a. Sketch the path of the diver by plotting the vertex, y-intercept, and additional points as needed.

Size: px
Start display at page:

Download "a. Sketch the path of the diver by plotting the vertex, y-intercept, and additional points as needed."

Transcription

1 Algebra Applications of quadratic functions Name: 1. The path of a diver off a springboard is modeled by the function h( x) ( x 3) 3, where h is the height of the diver and x is the distance of the diver from the board. a. Sketch the path of the diver by plotting the vertex, y-intercept, and additional points as needed. b. What is the height of the board? c. How far is the diver from the board when they reach maximum height? d. What is the maximum height of the diver? e. Estimate how far the diver travels horizontally before entering the water.. The path of a ski jumper after takeoff can be modeled by the function y x( x 35), where x is the horizontal distance (in feet) and y is the height (in feet). a. Sketch the path of the ski jumper by plotting the vertex, x-intercepts, and additional points as needed. Be sure to label the axes.

2 b. How far does the ski jumper travel before landing? c. How far does the ski jumper travel before reaching maximum height? d. What is the ski jumper s maximum height? 3. A rocket is launched from the ground. The path of the rocket is given by the equation h( t) 16t 18t, where h is the height of the rocket in feet and t is the time in seconds. a. Sketch the path of the rocket by plotting the vertex, x-intercepts, and additional points as needed. Be sure to label the axes. b. When does the rocket reach its maximum height? c. What is the maximum height of the rocket? d. How long does it take the rocket to hit the ground?

3 4. The height of a flare is a function of the elapsed time since it was fired. An expression for its height is h( x) 5( t 10) 501, where h is the height in meters and t is the time in seconds. a. When did the flare reach its maximum height? b. What was the maximum height of the flare? c. From what height was the flare launched? 5. The path of a table-tennis ball after being hit and hitting the surface of the table can be modeled by the function h( t) 4.9 t( t 0.4), where h is the height in meters above the table and t is the time in seconds. a. After how long does the ball hit the table? b. How long does it take the ball to reach maximum height? d. What is the ball s maximum height? 6. A ball is thrown from the top of a hill to the ground below. The height of the ball is given by the function h( t) 16t 96t 11, where h is the height of the ball in feet and t is the time in seconds. a. When does the ball reach its maximum height? b. What is the maximum height of the ball? c. What is the height of the hill? d. How long does it take the ball to hit the ground?

4 7. The profit earned by a small theatre company for one of its productions is given by the function p( x) 0.5( x 0) 150, where p is the profit in thousands of dollars and x is the ticket price in dollars. a. At what price should tickets be sold to maximize profit? b. What is the maximum possible profit? c. If no tickets are sold, will the theatre company make a profit? Explain your answer. 8. The path of the opening of a tunnel can be modeled by the function y 0.06 x( x 46), where x is the horizontal distance (in feet) from the left edge of the opening and y is the height (in feet) above the road. a. What is the width of the tunnel opening? b. What is the maximum height of the tunnel opening? 9. The path that a motocross dirt bike rider follows during a jump is given by y 0.4x 4x 9.6, where x is the horizontal distance (in feet) from the edge of the ramp and y is the height (in feet). a. How far does the rider travel horizontally before reaching maximum height? b. What is the maximum height of the rider during the jump? c. What is the height of the edge of the ramp? d. How far from the ramp does the rider travel before landing on the ground?

5 Answers: 1. a. The vertex is (3, 3). The y-intercept is (0, 14) and its matching point is (6, 14). b. The height of the board is 14 feet. c. The diver is 3 feet from the board at maximum height. d. The maximum height of the diver is 3 feet. e. The diver enters the water just under 8 feet from the board.. a. The vertex is (17.5, 11.05). The x-intercepts are (0, 0) and (35, 0). b. The ski jumper travels 35 feet before landing. c. The ski jumper travels 17.5 feet to reach maximum height. d. The maximum height is feet. 3. a. The vertex is (4, 56). The x-intercepts are (0, 0) and (8, 0). b. The rocket reaches its maximum height at seconds. c. The maximum height of the rocket is 56 feet. d. It takes 8 seconds for the rocket to hit the ground. 4. a. The flare reaches its maximum height at 10 seconds. b. The maximum height is 501 meters. c. The flare was launched from a height of 1 meter. 5. a. The ball hits the table at 0.4 seconds. b. The ball takes 0.1 seconds to reach maximum height. c. The maximum height is about 0. meters. 6. a. The ball reaches its maximum height at 3 seconds. b. The maximum height of the ball is 56 feet. c. The height of the hill is 11 feet. d. It takes the ball 7 seconds to hit the ground. 7. a. The tickets should be sold at a price of $0 each. b. The maximum profit is $150,000. c. If no tickets are sold the theatre will suffer a loss of $50, a. The width of the tunnel opening is 46 feet. b. The maximum height of the tunnel opening is feet. 9. a. The rider travels 5 feet horizontally before reaching maximum height. b. The maximum height of the rider is 19.6 feet. c. The height of the edge of the ramp is 9.6 feet. d. The rider travels 1 feet from the ramp before landing on the ground.

Name: Analyzing Graphs of Quadratic Functions 1. Use the graph at the right to fill in the blanks for each point. a) (, 24) represents Point. b) (12, ) represents Point. c) (, ) represents Point F. d)

More information

word problems.notebook May 27, 2016

word problems.notebook May 27, 2016 Word Problems: When solving word problems you can use vertex form, factored form or standard form to create an algebraic model of the situation. Use the form that is most helpful for the context of the

More information

Quadratic Word Problems

Quadratic Word Problems Quadratic Word Problems Normally, the graph is a maximum ( x 2 /opens down) because of the real life scenarios that create parabolas. The equation of the quadratic will be given. We will only be using

More information

1. A tiger leaps horizontally from a 7.5 meter high rock with a speed of 4.5 m/s. How far from the base of the rock will she land?

1. A tiger leaps horizontally from a 7.5 meter high rock with a speed of 4.5 m/s. How far from the base of the rock will she land? HONORS PHYSICS PROJECTILE MOTION 1. A tiger leaps horizontally from a 7.5 meter high rock with a speed of 4.5 m/s. How far from the base of the rock will she land? 2. A diver running 1.6 m/s dives out

More information

Homework Helpers Sampler

Homework Helpers Sampler Homework Helpers Sampler This sampler includes s for Algebra I, Lessons 1-3. To order a full-year set of s visit >>> http://eurmath.link/homework-helpers Published by the non-profit Great Minds. Copyright

More information

Chapter 7: Quadratics

Chapter 7: Quadratics Chapter 7: Quadratics Notes 7.8 Quadratic Modeling Name: Set up a quadratic equation to model the scenario and use ANY method to solve: Vertex Form to find max/min or symmetry Factoring to find zeros/solutions

More information

Conversion: Feet, Metres, Paces, Chains

Conversion: Feet, Metres, Paces, Chains Conversion: Feet, Metres, Paces, Chains Example: 1 inch = 2.54 cm 1. In our examples: 1 inch = 2.54 cm. To use algebra to find how many inches are in 140 cm: 1. Write the equivalency ratio 2. Write each

More information

Vector Practice Problems

Vector Practice Problems Vector Practice Problems Name: Use the diagram below to answer Questions #1-3. Each square on the diagram represents a 20-meter x 20- meter area. 1. If a person walks from D to H to G to C, then the direction

More information

Practice Exam for Algebra II Module 1

Practice Exam for Algebra II Module 1 Practice Exam for Algebra II Module 1 1. Frank swam 50 laps at the pool at a constant speed of 300 feet per minute. Which of the following describes a varying quantity in this situation? a. The speed Frank

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

QF 7 Quadratic Application Problems Name:

QF 7 Quadratic Application Problems Name: 1. A watermelon is launched out of the window of an office building, and its path can be modeled by the equation y = 4x 2 + 32x + 15, where y is the watermelon s height (in feet) and x is the time it has

More information

Free Fall, Hang Time, and Projectile Motion Worksheet NO WORK NO CREDIT

Free Fall, Hang Time, and Projectile Motion Worksheet NO WORK NO CREDIT Free Fall, Hang Time, and Projectile Motion Worksheet d = d + v t + ½ a t 2 Hang Time: time = time v = v + a t time = 2 time Free Fall These equations can be used to solve for the motion in the x-direction

More information

Graphing Stories Writing Equations

Graphing Stories Writing Equations Exploratory Activity Consider the story: Maya and Earl live at opposite ends of the hallway in their apartment building. Their doors are 50 ft. apart. Each starts at his or her own door and walks at a

More information

Vertex Form Applications

Vertex Form Applications Vertex Form Applications Grade: 11 Subject: Pre- Calculus 11 Unit: Quadratics Driving Question: Bill kicks a football in Tom s direction. The football follows a parabolic path. Tom is unaware that he may

More information

1ACE Exercise 4. Name Date Class

1ACE Exercise 4. Name Date Class 1ACE Exercise 4 Investigation 1 4. A farm wants to add a small rectangular petting zoo for the public. They have a fixed amount of fencing to use for the zoo. This graph shows the lengths and areas of

More information

Projectile Motion applications

Projectile Motion applications Projectile Motion applications 1. A stone is thrown horizontally at a speed of 10.0 m/s from the top of a cliff 78.4 m high. a. How long does it take the stone to reach the bottom of the cliff? b. How

More information

8.5 Training Day Part II

8.5 Training Day Part II 26 8.5 Training Day Part II A Solidify Understanding Task Fernando and Mariah continued training in preparation for the half marathon. For the remaining weeks of training, they each separately kept track

More information

y = X2 4 tarapn earn _ 10. y = X y =.r2 + 2x y = y 3x 2 -I- 12x y = x

y = X2 4 tarapn earn _ 10. y = X y =.r2 + 2x y = y 3x 2 -I- 12x y = x 3. At a swim meet, Janet dives from a diving board, her position above the water is represented by the equation h(t) = 8t 2 12t + 20, where t represents time in seconds and h(t) represents height in feet.

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

RATE OF CHANGE AND INSTANTANEOUS VELOCITY

RATE OF CHANGE AND INSTANTANEOUS VELOCITY RATE OF CHANGE AND INSTANTANEOUS VELOCITY Section 2.2A Calculus AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:34 AM 2.2A: Rates of Change 1 AVERAGE VELOCITY A. Rates of change play a role whenever

More information

Motion in 1 Dimension

Motion in 1 Dimension A.P. Physics 1 LCHS A. Rice Unit 1 Displacement, Velocity, & Acceleration: Motion in 1 Dimension In-Class Example Problems and Lecture Notes 1. Freddy the cat started at the 3 meter position. He then walked

More information

Page 2. Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement

Page 2. Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement Q1.(a) Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement vector scalar (b) A tennis ball is thrown vertically downwards

More information

Assignment 3.2: Projectile Motion

Assignment 3.2: Projectile Motion (Conceptual Questions): 1. What equation would you use to describe the horizontal acceleration of a ball being thrown? 2. Give an example of an object that would have horizontal acceleration? 3. The horizontal

More information

MS Algebra Concept Task Forming Quadratics. Mr. Deyo

MS Algebra Concept Task Forming Quadratics. Mr. Deyo MS Algebra Concept Task Forming Quadratics Mr. Deyo Learning Target By the end of the period, I will identify the parts of a quadratic curve and apply the properties of quadratic curves to solve problems.

More information

Graphing the Quadratic Functions

Graphing the Quadratic Functions Graphing the Quadratic Functions Class Level: 10 th Grade Objectives: Fonksiyonun katsayılarındaki değişimin fonksiyonun grafiği üzerine etkisi bilgi ve iletişim teknolojilerinden yararlanılarak incelenir.

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. THE DISTANCE-TIME RELATIONSHIP Q1. A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between

More information

March 01, Applications of Rt triangle trig ink.notebook. 8.4 Applications of Rt Triangle Trig. Standards

March 01, Applications of Rt triangle trig ink.notebook. 8.4 Applications of Rt Triangle Trig. Standards Lesson Objectives Standards Lesson Notes Lesson Objectives Standards Lesson Notes 8.4 Applications of Rt Triangle Trig After this lesson, you should be able to successfully find and use trigonometric ratios

More information

Parametric equations with projectiles

Parametric equations with projectiles Parametric equations with projectiles The following equations are useful to model the x and y-coordinates of projectile motion launched at an angle θ (in degrees), initial velocity v 0 and acceleration

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds. b. Determine the sprinters velocity after 2 seconds have elapsed.

a. Determine the sprinter's constant acceleration during the first 2 seconds. b. Determine the sprinters velocity after 2 seconds have elapsed. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

Higher Projectile Motion Questions

Higher Projectile Motion Questions Higher Projectile Motion Questions 1. a) Name the two components of motion in projectiles. b) What is the acceleration on Earth for each of these two components. 2. A pencil case is dropped vertically

More information

Projectile Motion. Regardless of its path, a projectile will always follow these rules:

Projectile Motion. Regardless of its path, a projectile will always follow these rules: Projectile Motion What is a projectile? Regardless of its path, a projectile will always follow these rules: 1. A horizontally launched projectile moves both horizontally and vertically and traces out

More information

Mini-Golf Course Description. 1. You must draw your design on a piece of graph paper so that it will cover all four quadrants.

Mini-Golf Course Description. 1. You must draw your design on a piece of graph paper so that it will cover all four quadrants. Algebra 1 Mrs. Blake B256 Mini-Golf Course Description Guidelines for your creation: 1. You must draw your design on a piece of graph paper so that it will cover all four quadrants. 2. On the graph paper

More information

Exercise on Projectile Motion (Unit-III)

Exercise on Projectile Motion (Unit-III) Engineering Mechanics Exercise on Projectile Motion (Unit-III) 1 A projectile is fired with velocity 620 m/s at an angle of 40 with horizontal ground. Find the range, time of flight, maximum height attained

More information

Create a bungee line for an object to allow it the most thrilling, yet SAFE, fall from a height of 3 or more meters.

Create a bungee line for an object to allow it the most thrilling, yet SAFE, fall from a height of 3 or more meters. Student Names:,, OBJECTIVE: Create a bungee line for an object to allow it the most thrilling, yet SAFE, fall from a height of 3 or more meters. Each group gets their own object, a meter stick, and 7 new

More information

Piecewise Functions. Updated: 05/15/10

Piecewise Functions. Updated: 05/15/10 Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 05/15/ Objectives: Students will review linear functions and their properties and be introduced to piecewise

More information

Section 7.6 Linear Programming

Section 7.6 Linear Programming Section 7.6 Linear Programming Objective Functions in Linear Programming We will look at the important application of systems of linear inequalities. Such systems arise in linear programming, a method

More information

1. Scuba diver a scuba diver dives straight down into the water quantities: the depth of the dive the water pressure on the diver

1. Scuba diver a scuba diver dives straight down into the water quantities: the depth of the dive the water pressure on the diver HW - Functions and Rates name in #1-10, several situations are given below. for each, answer the following questions: a) does one quantity depend on another? if so, how? b) if the answer to (a) is yes,

More information

Chapter 2 Two Dimensional Kinematics Homework # 09

Chapter 2 Two Dimensional Kinematics Homework # 09 Homework # 09 Pthagorean Theorem Projectile Motion Equations a 2 +b 2 =c 2 Trigonometric Definitions cos = sin = tan = a h o h o a v =v o v =v o + gt =v o t = o + v o t +½gt 2 v 2 = v 2 o + 2g( - o ) v

More information

4-3 Rate of Change and Slope. Warm Up Lesson Presentation. Lesson Quiz

4-3 Rate of Change and Slope. Warm Up Lesson Presentation. Lesson Quiz 4-3 Rate of Change and Slope Warm Up Lesson Presentation Lesson Quiz Holt Algebra McDougal 1 Algebra 1 Warm Up 1. Find the x- and y-intercepts of 2x 5y = 20. x-int.: 10; y-int.: 4 Describe the correlation

More information

Solving Quadratic Equations (FAL)

Solving Quadratic Equations (FAL) Objective: Students will be able to (SWBAT) solve quadratic equations with real coefficient that have complex solutions, in order to (IOT) make sense of a real life situation and interpret the results

More information

1) Solve for x. Round answers to the nearest tenth. (1 mark each = 2 marks)

1) Solve for x. Round answers to the nearest tenth. (1 mark each = 2 marks) WorkPlace Math 20 Chapter 1 Review Name /60 1) Solve for x. Round answers to the nearest tenth. (1 mark each = 2 marks) 3 x 4.3 2 a) = b) = 0 8 x 2) Calculate the slope. Express our answers as a fraction

More information

Projectiles Shot up at an Angle

Projectiles Shot up at an Angle Projectile Motion Notes: continued Projectiles Shot up at an Angle Think about a cannonball shot up at an angle, or a football punt kicked into the air, or a pop-fly thrown into the air. When a projectile

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

4.8 Applications of Polynomials

4.8 Applications of Polynomials 4.8 Applications of Polynomials The last thing we want to do with polynomials is, of course, apply them to real situations. There are a variety of different applications of polynomials that we can look

More information

Draw a graph of speed against time on the grid provided.

Draw a graph of speed against time on the grid provided. 1. A car accelerates from rest to a speed of 26 m s 1. The table shows how the speed of the car varies over the first 30 seconds of motion. time/ s 0 5.0 10.0 15.0 20.0 25.0 30.0 speed/ m s 1 0 16.5 22.5

More information

Student Worksheet for 1-D Kinematics

Student Worksheet for 1-D Kinematics Advanced Physics 1-D Kinematics Student Worksheet for 1-D Kinematics After you ve worked through the sample problems in the videos, you can work out the problems below to practice doing this yourself.

More information

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 2. A car is travelling at a constant speed of 26.0 m/s down a slope which is 12.0 to the horizontal. What

More information

Project 2 Evaluation 32 Second Year Algebra 1 (MTHH )

Project 2 Evaluation 32 Second Year Algebra 1 (MTHH ) Name I.D. Number Project 2 Evaluation 32 Second Year Algebra 1 (MTHH 039 059) Be sure to include ALL pages of this project (including the directions and the assignment) when you send the project to your

More information

Practice Test: Vectors and Projectile Motion

Practice Test: Vectors and Projectile Motion ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

More information

Parametric Ball Toss TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Parametric Ball Toss TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will be able to use parametric equations to represent the height of a ball as a function of time as well as the path of a ball that has been thrown straight up. Students will be

More information

Bicycle Rental Costs straight lines on a graph are called

Bicycle Rental Costs straight lines on a graph are called 1 Walking Rates In Variables and Patterns, you read about a bicycle touring business. You used tables, graphs, and equations to represent patterns relating variables such as cost, income, and profit. You

More information

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion Chapter 2: Linear Motion Chapter 3: Curvilinear Motion Linear Motion Horizontal Motion - motion along x-axis Vertical Motion (Free-Falling Bodies) motion along y-axis Equation for Uniformly Accelerated

More information

Algebra 2 Unit 1 Practice

Algebra 2 Unit 1 Practice Algebra 2 Unit 1 Practice LESSON 1-1 Use this information for Items 1. Aaron has $65 to rent a bike in the cit. It costs $15 per hour to rent a bike. The additional fee for a helmet is $ for the entire

More information

The men s shot put has been a test of

The men s shot put has been a test of L A B 16 PUTTING A SHOT Projectile Motion The men s shot put has been a test of strength for centuries. Early versions of the shot were heavy stones. Today s athletes use a shot made of metal weighing

More information

General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey

General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey Name (print): I hereby declare upon my word of honor that I have neither given nor received unauthorized help on this work. Signature:

More information

The springboard diving techniques analysis

The springboard diving techniques analysis ISSN 1750-9823 (print) 185 International Journal of Sports Science and Engineering Vol. 02 (2008) No. 03, pp. 185-192 The springboard diving techniques analysis Qining Wang Nanjing sports institute, Nanjing,

More information

Unit 2 Review: Projectile Motion

Unit 2 Review: Projectile Motion Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

More information

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

More information

Math 154 Chapter 7.7: Applications of Quadratic Equations Objectives:

Math 154 Chapter 7.7: Applications of Quadratic Equations Objectives: Math 154 Chapter 7.7: Applications of Quadratic Equations Objectives: Products of numbers Areas of rectangles Falling objects Cost/Profit formulas Products of Numbers Finding legs of right triangles Finding

More information

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures.

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures. Q1.The diagram below shows an electric two-wheeled vehicle and driver. (a) The vehicle accelerates horizontally from rest to 27.8 m s 1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider

More information

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched

More information

MI 4 Project on Parametric Equations. Parametric Worksheet

MI 4 Project on Parametric Equations. Parametric Worksheet (To be done just before project is assigned.) Parametric Worksheet 1. From its initial position at (3,4), an object moves linearly, reaching (9, 8) after two seconds and (15, 12) after four seconds. a.

More information

MATH IN ACTION TABLE OF CONTENTS. Lesson 1.1 On Your Mark, Get Set, Go! Page: 10 Usain Bolt: The fastest man on the planet

MATH IN ACTION TABLE OF CONTENTS. Lesson 1.1 On Your Mark, Get Set, Go! Page: 10 Usain Bolt: The fastest man on the planet MATH IN ACTION TABLE OF CONTENTS LESSON 1 WORLD RECORD SPEEDS LINEAR FUNCTIONS WITH PROPORTIONAL RELATIONSHIPS Focus on: SLOPE Lesson 1.1 On Your Mark, Get Set, Go! Page: 10 Usain Bolt: The fastest man

More information

Unit 6, Lesson 1: Organizing Data

Unit 6, Lesson 1: Organizing Data Unit 6, Lesson 1: Organizing Data 1. Here is data on the number of cases of whooping cough from 1939 to 1955. a. Make a new table that orders the data by year. year number of cases 1941 222,202 1950 120,718

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms

More information

Chapter : Linear Motion 2

Chapter : Linear Motion 2 Text: Chapter 2.5-2.9 Think and Explain: 4-8 Think and Solve: 2-4 Chapter 2.5-2.9: Linear Motion 2 NAME: Vocabulary: constant acceleration, acceleration due to gravity, free fall Equations: s = d t v =

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Algebra II Exam 2. Form: 201

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Algebra II Exam 2. Form: 201 Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Exam 2 Description: Algebra 2 Topic 6 Test Form: 201 1. A college entrance exam has a verbal

More information

j~/ ... FIGURE 3-31 Problem 9.

j~/ ... FIGURE 3-31 Problem 9. 9. () An airplane is traveling 735 kmlh in a direction 41S west of north (Fig. 3-31). (a) Find the components of the velocity vector in the northerly and westerly directions. (b) How far north and how

More information

27Quantify Predictability U10L9. April 13, 2015

27Quantify Predictability U10L9. April 13, 2015 1 QUANTIFYING PREDICTABILITY Exercise #1: Make sure that your calculator has its r value on. 2 Exercise #2: In the following exercises four data sets with equal x values are given to illustrate different

More information

Monday Tuesday Wednesday Thursday

Monday Tuesday Wednesday Thursday Name: Weekly Math Homework - Q1:1 Teacher: Monday Tuesday Wednesday Thursday Use Order of Operations to simplify. Use Order of Operations to simplify. Use Order of Operations to simplify. Use Order of

More information

[A] 7 4 [B] 7 45 [C] 7 14 [D] [1] p. [3] 4. Solve. 2 x = 8 [B] 1 3

[A] 7 4 [B] 7 45 [C] 7 14 [D] [1] p. [3] 4. Solve. 2 x = 8 [B] 1 3 Simplif. Epress each answer with positive eponents. 9 5 1. 7 7. F 9 p I G J HG q KJ 8 7 4 [B] 7 45 [C] 7 14 [D] 49 14 [1] 7 7 p p [B] [C] 16 q q 17 p [D] p + q q 7 16. Evaluate. 7 9 [B] 1 9 [C] 1 [D] []

More information

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter.

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. 6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in

More information

CHAPTER 2. CHAPTER 2 Racing, Mathematically. 1. What is the contact time between the puck and the stick in example???

CHAPTER 2. CHAPTER 2 Racing, Mathematically. 1. What is the contact time between the puck and the stick in example??? CHAPTER 2. CHAPTER 2 Racing, Mathematically 1. What is the contact time between the puck and the stick in example??? 23 Copyright 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution

More information

Week 1, Lesson 2 1. Warm up 2. Notes Quadratics 3. ICA Physics Rocket

Week 1, Lesson 2 1. Warm up 2. Notes Quadratics 3. ICA Physics Rocket Do all functions follow patterns? Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Week 1, Lesson 2 1. Warm up 2. Notes

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec 1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

More information

2.5. All games and sports have specific rules and regulations. There are rules about. Play Ball! Absolute Value Equations and Inequalities

2.5. All games and sports have specific rules and regulations. There are rules about. Play Ball! Absolute Value Equations and Inequalities Play Ball! Absolute Value Equations and Inequalities.5 LEARNING GOALS In this lesson, you will: Understand and solve absolute values. Solve linear absolute value equations. Solve and graph linear absolute

More information

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following. Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.

More information

m r [B] mn n> 20r [C] mn n< 8r [D] mn n< 20r

m r [B] mn n> 20r [C] mn n< 8r [D] mn n< 20r Solve. 5. x = 7 0 6 7 5 4 5 [D] 7. x + x 9x 8 = 0, ±,, 9 [D] ±,. x+ 9 = x 0 5 5, 7 [D] 7 4. Solve the equation. = b 8 [D] 7 5. Solve: 5 x x =0 6, 4 4, 4 4, 5 [D], 4 4 6. Solve: 6+ n < 4 Solve. m r mn n>

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g = +9.8ms

More information

Discussion Session 3 2D Relative Motion Week 04

Discussion Session 3 2D Relative Motion Week 04 PHYS 100 Discussion Session 3 2D Relative Motion Week 04 The Plan This week is about two main ideas, practicing vector addition and understanding relative motion. You ll accomplish both by looking at two

More information

9.3 Histograms and Box Plots

9.3 Histograms and Box Plots Name Class Date 9.3 Histograms and Box Plots Essential Question: How can you interpret and compare data sets using data displays? Explore Understanding Histograms Resource Locker A histogram is a bar graph

More information

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m Page 1 of 5 Sub work 10-10-02 Name 12-OCT-03 1. A car travels a distance of 98 meters in 10. seconds. What is the average speed of the car during this 10.-second interval? 1. 4.9 m/s 3. 49 m/s/ 2. 9.8

More information

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram.

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram. MECHANICS: MOTION QUESTIONS High Jump (2017;2) Sarah, a 55.0 kg athlete, is competing in the high jump where she needs to get her body over the crossbar successfully without hitting it. Where she lands,

More information

Chapter 4: 2-D Kinematics

Chapter 4: 2-D Kinematics PHY 5 Ch 4. Solution Dr. Hael Shehadeh. Chapter 4: -D Kinematics Answers to Conceptual Questions. The component of velocit is first positive and then negative in a smmetric fashion. As a result, the average

More information

Ball Toss. Vernier Motion Detector

Ball Toss. Vernier Motion Detector Experiment 6 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs. time would

More information

Mathematics Assessment Program. Middle School Mathematics. Time Allowed Section A - 40 minutes; Section B - 40 minutes

Mathematics Assessment Program. Middle School Mathematics. Time Allowed Section A - 40 minutes; Section B - 40 minutes Mathematics Assessment Program MS - 3 Middle School Mathematics Time Allowed Section A - 40 minutes; Section B - 40 minutes These tasks give you a chance to show what you know and how you reason, and to

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education www.xtremepapers.com Cambridge International Examinations Cambridge International General Certificate of Secondary Education *2215383014* CAMBRIGE INTERNATIONAL MATHEMATICS 0607/62 Paper 6 (Extended) October/November

More information

MHF 4U Unit 2 Rational Functions Outline

MHF 4U Unit 2 Rational Functions Outline MHF 4U Unit Rational Functions Outline Day 1 Lesson Title Specific Epectations Rational Functions and Their Essential Characteristics C.1,.,.3 (Lesson Included) Rational Functions and Their Essential Characteristics

More information

The Four Quadrants. Topic 2. I. Exploring Symmetry on the Coordinate Plane

The Four Quadrants. Topic 2. I. Exploring Symmetry on the Coordinate Plane I. Exploring Symmetry on the Coordinate Plane A. Indicate the location of each point with x-axis, y-axis, not on an axis, or on both axes. 1. (8, 28) 2. (0, 210) 3. (215, 0) 4. (220, 220) 5. ( 9 5 8, 0

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided.

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided. NAME:.... SCHOOL: DATE:... LINEAR MOTION INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1. Two forces that act on a moving cyclist are the driving force and the resistive

More information

Let s work in the City!

Let s work in the City! Let s work in the City! Paul, a young French trader, wants to work in the City (London). He has applied for a job in two companies, has been interviewed, and has finally been offered a job in both companies.

More information

(2) An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s.

(2) An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s. 1. Linear motion Define the term acceleration. An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s. The motion of the object may be

More information

Organizing Quantitative Data

Organizing Quantitative Data Organizing Quantitative Data MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Objectives At the end of this lesson we will be able to: organize discrete data in

More information

Year 10 Mathematics, 2009

Year 10 Mathematics, 2009 Student s Name: Teacher s Name: 10 Year 10 Mathematics, 2009 Algebra Use straightforward algebraic methods and sketch and interpret features of linear graphs Time: 20 minutes. Check that you have entered

More information

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

More information

UNIT 7 PRACTICE PROBLEMS

UNIT 7 PRACTICE PROBLEMS UNIT 7 PRACTICE PROBLEMS 1 Shade the indicated quantity and rewrite in the indicated forms a) 38 hundredths b) 15 100 Decimal: Expanded Form: Fraction Form: Decimal: Expanded Form: Word Name: c) 2 tenths

More information

ACTIVITY THE MOTION OF PROJECTILES

ACTIVITY THE MOTION OF PROJECTILES Name (printed) ACTIVITY THE MOTION OF PROJECTILES First Day Stamp INTRODUCTION In this activity you will begin to understand the nature of projectiles by mapping out the paths of two projectiles over time;

More information