States of Matter. Properties of Gases. Gases Chapter 11 Gases Recall: States of Matter Solids and Liquids: are closely related because in each case the particles are interacting with each other Gases: Properties of Gases Gases can be compressed Gases

More information

Problem Solving. Gas Laws

Problem Solving. Gas Laws Skills Worksheet Problem Solving Gas Laws Chemists found that there were relationships among temperature, volume, pressure, and quantity of a gas that could be described mathematically. This chapter deals

More information

Multiple Choice (40%)

Multiple Choice (40%) AP Chemistry Test (Chapter 5) Please do not write on this test thank you! Multiple Choice (40%) 1) A sealed rigid container is filled with three ideal gases: A, B and C. The partial pressure of each gas

More information

States of Matter. Q 7. Calculate the average of kinetic energy, in joules of the molecules in 8.0 g of methane at 27 o C. (IIT JEE Marks)

States of Matter. Q 7. Calculate the average of kinetic energy, in joules of the molecules in 8.0 g of methane at 27 o C. (IIT JEE Marks) Q 1. States of Matter Calculate density of NH 3 at 30 o C and 5 atm pressure Q 2. (IIT JEE 1978 3 Marks) 3.7 g of a gas at 25 o C occupied the same volume as 0.184g of hydrogen at 17 o C and at the same

More information

Gases. Chapter 5: Gas Laws Demonstration. September 10, Chapter 5 Gasses.notebook. Dec 18 10:23 AM. Jan 1 4:11 PM. Crushing 55 gallon drum

Gases. Chapter 5: Gas Laws Demonstration. September 10, Chapter 5 Gasses.notebook. Dec 18 10:23 AM. Jan 1 4:11 PM. Crushing 55 gallon drum Chapter 5: Gases Dec 18 10:23 AM Gas Laws Demonstration Crushing 55 gallon drum Egg in a bottle Student in a bag Boiling Water Charles gas Law Water in a flask Ballon in a bottle Jan 1 4:11 PM 1 5.1 Pressure

More information

Name: Period: Date: CHAPTER 10 NOTES 10.3: The Gas Laws

Name: Period: Date: CHAPTER 10 NOTES 10.3: The Gas Laws Name: Period: Date: 1. Define gas laws: CHAPTER 10 NOTES 10.3: The Gas Laws 2. What units do the following measurements need to be in to describe gases? Boyle s Law a. Temperature b. Volume c. Pressure

More information

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1 Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage

More information