Aerobic reoxidation in marine sediments

Size: px
Start display at page:

Download "Aerobic reoxidation in marine sediments"

Transcription

1 Aerobic reoxidation in marine sediments This exercise consists of three small experiments\demonstrations that should be run in parallel. Read the whole description and divide the work between the members of your team. The practical work and the subsequent report writing require some coordination thus it is important that everybody knows what the team mates are doing (and why they are doing it). In this exercise you get your data almost instantaneously thus you can already start data treatment during the exercise (see theoretical work below). A full report contains answers to all 16 points listed below and should be delivered no later than the 29 Th of Marts. Most of the 2 Th of Marts is dedicated report-writing at MBL. Microprofile experiment Background In coastal environments, only a minor part of the benthic oxygen consumption is related to direct aerobic respiration. The major part of the oxygen consumption is caused by reoxidation of products from the anaerobic heterotrophic activity in the deeper sediment layers. These products include NH + 4, Fe 2+, Mn 2+ and H 2 S. The latter is the result of sulfate reduction and in sediments with low iron- and manganese- oxide concentrations the H 2 S can diffuse up to the oxic sediment zone. H 2 S is a very potent poison that inactivates many metal carrying enzymes and benthic H 2 S release often leads to fauna death in coastal lagoons and isolated sedimentation basins. H 2 S-oxidation is an exergonic process and many chemoautotrophic bacteria have specialized in gaining energy from aerobic oxidation of H 2 S. In reduced sediments this becomes very apparent as the bacteria form a massive white cover on the sediment surface optimizing their position to the H 2 S - O 2 interphase. In such instances the bacteria mat form the last barrier before H 2 S emerges to the overlying water. At present there is no simple technique to discriminate between the oxygen consumption related to respiration or reoxidation. But from porewater microprofiles of H 2 S and O 2 it is possible to quantitatively evaluate the importance of H 2 S oxidation for the total oxygen consumption rate. Oxygen and H 2 S profiles can be measured by microelectrodes. However, sulfide actually exists in three forms S 2-, HS -, H 2 S and the sensor applied in the present exercise is only sensitive to the H 2 S fraction. The equilibrium between the three forms is ph dependent as outlined by the diagram below:

2 Thus in order to recalculate H 2 S profiles to total H 2 S (called TH 2 S below), the ph has to be measured in parallel and the ph-effect has to be accounted for. Description of work: We have collected sediment cores from two different locations in Øresund. The two stations mainly differ by the water depth and thereby in the external supply of organic material. The cores are labeled A (shallow water) and B (deep water). Each team has a core from each site and should 1) describe the two cores (color, texture, fauna etc.) and any visual macroscopic irregularities. Both cores are submerged in well-mixed water baths (salinity 30) kept at room temperature (20 o C). Three different calibrated microsensors H 2 S, ph and O 2 are ready for mounting in the micro-manipulator to obtain a number of individual profiles of each chemical specimen (Fig 1). Microsensor Water Air-pump Strip-chart recorder Picoamp meter Profiling start 0% 100% Sediment Start profiling with the O 2 microsensor in an area free of shells or hard substrata. When the sensor has been positioned at the selected spot, you estimate the relative position of the sediment surface. This is done by moving the sensor slowly downwards - using the micromanipulator - until a signal change at the strip-chart recorder is observed this position is close to the sediment surface. The sensor is then moved a few hundred microns backwards until the 100%-saturation value (equivalent to 238 µm) is reached, the sensor is now ready for microprofiling. This it is done by moving the sensor downwards in increments of 0.1 mm. Each time the sensor is moved a small mark is made on the recorder paper. The profiling is continued until a low constant value (signal at 0% saturation) is reached. Subsequently the sensor is moved back up in the water phase, moved horizontally to another position and the procedure is repeated at different locations (a total of two profiles are measured in each core).

3 After this the H 2 S and the ph-sensor is mounted in the micromanipulator. The two sensors are glued together and are vertically aligned so that microprofiles of the two chemical specimens are obtained at the same depth horizon simultaneously. Try to locate the position of the sediment surface visually (for later alignment between the O 2 and the H 2 S/pH profiles) and perform 2-3 microprofiles with a reasonable vertical resolution in the sediment corer from site A (the sediment from the deeper site, B, does not contain H 2 S). Slurry experiment Background Aerobic reoxidation of the reduced products from the anaerobic activity occur spontaneously. However, most processes are catalyzed by chemoautotrophic bacteria that increase the oxidation rates by a factor of and the bacteria harvest the energy. The accumulated reduced products can represent a significant oxygen dept that can be re-paid over short time during storm events. Here sediment is resuspended up into the overlying oxic water column. This can be visualized by incubating reduced sediment in slurries and compare the rates to the results of the microprofile data above. Biological inactivation (by formalin) can indicate to what extent the oxidation during resuspension is biological or chemical mediated and to what extent the O 2 consumption rate is constant with decreasing O 2 concentration provide information on the oxidation kinetics. Description of work Surface sediment (0-5 mm) from a core from each station (A and B) is transferred to each their weighing boat and the sediment is gently homogenized. Subsequently 4x 3.0g (write down the exact weight) of sediment from each weighing-boat is transferred to 4 Winklerbottles that subsequently are filled with 100% air-saturated sea-water (corresponding to 238 µm). Each team now has 4 resuspension-bottles (remember to label them with teamnumber and the respective station index). One ml of formalin (37%) is added to one bottle from station A and B respectively (use gloves). A small magnet is added to each bottle and all bottles are placed on two central stirring plates that are runnig at a speed sufficient to induce resuspension. The O 2 concentration in each bottle is now followed by successively transferring an O 2 microelectrode between the bottles at a reasonable time interval (measurements should preferentially be done in each bottle every 10 min). The sensor current of the calibrated sensor at each time and for each bottle is noted when the signal has stabilized along with the time of measurement. If time allows the O2 concentration is followed until 0 um is reached. After each measurement a small amount of water is added to avoid bubbles inside the bottles. Temperature block experiment Background The aerobic activity of surface sediment is regulated by many environmental controls - on a seasonal basis the bottom-water temperature is one of them. That temperature is

4 important can be visualized by performing resuspension incubations along a temperature gradient (established by a so-called temperature block) Description of work Oxidized surface sediment (0-5 mm) from the deeper site, B, is transferred to a weighing boat and homogenized. 2.0 gram (note down the exact weight) of the homogenized sediment is transferred to 4 excetainer tubes (for each team) and they are subsequently filled with 100% air saturated sea-water (corresponding to 238 µm O 2 ). Each team adds one glass ball to each tube and 100 µl yeast extract to two of the tubes. Each team then select two temperatures and two tubes (+/- yeast extract) are placed at each temperature. The oxygen consumption rate at each temperature is now followed by measuring the oxygen concentration in the 4 excitainers at roughly 15 min interval (see procedure described above). After each measurements a few drops of air-saturated water is added to the tubes to avoid bubbles. Microelectrode experiment Theoretical work 2) Plot the 2 sets of O 2, H 2 S and ph data versus sediment depth for the shallow site and the 2 O 2 microprofiles from the deeper site - indicate the estimated position of the sediment surface as (Y=0). Use the units µm and mm. 3) Plot the two TH 2 S values versus depth for the shallow site (indicate the estimated position of the sediment surface as (Y=0)). For ph <9 the TH 2 S can be estimated from: TH 2 S = H 2 S ( /10 -x ), where x equals the ph at the respective sediment depths. Use the unit s µm and mm. 4) Describe the oxygen profiles from each site and calculate the average DBL-thickness, the Diffusive O 2 Uptake (DOU) and the volume specific respiration (R) for each site in the following units mm, mmol m -2 d -1, and µmol cm -3 d -1, respectively DOU (mmol m -2 d -1 ) = β * D * 8640, where β is the slope of the concentration profile within the DBL (unit µm mm -1 ) and D is the molecular diffusion coefficient of oxygen in water (unit 10-5 cm 2 s -1 ). D equals 1.98 *10-5 cm 2 s -1 at salinity 30 and 20 o C. The value 8640 is a conversion factor to get the right units. R (µmolcm -3 d -1 ) = (DOU/OP) * 0.1, where OP is the oxygen penetration depth (unit cm) and DOU the diffusive O 2 uptake (unit mmol m -2 d -1 ). The value 0.1 is a conversion factor to get the right units. This calculation assumes constant activity in the oxic zone and zero-order kinetics. 5) Compare and comment upon the values from the two sites. How close are the values to the theoretical possible DOU at the given conditions?

5 6) Explain the shape of the TH 2 S profiles and define the zones of sulfide production and sulfide consumption. 7) Calculate the diffusive flux of TH 2 S into the oxic zone using a D-value of cm 2 s -1 and calculate the fraction of O 2 consumption used for TH 2 S oxidation assuming complete aerobic sulfide oxidation to sulfate: H 2 S + 2O 2 -> SO H +. Is that a reasonable assumption? Calculate the volume specific consumption rate of TH 2 S in the oxic zone. 8) Calculate the average concentration of O 2 and TH 2 S in the overlap zone. With these concentrations and the rates calculated above what is the turn overtime (in sec), meaning how long time does it take to consume the available O 2 and TH 2 S in the reaction zone? In a pure un-catalyzed chemical oxidation of H 2 S with O 2 it takes approximately 60 min to remove 50% of the sulfide. How much faster is the sulfide oxidation in the sediment of the shallow water station? Slurry experiment 1) Describe how the O 2 concentration in the Winkler bottles decrease. Give an explanation for the respective phases. 2) Calculate the O 2 consumption rate for the two respective stations during the initial and the subsequent oxidation phase. R slurry (µmol cm -3 d -1 ) = γ 0.05 /(y/2.0), where γ is the rate of O 2 decrease in the bottles (um d -1 ), 0.05 the bottle volume, y the number of gram sediment added and 2.0 the estimated density of the sediment. Comment upon potential differences between the incubations how do they compare to your expectations? 3) How does the values compare to the volume specific respiration (R) calculated from the O 2 microprofiles? Comment and give suggestions for any potential differences. 4) How many days of diffusive mediated O 2 consumption does a storm induced resuspension event lasting for 1 day of the upper 5 mm of sediment compare to for each station? Temperature block experiment 1) Calculate the O 2 consumption rate at the respective temperatures R excitainer (umol cm -3 d - 1 ) = γ /(y/2.0), where γ is the rate of O 2 decrease in the bottles (um d -1 ), the tube volume, y the number of gram sediment added and 2.0 the estimated density of the

6 sediment. Ignore any potential drop in the O 2 concentration during the initial part of the incubation. 2) Does the addition of yeast extract affect the O 2 consumption rate? give suggestions to why or why not. 3) Plot the respective activities for all teams versus the temperature and describe the curve does it match your expectations? 4) Estimate the Q 10 value for the O 2 consumption rate does it match your expectations?. How relevant do you think this estimate is for describing the seasonal temperature response in central Øresund?

Lecture 8 questions and answers The Biological Pump

Lecture 8 questions and answers The Biological Pump Lecture 8 questions and answers The Biological Pump (1) How long would it take a particle of about 2micron in size and a density of 1.5 g/cm 3 to get to the bottom of the sea (4000m)? How do particles

More information

CTB3365x Introduction to Water Treatment

CTB3365x Introduction to Water Treatment CTB3365x Introduction to Water Treatment D4b Aeration Doris van Halem Did you know that there are not just gasses in your glass of sparkling coke, but also in the tap water you drink? Welcome to the water

More information

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class 0.30 Fall 004 Homework Problem Set 9 Due Wednesday, November 4, at start of class Part A. Consider an iron surface which serves as a catalyst for the production of ammonia from nitrogen and hydrogen. The

More information

AP Biology 12 Cellular Respiration Lab

AP Biology 12 Cellular Respiration Lab AP Biology 12 Cellular Respiration Lab Background: Each individual cell is responsible for the energy exchanges necessary to sustain its ordered structure. Cells accomplish this task by breaking down nutrient

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

AP Biology Lab - Cell Respiration

AP Biology Lab - Cell Respiration AP Biology Lab - Cell Respiration This investigation uses respirometry techniques to calculate the rate of oxygen consumption (cellular respiration) in germinating pea seeds. The effect of temperature

More information

HYDROGEN SENSOR USER MANUAL

HYDROGEN SENSOR USER MANUAL HYDROGEN SENSOR USER MANUAL 1 Hydrogen sensor user manual Copyright 2016 Unisense A/S Version December 2016 HYDROGEN SENSOR USER MANUAL UNISENSE A/S TABLE OF CONTENTS WARRANTY AND LIABILITY....6 CONGRATULATIONS

More information

Flow in a shock tube

Flow in a shock tube Flow in a shock tube April 30, 05 Summary In the lab the shock Mach number as well as the Mach number downstream the moving shock are determined for different pressure ratios between the high and low pressure

More information

Deep water plume models - What s special about deep water

Deep water plume models - What s special about deep water Deep water plume models - What s special about deep water Øistein Johansen Senior scientist SINTEF Marine Environmental Technology Deep water blowouts - knowledge basis Present knowledge based on General

More information

The activated sludge process

The activated sludge process The activated sludge process Most wastewater treatment plants are using the activated sludge process. The heart of such a process mainly consists of an aeration tank, a sedimentation tank or clarifier

More information

Characterizing a Cu/Mn Alloy for Extracting Oxygen from Inert Gas. Streams

Characterizing a Cu/Mn Alloy for Extracting Oxygen from Inert Gas. Streams Characterizing a Cu/Mn Alloy for Extracting Oxygen from Inert Gas Streams Grace Lenhard Prattsburgh Central School LLE advisors: Walter Shmayda and Matthew Sharpe Laboratory for Laser Energetics University

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

FRANZ CELL TEST OF NANO GLUTATHIONE WITH HPLC ANALYSIS

FRANZ CELL TEST OF NANO GLUTATHIONE WITH HPLC ANALYSIS FRANZ CELL TEST OF NANO GLUTATHIONE WITH HPLC ANALYSIS Analysis Conducted BY CC RESEARCH (P) Ltd., For Nanoceutical Solutions Inc. USA 2950 Thousand Oaks drive, Suite 3, San Antonio, Texas EXECUTIVE SUMMARY

More information

MARK SCHEME for the October/November 2012 series 0610 BIOLOGY. 0610/51 Paper 5 (Practical Test), maximum raw mark 40

MARK SCHEME for the October/November 2012 series 0610 BIOLOGY. 0610/51 Paper 5 (Practical Test), maximum raw mark 40 CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the October/November 2012 series 0610 BIOLOGY 0610/51 Paper 5 (Practical Test), maximum raw

More information

Slide 1. Slide 2. Slide 3 What do YOU know about oxygen? Dissolved Oxygen. Oxygen. I can t breath in the water but the fish can!

Slide 1. Slide 2. Slide 3 What do YOU know about oxygen? Dissolved Oxygen. Oxygen. I can t breath in the water but the fish can! Slide 1 Dissolved Oxygen I can t breath in the water but the fish can! Slide 2 Oxygen Oxygen is one of the fundamental resources required by life forms on Earth. Aquatic ecosystems have a wide assortment

More information

OXYGEN CONSUMPTION AND TEMPERATURE IN THE AQUATIC ENVIRONMENT

OXYGEN CONSUMPTION AND TEMPERATURE IN THE AQUATIC ENVIRONMENT OXYGEN CONSUMPTION AND TEMPERATURE IN THE AQUATIC ENVIRONMENT BACKGROUND READING Animal Physiology by Hill, Wyse & Anderson, 2004: pp. 130 139 & 198 201. Living material Freshwater fish, probably goldfish.

More information

Effect of gas bubbles on the diffusive flux of methane in anoxic paddy soil

Effect of gas bubbles on the diffusive flux of methane in anoxic paddy soil Limml. Oceonogr., 43(7), 1998, 15 11-1518 0 1998, by the American Society of Limnology and Oceanography. Inc. Effect of gas bubbles on the diffusive flux of methane in anoxic paddy soil Franz Rothfuss

More information

Development of High-speed Gas Dissolution Device

Development of High-speed Gas Dissolution Device Development of High-speed Gas Dissolution Device Yoichi Nakano*, Atsushi Suehiro**, Tetsuhiko Fujisato***, Jun Ma**** Kesayoshi Hadano****, Masayuki Fukagawa***** *Ube National College of Technology, Tokiwadai

More information

LAB 06 Organismal Respiration

LAB 06 Organismal Respiration LAB 06 Organismal Respiration Objectives: To learn how a respirometer can be used to determine a respiration rate. Identify and explain the effect of seed germination on cell respiration. To design and

More information

Biology Unit 2, Structure of Life, Lab Activity 2-3

Biology Unit 2, Structure of Life, Lab Activity 2-3 Biology Unit 2, Structure of Life, Lab Activity 2-3 Cellular respiration is the release of energy from organic compounds by metabolic chemical oxidation in the mitochondria within each cell. Cellular respiration

More information

Before doing this lab you should understand:

Before doing this lab you should understand: RVE CELL RESPIRATION OVERVIEW In this experiment you will work with seeds that are living but dormant. A seed contains an embryo plant and a food supply surrounded by a seed coat. When the necessary conditions

More information

ENVE 301 Environmental Engineering Unit Operations

ENVE 301 Environmental Engineering Unit Operations ENVE 301 Environmental Engineering Unit Operations Lecture 5 Gas Transfer, Aeration II SPRING 2014 Assist. Prof. A. Evren Tugtas Gas Transfer Examples 2 Example 1: Gas Transfer - Problems Henry s law constant

More information

Energy and mass transfer in gas-liquid reactors.

Energy and mass transfer in gas-liquid reactors. Energy and mass transfer in gas-liquid reactors. John M Smith School of Engineering (D2) University of Surrey, Guildford GU2 7XH, UK j.smith@surrey.ac.uk 1 Energy and mass transfer in gas-liquid reactors.

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

OXYGEN CONSUMPTION AND TEMPERATURE IN THE AQUATIC ENVIRONMENT

OXYGEN CONSUMPTION AND TEMPERATURE IN THE AQUATIC ENVIRONMENT OXYGEN CONSUMPTION AND TEMPERATURE IN THE AQUATIC ENVIRONMENT BACKGROUND READING Animal Physiology by Hill, Wyse & Anderson, 2004: pp. 130 139 & 198 201. PRE-LAB (Due at the start of the lab) ** In your

More information

GUIDE TO ULTRA-FAST HPLC. Quick Tips for Converting Conventional Reversed-Phase HPLC Separations to Ultra-Fast Separations

GUIDE TO ULTRA-FAST HPLC. Quick Tips for Converting Conventional Reversed-Phase HPLC Separations to Ultra-Fast Separations GUIDE TO ULTRA-FAST HPLC Quick Tips for Converting Conventional Reversed-Phase HPLC Separations to Ultra-Fast Separations GUIDE TO ULTRA-FAST HPLC Quick Tips for Converting Conventional Reversed-Phase

More information

Cell Respiration Laboratory PSI Biology

Cell Respiration Laboratory PSI Biology Cell Respiration Laboratory PSI Biology Name Objective Students will understand the relationship between temperature, pressure, and gas volume and will predict the effect of temperature and germination

More information

STERILIZABLE DISSOLVED OXYGEN SENSORS

STERILIZABLE DISSOLVED OXYGEN SENSORS STERILIZABLE DISSOLVED OXYGEN SENSORS USER MANUAL Table of Contents 1. Introduction 2. Operation 3. Calibration 4. Electrode Verification 5. Mounting 6. Maintenance 7. Storage 8. Instructions for Exchange

More information

What factors affect the rate of cellular respiration in multicellular organisms?

What factors affect the rate of cellular respiration in multicellular organisms? INV~t:;TIGATION 6 CELLULAR RESPIRATION* What factors affect the rate of cellular respiration in multicellular organisms? BACKGROUND Living systems require free energy and matter to maintain order, to grow,

More information

FIU Digital Commons. Florida International University. Henry O. Briceño Florida International University,

FIU Digital Commons. Florida International University. Henry O. Briceño Florida International University, Florida International University FIU Digital Commons SERC Research Reports Southeast Environmental Research Center 2015 Water Quality Monitoring Project for Demonstration of Canal Remediation Methods Florida

More information

What does the % represent on the beakers?

What does the % represent on the beakers? DISSOLVED OXYGEN VIDEO FAQs What does the % represent on the beakers? What are the glass tubes to beakers for? How is the temperature being kept the same (at 5 o then 35 o )? What is salinity in parts

More information

Experimental Procedure

Experimental Procedure 1 of 6 10/3/2018, 1:37 PM https://www.sciencebuddies.org/science-fair-projects/project-ideas/microbio_p009/microbiology/yeast-metabolism-aerobic-anaerobic (http://www.sciencebuddies.org /science-fair-projects/project-ideas/microbio_p009/microbiology/yeast-metabolism-aerobic-anaerobic)

More information

APBiology Unit 2, Chapter 8

APBiology Unit 2, Chapter 8 APBiology Unit 2, Chapter 8 Research Question What factors affect the rate of cellular respiration in multicellular organisms? Background Living systems require free energy and matter to maintain order,

More information

Vertical in situ profiles of nitrate and oxygen in the northern Japan Sea

Vertical in situ profiles of nitrate and oxygen in the northern Japan Sea Vertical in situ profiles of nitrate and oxygen in the northern Japan Sea Dmitry D. Kaplunenko, Vyacheslav B. Lobanov, Pavel Ya. Tishchenko and Maria G. Shvetsova V.I.Il'ichev Pacific Oceanological Institute,

More information

Seawater. Earth is an Ocean Planet

Seawater. Earth is an Ocean Planet Seawater Earth is an Ocean Planet Topics Origin of the Ocean and Atmosphere Hydrologic Cycle Biogeochemical Cycle Seawater Salinity Variations in Seawater Chemistry Carbonic Acid System Topics Origin of

More information

Deep Water Currents Lab

Deep Water Currents Lab Deep Water Currents Lab Background: Anyone visiting the seashore is struck by the constant motion of water traveling on the surface of the ocean in the form of waves. But beneath the ocean's surface, water

More information

Generating Calibration Gas Standards

Generating Calibration Gas Standards Technical Note 1001 Metronics Inc. Generating Calibration Gas Standards with Dynacal Permeation Devices Permeation devices provide an excellent method of producing known gas concentrations in the PPM and

More information

Ch. 11 Mass transfer principles

Ch. 11 Mass transfer principles Transport of chemical species in solid, liquid, or gas mixture Transport driven by composition gradient, similar to temperature gradients driving heat transport We will look at two mass transport mechanisms,

More information

Experiment P18: Buoyant Force (Force Sensor)

Experiment P18: Buoyant Force (Force Sensor) PASCO scientific Physics Lab Manual: P18-1 Experiment P18: (Force Sensor) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 300/500/700 P18 P18_BUOY.SWS EQUIPMENT NEEDED CONSUMABLES

More information

Enzyme Activity Lab. Wear safety goggles when handling hydrogen peroxide.

Enzyme Activity Lab. Wear safety goggles when handling hydrogen peroxide. Enzyme Activity Lab This laboratory involves the use of an enzyme that will react with hydrogen peroxide. The enzyme is catalase and hydrogen peroxide (H2O2) is the substrate. The reaction is as follows:

More information

OP CHECKLIST FOR 1D CONSOLIDATION LABORATORY TEST

OP CHECKLIST FOR 1D CONSOLIDATION LABORATORY TEST Page 1 of 5 WORK INSTRUCTIONS FOR ENGINEERS NHB Compiled by : LSS Checked by : GSS Approved by : OP-3-31. CHECKLIST FOR 1D CONSOLIDATION LABORATORY TEST Page 2 of 5 31.0 CHECKLIST ITEMS *(refer to respective

More information

Temperature, salinity, density, and the oceanic pressure field

Temperature, salinity, density, and the oceanic pressure field Chapter 2 Temperature, salinity, density, and the oceanic pressure field The ratios of the many components which make up the salt in the ocean are remarkably constant, and salinity, the total salt content

More information

PreSens. Manual OxoPlate. OxoPlate OP96C. PreSens Precision Sensing

PreSens. Manual OxoPlate. OxoPlate OP96C. PreSens Precision Sensing PreSens PreSens Precision Sensing Manual OxoPlate OP96U OxoPlate OP96C March/01/2004 Manual OxoPlate TABLE OF CONTENTS 1 Preface... 3 2 Measurement Principle of the OxoPlate... 4 3 Instrumentation... 5

More information

Barrier Development and Evaluation Methodology. D.S. Musgrave 1 1 Thermal Visions, Inc., Granville, USA

Barrier Development and Evaluation Methodology. D.S. Musgrave 1 1 Thermal Visions, Inc., Granville, USA Barrier Development and Evaluation Methodology D.S. Musgrave 1 1 Thermal Visions, Inc., Granville, USA 1. Introduction: Vacuum insulation is now a rapidly expanding market and technical advances are being

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

CTB3365x Introduction to Water Treatment

CTB3365x Introduction to Water Treatment CTB3365x Introduction to Water Treatment W4e Aeration Merle de Kreuk There is one last thing of the biological part that needs some design. As you know, nitrifyers need oxygen, and also the heterotrophs,

More information

Nortek Technical Note No.: TN-021. Chesapeake Bay AWAC Evaluation

Nortek Technical Note No.: TN-021. Chesapeake Bay AWAC Evaluation Nortek Technical Note No.: TN-021 Title: Chesapeake Bay AWAC Evaluation Last Edited: October 5, 2004 Authors: Eric Siegel-NortekUSA, Chris Malzone-NortekUSA, Torstein Pedersen- Number of Pages: 12 Chesapeake

More information

DETERMINING OPTIMUM RESIDUAL ASPHALT CONTENT (RAC) FOR POLYMER-MODIFIED SLURRY SEAL (MICROSURFACING) MIXTURES

DETERMINING OPTIMUM RESIDUAL ASPHALT CONTENT (RAC) FOR POLYMER-MODIFIED SLURRY SEAL (MICROSURFACING) MIXTURES Test Procedure for DETERMINING OPTIMUM RESIDUAL ASPHALT CONTENT (RAC) FOR POLYMER-MODIFIED SLURRY SEAL (MICROSURFACING) MIXTURES TxDOT Designation: Tex-240-F Effective Date: December 2004 1. SCOPE 1.1

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

Dissolved Oxygen Guide

Dissolved Oxygen Guide Educat i onser i es Di ssol vedoxygengui de Dissolved Oxygen Guide Introduction Dissolved oxygen probes provide a convenient approach to essentially direct measurement of molecular oxygen. The membrane

More information

BREATH-BY-BREATH METHOD

BREATH-BY-BREATH METHOD BREATH-BY-BREATH METHOD COR-MAN-0000-005-IN / EN Issue A, Rev. 2 2013-07 INNOISION ApS Skovvænge DK-5620 Glamsbjerg Denmark Tel.: +45 65 95 91 00 Fax: +45 65 95 78 00 info@innovision.dk www.innovision.dk

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

LAB 13: FLUIDS OBJECTIVES

LAB 13: FLUIDS OBJECTIVES 205 Name Date Partners LAB 13: FLUIDS Fluids are an important part of our body OBJECTIVES OVERVIEW Fluid Properties To learn how some fundamental physical principles apply to fluids. To understand the

More information

Pore-Air Entrapment during Infiltration

Pore-Air Entrapment during Infiltration Pore-Air Entrapment during Infiltration GEO-SLOPE International Ltd. www.geo-slope.com 1200, 700-6th Ave SW, Calgary, AB, Canada T2P 0T8 Main: +1 403 269 2002 Fax: +1 888 463 2239 Introduction Infiltration

More information

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

More information

CHE 4115 Chemical Processes Laboratory 2 Experiment 1. Batch Distillation

CHE 4115 Chemical Processes Laboratory 2 Experiment 1. Batch Distillation CHE 4115 Chemical Processes Laboratory 2 Experiment 1 Batch Distillation BACKGROUND Distillation is one of the most commonly used unit operations in chemical engineering. In general, a distillation operation

More information

REASONS FOR NATURAL VARIATIONS IN DISSOLVED OXYGEN LEVELS

REASONS FOR NATURAL VARIATIONS IN DISSOLVED OXYGEN LEVELS Period Date LAB. THE PHYSICAL PROPERTIES OF WATER: DISSOLVED OXYGEN In an aquatic environment, oxygen must be in a solution in a free state (O 2 ) before it is available for use by organisms (bioavailable).

More information

The Gas Laws: Boyle's Law and Charles Law

The Gas Laws: Boyle's Law and Charles Law Exercise 6 Page 1 Illinois Central College CHEMISTRY 130 Name The Gas Laws: Boyle's Law and Charles Law Objective The simple laws governing the properties of gases can be readily demonstrated experimentally.

More information

Runs Solution Temp. Pressure zero reset

Runs Solution Temp. Pressure zero reset IAEA-SM-367/8/02/P High Quality Tank Calibration Study JSGO H.Higuchi, S.Takeda NMCC--S. Uchikoshi, Y. Watanabe, K. Kaieda IAEA--D. Sellinschegg, R.Binner 1. INTRODUCTION: The Japanese Nuclear Material

More information

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Figure 13.25 This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as though it was taken at

More information

Laboratory Experiments No 1: Measuring the Number Distribution

Laboratory Experiments No 1: Measuring the Number Distribution Laboratory Experiments No 1: Measuring the Number Distribution Purpose: To test the operation of the DMA by comparing the calculated size to a monodisperse aerosol particle, and to use the DMA to measure

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

SAM510: SAM Methyltransferase Assay A Non Radioactive Colorimetric Continuous Enzyme Assay

SAM510: SAM Methyltransferase Assay A Non Radioactive Colorimetric Continuous Enzyme Assay 462PR 01 A Geno Technology, Inc. (USA) brand name G-Biosciences, St Louis, MO. USA 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com SAM510: SAM Methyltransferase Assay A Non Radioactive Colorimetric

More information

Cell counts using Improved Neubauer haemocytometer

Cell counts using Improved Neubauer haemocytometer Cell counts using Improved Neubauer haemocytometer Prepared by Santiago Perez; 3/22/2006 Preparing the sample. Your sample tubes should have a random number label if they come from an experimental treatment

More information

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

More information

Midterm Exam III November 25, 2:10

Midterm Exam III November 25, 2:10 Midterm Exam III November 25, 2:10 25, 2:10 3:25 pm, HW714 Chapters 7 (7.12 7.17), 8 and 9 (through section 9.15, included) 60 multiple choice questions this exam constitutes 22% (only) of your total (overall)

More information

Chapter 3 Atmospheric Thermodynamics

Chapter 3 Atmospheric Thermodynamics Chapter 3 Atmospheric Thermodynamics Spring 2017 Partial Pressure and Dalton Dalton's law of partial pressure: total pressure exerted by a mixture of gases which do not interact chemically is equal to

More information

1. Read the overview. What is the difference between germinating and nongerminating

1. Read the overview. What is the difference between germinating and nongerminating Pre-lab Cell Respiration (# 5) 1. Read the overview. What is the difference between germinating and nongerminating seeds? 2. Why do seeds need oxygen? And, what would measuring the oxygen consumption of

More information

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 Section 1.2 Example. The discharge in a channel with bottom width 3 m is 12 m 3 s 1. If Manning s n is 0.013 m -1/3 s and the streamwise slope is 1 in 200,

More information

Unisense In Situ UniAmp Connector System

Unisense In Situ UniAmp Connector System Unisense In Situ UniAmp Connector System Overview The Unisense In Situ UniAmp Connector system is designed for easy replacement of sensors. Unisense In Situ UniAmp Connector system is a dedicated system

More information

Dr. Prakash N. Mesta

Dr. Prakash N. Mesta Coastal Wetland Monitoring Dr. Prakash N. Mesta prakashhonavar@gmail.com Coastal Ecosystem is diverse in nature Most of the world human population p settled in Coastal region. Cities & Industries established

More information

How to Measure R7.1. Reference. I. Linear dimensions

How to Measure R7.1. Reference. I. Linear dimensions How to Measure Written by Connie Russell I. Linear dimensions Measuring linear dimensions (the distance between two points) is usually associated with using a ruler or a tape measure. For measuring objects

More information

ISE-730 Oxygen Electrode and DO2-100 Currentto-Voltage

ISE-730 Oxygen Electrode and DO2-100 Currentto-Voltage Technical Note ISE-730 and DO2-100 Overview In 1954, Dr. Leland Clark invented the first membrane-covered electrode designed to measure the concentration of oxygen in blood, or solution. This electrode

More information

Sampling Considerations for Equilibrium Dissolved Oxygen [DO] Sensors

Sampling Considerations for Equilibrium Dissolved Oxygen [DO] Sensors Sampling Considerations for Equilibrium Dissolved Oxygen [DO] Sensors Abstract Boiler water in the low parts per billion dissolved oxygen concentration range can be significantly contaminated by oxygen

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Calcimeter Instruction Manual

Calcimeter Instruction Manual Hohner (UK - Canada - Texas) Calcimeter Instruction Manual The Hohner Calcimeter is based on industry standard versions, and is used to measure the calcium carbonate and magnesium carbonate in samples.

More information

SS32L Dissolved O 2 Probe

SS32L Dissolved O 2 Probe BIOPAC WWW.biopac.com Systems, Inc. Application Note PH-185 SS32L Dissolved O 2 Probe SS32L Dissolved O 2 Probe BIOPAC Software SS32L Specifications BSL PRO v. 3.6.6 BIOPAC Hardware SS32L Dissolved O 2

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

Introduction to ChemSense

Introduction to ChemSense Introduction to ChemSense As you may have seen, the ChemSense software allows you to create drawings and animation of chemical phenomena (and non-chemical phenomena for some of you). The software also

More information

A Nomogram Of Performances In Endurance Running Based On Logarithmic Model Of Péronnet-Thibault

A Nomogram Of Performances In Endurance Running Based On Logarithmic Model Of Péronnet-Thibault American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-9, pp-78-85 www.ajer.org Research Paper Open Access A Nomogram Of Performances In Endurance Running

More information

Low gas volume & flow measurements made easier Gas Endeavour

Low gas volume & flow measurements made easier Gas Endeavour Low gas volume & flow measurements made easier Gas Endeavour www.bioprocesscontrol.com Low gas volume and flow high accuracy and precision Measure gas volume and flow for a wide range of applications The

More information

Preliminary Biology Assessment Task #1. Part 1 is to be completed and handed in before the start of period 1 on Friday 13/05/2016.

Preliminary Biology Assessment Task #1. Part 1 is to be completed and handed in before the start of period 1 on Friday 13/05/2016. Preliminary Biology Assessment Task #1 Assessment Overview: There are THREE (3) parts to this assessment. Part 1: Research and planning; To be done in own time. Part 1 is to be completed and handed in

More information

Pipette apparatus. Meet the difference. Manual. T E I

Pipette apparatus. Meet the difference. Manual. T E I Pipette apparatus Manual Meet the difference Eijkelkamp Soil & Water Nijverheidsstraat 30, 6987 EM Giesbeek, the Netherlands T +31 313 880 200 E info@eijkelkamp.com I www.eijkelkamp.com 2018-07 M-0816E

More information

Salinity and Dissolved Oxygen (D.O.) Lecture 2

Salinity and Dissolved Oxygen (D.O.) Lecture 2 Salinity and Dissolved Oxygen (D.O.) Lecture 2 Salinity defn Salinity is the saltiness or dissolved salt content of a body of water. fresh water (or sweet water) is less than 0.05%. brackish water is 0.03

More information

From and

From  and From http://www.school-for-champions.com/science/fluidpressure.htm and http://www.school-forchampions.com/science/fluidfloating.htm by Ron Kurtus, School for Champions Pressure in Fluids by Ron Kurtus

More information

INTERNATIONAL SLURRY SURFACING ASSOCIATION TECHNICAL BULLETIN. 800 Roosevelt Road, Building C-312, Glen Ellyn, IL 60137

INTERNATIONAL SLURRY SURFACING ASSOCIATION TECHNICAL BULLETIN. 800 Roosevelt Road, Building C-312, Glen Ellyn, IL 60137 INTERNATIONAL SLURRY SURFACING ASSOCIATION TECHNICAL BULLETIN 800 Roosevelt Road, Building C-312, Glen Ellyn, IL 60137 No. 144 Revised 2013 Test Method for Classification of Slurry Surfacing Materials

More information

LABORATORY INVESTIGATION

LABORATORY INVESTIGATION LABORATORY INVESTIGATION MEASURING THE RATE OF PHOTOSYNTHESIS Light and Photosynthesis About 2.5-3 billion years ago a new chemical process, photosynthesis, was evolved by a unicellular life form. This

More information

Underwater measurement of photosynthetically active radiation

Underwater measurement of photosynthetically active radiation Underwater measurement of photosynthetically active radiation Mark Blonquist, Damon Nitzel, and Bruce Bugbee Apogee Instruments, Inc., Logan, Utah Introduction Quantum sensors (photosynthetically active

More information

Tension Cracks. Topics Covered. Tension crack boundaries Tension crack depth Query slice data Thrust line Sensitivity analysis.

Tension Cracks. Topics Covered. Tension crack boundaries Tension crack depth Query slice data Thrust line Sensitivity analysis. Tension Cracks 16-1 Tension Cracks In slope stability analyses with cohesive soils, tension forces may be observed in the upper part of the slope. In general, soils cannot support tension so the results

More information

UNIT 2 Chapter 3. Elodea and Photosynthesis. The Origins of Life. Learning Outcomes: Chapter 3 Lab/Activity #2. Introduction: Safety Issues:

UNIT 2 Chapter 3. Elodea and Photosynthesis. The Origins of Life. Learning Outcomes: Chapter 3 Lab/Activity #2. Introduction: Safety Issues: The Origins of Life UNIT 2 Chapter 3 Name: Section: Date: Chapter 3 Lab/Activity #2 Elodea and Photosynthesis Introduction: Photosynthetic organisms (cyanobacteria) first evolved about 3.5 billion years

More information

The Variation of Muscle Oxygen Consumption With Velocity of Shortening

The Variation of Muscle Oxygen Consumption With Velocity of Shortening The Variation of Muscle Oxygen Consumption With Velocity of Shortening R.J. BASKIN From the Department of Zoology, University of California, Davis ABSTRACT Total oxygen consumption following contraction

More information

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance.

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance. Measurement of Filter Porosity using a Custom-Made Pycnometer George Chase The University of Akron INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important

More information

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump.

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump. Exercise 2-3 Centrifugal Pumps EXERCISE OBJECTIVE In this exercise, you will become familiar with the operation of a centrifugal pump and read its performance chart. You will also observe the effect that

More information

DISSOLUTION TEST FOR SOLID DOSAGE FORMS

DISSOLUTION TEST FOR SOLID DOSAGE FORMS Seite 1 von 15 01/2010:20903 corrected 6.8 2.9.3. DISSOLUTION TEST FOR SOLID DOSAGE FORMS This test is provided to determine compliance with the dissolution requirements for solid dosage forms administered

More information

Oxygen measurements: sensors accuracy and scientific needs

Oxygen measurements: sensors accuracy and scientific needs Oxygen measurements: sensors accuracy and scientific needs L. Coppola (CNRS-INSU), E.Diamond (CNRS-INSU), L.Delauney (IFREMER), D.Hydes (NOC), M.Haller (HZG), J.Karstensen (IFM-GEOMAR), D.Lefevre (CNRS-INSU),

More information

WCA gas trap results and ebullition modeling: testing an ebullition model shows the importance of pore structure

WCA gas trap results and ebullition modeling: testing an ebullition model shows the importance of pore structure WCA gas trap results and ebullition modeling: testing an ebullition model shows the importance of pore structure William Wright¹, Jorge Ramirez², Xavier Comas¹ ¹Department of Geosciences, Florida Atlantic

More information

3D Inversion in GM-SYS 3D Modelling

3D Inversion in GM-SYS 3D Modelling 3D Inversion in GM-SYS 3D Modelling GM-SYS 3D provides a wide range of inversion options including inversion for both layer structure and physical properties for gravity and magnetic data. There is an

More information

3.6 Magnetic surveys. Sampling Time variations Gradiometers Processing. Sampling

3.6 Magnetic surveys. Sampling Time variations Gradiometers Processing. Sampling 3.6 Magnetic surveys Sampling Time variations Gradiometers Processing Sampling Magnetic surveys can be taken along profiles or, more often, on a grid. The data for a grid is usually taken with fairly frequent

More information