Vienna, Austria May 2005 MONITORING GAS EXCHANGE: FROM THEORY TO CLINICAL APPLICATION

Size: px
Start display at page:

Download "Vienna, Austria May 2005 MONITORING GAS EXCHANGE: FROM THEORY TO CLINICAL APPLICATION"

Transcription

1 EUROANESTHESIA 2005 Vienna, Austria May 2005 MONITORING GAS EXCHANGE: FROM THEORY TO CLINICAL APPLICATION 5RC2 OLA STENQVIST Department of Anaesthesia and Intensive Care Sahlgrenska University Hospital Göteborg, Sweden Saturday May 28, :00-14:45 Room K INTRODUCTION A three compartment model of the lung [1]; where one compartment is the ideal compartment with matched perfusion and ventilation, one compartment is a compartment with perfusion but no ventilation and one compartment is a compartment with ventilation but no perfusion, gives a very thorough picture of the performance of the lung. The perfusion/no-ventilation compartment reveals the oxygen exchange performance and the ventilation/no-perfusion compartment reveals the carbon dioxide exchange performance. The ratio between the three compartments gives a superior overview of the severity of the lung injury (Figure 1).To obtain this information we need to monitor oxygen consumption and carbon dioxide output. FIGURE 1. THE THREE COMPARTMENT LUNG MODEL Figure 1. Three compartment lung model, where half the ventilation reaches the ideal alveoli and half the alveolar dead space (ADS) which has no circulation. Half the CO passes through the non ventilated lung = shunt flow, which will have venous SaO 2 also after passage through the lung. The other half of the CO passes through ventilated lung and will be fully saturated. Arterial blood will have a SaO 2 of (100+48)/2 = 76 due to venous admixture. The alveolar dead space is diagnosed by the difference in arterial PCO 2 (kpa) and the end tidal CO 2 (%). The end tidal CO 2 will be (6+0)/2 = 3 % and the arterial PCO 2 is 6 kpa indicating that half of the ventilation is not in contact with circulation METABOLIC GAS EXCHANGE During normal resting conditions 250 ml/ min oxygen is consumed and 200 ml/min carbon dioxide is produced. The ratio of carbon dioxide production/oxygen consumption, the respiratory quotient (RQ), varies depending upon the energy substrate utilised. Thus, when fat is utilised RQ is 0.7 and when carbohydrates are used RQ is 1.0, but usually RQ is around 0.8 indicating that a mixture of substrates are used. Oxygen consumption increases by 7-10% per degree above 37 o C and is increased during sepsis, and by treatment with betaagonists. Sedation and beta-blockers decrease oxygen consumption. The carbon dioxide output changes in a similar way but the changes take longer than the changes in oxygen consumption due to the difference in the body s stores. The total oxygen store, which is mainly in very rapidly exchanged compartments, the lungs and the hemoglobin, is approximately 1 litre. The carbon dioxide stores are over 100 litres with only a small part as a rapid turn over store in the blood, with the majority in very slow turn over compartments like bone and fat. 71

2 The oxygen consumption (VO 2 ) and carbon dioxide production (VCO 2 ) can be measured by indirect calorimetry, where the VO 2 = F I O 2 x VI FEO 2 x VE and the VCO 2 = FECO 2 x VE (F I O 2 = inspiratory oxygen fraction, FEO 2 = mixed expiraty oxygen fraction, VI = inspiratory minute ventilation, VE = expiratory minute ventilation, FECO 2 = mixed expiratory carbon dioxide fraction) There is a small difference in inspiratory and expiratory minute ventilation which is as a result of the difference in oxygen consumption and carbon dioxide production. This difference cannot be measured adequately but the VI can be calculated from the VE (or vice versa), assuming no net exchange of nitrogen by Haldane transformation. This is taken care of automatically in devices for indirect calorimetry, but in a department where there is no access to such a device a good estimation of the metabolic gas exchange can be obtained by measurement of only the carbon dioxide production. This can be easily done by connecting a mixing box to the outlet of the ventilator. This mixing box can be made from an empty cardboard box of 5-6 litres volume and must not be tight to allow the expiratory gases to leak freely out into the atmosphere. The sample port of a capnometer is fitted with a three-way stop cock, so that gas either can be sampled, as usual, from the y-piece for breath by breath capnometry or switched to sample from the mixing box for mixed expiratory carbon dioxide concentration. Modern capnometers are digital and have software for detecting end-tidal and inspiratory gas concentrations. When gas is sampled from the mixing box the gas concentration is almost constant and it takes up to 30 seconds before the software can identify and display the stable mixed expiratory concentration of carbon dioxide. The VCO 2 is calculated by multiplying the expiratory carbon dioxide concentration with the minute ventilation displayed on the ventilator. For example if the mixed expiratory carbon dioxide concentration is 2.2 % and the minute ventilation 11 litres/minute, the VCO 2 will be 2.2 x 11/100 =0.242 l/min. If we assume that the RQ is 0.8 the oxygen consumption will be 0.242/0.8 = l/min. From this we can also calculate energy expenditure (EE) as we know that 1 litre of oxygen consumption equals 4.75 kcal at a RQ of 0.8. In this case the EE for a 24 hour period is x 60 x 24 x 4.75 = 2513 kcal/24h. OXYGEN AND CARBON DIOXIDE CONTENT OF BLOOD The oxygen content of blood is a combination of the oxygen carried by hemoglobin (Hb), 1.34 ml/g Hb when fully saturated, plus the oxygen physically dissolved in plasma, 0.03 ml/mmhg (0.23 ml/kpa). With a normal hemoglobin level of 150 g/l the oxygen content of blood is 200 ml/l (Hb x 1.34 x SaO 2 + PaO 2 x 0.03, Hb g/l, SaO 2 %/100, PaO 2 mmhg). If cardiac output is 5 L/min then the oxygen delivery is 1000 ml/min. As the oxygen consumption is normally 250 ml/min the returning mixed venous blood will have a content of 150 ml/l and be saturated to a level of 75%. The total oxygen delivery is dependent on the hemoglobin level and in a typical intensive care patient this is around 100 and with 5 l/min of cardiac output the oxygen delivery will be only 667 ml/min, and with the same oxygen consumption the resulting mixed venous oxygen saturation will be as low as 63%. Whilst breathing air the arterial oxygen tension is ~ 100 mmhg and the mixed venous tension, PvO2 ~40 mmhg and the oxygen content difference 50 ml/l, resulting in a arterial-mixed venous content of ~1 ml/mmhg (Figure 2). 72

3 FIGURE 2. THE OXYGEN DISSOCIATION CURVE Figure 2. The oxygen dissociation curve Note the great arterio-mixed venous oxygen partial pressure difference, ~ 60 mmhg (9 kpa) as compared with carbon dioxide (Figure 3). The carbon dioxide content of blood is around 500 ml/l arterial blood and 520 ml/l mixed venous blood at the same partial pressure. However, the content is linearly decreasing with decreasing PCO 2 and the arterial content during normal conditions is 480 ml/l. The arterio-venous content difference is 40 ml CO 2 /L but the mixed venous-arterial tension difference is only 6 mmhg, resulting in an arterial mixed venous carbon dioxide content difference of ~7 ml/mmhg (Figure 3). FIGURE 3. THE CARBON DIOXIDE DISSOCIATION CURVES Figure 3. The carbon dioxide dissociation curves. Note that the partial pressure difference between mixed venous and arterial blood is very small, < 7.5 mmhg (1 kpa). 73

4 ALVEOLAR AND DEAD SPACE VENTILATION The alveolar ventilation (VA) can be calculated from the carbon dioxide production and the end tidal concentration, VA = VCO 2 /FETCO 2 The relationship between dead space ventilation and total ventilation is calculated using (PaCO 2 PECO 2 )/PaCO 2 and is normally around 0.3 but is increased in acute lung injury (ALI) and adult respiratory distress syndrome (ARDS). In the same way as the oxygen exchange function of the lung cannot be judged without knowledge of underlying factors such as hemoglobin, cardiac output and metabolism, the carbon dioxide exchange function of the lung, the dead-space cannot be judged from PaCO 2 alone but also requires knowledge of end-tidal carbon dioxide and carbon dioxide excretion. The dead space fraction has two components, the anatomical and the alveolar dead-space. The alveolar dead-space, alveoli without perfusion, increases when pulmonary capillary perfusion is insufficient and can also increase regionally, usually in the ventral part of the lung when ventilation pressures and end-expiratory pressure are increased. For the determination of the alveolar dead-space not only PaCO 2 and PECO 2 must be known but also end-tidal/alveolar PETCO 2, which is obtained my conventional capnography. The alveolar dead-space fraction is the difference between the total dead-space fraction (PaCO 2 -PECO 2 )PaCO 2 and the anatomical dead-space fraction (PETCO 2 -PECO 2 )/PETCO 2 (Figure 4). FIGURE 4. THE EFFECT UPON CARBON DIOXIDE OF THE VARIABLE DISTRIBUTION OF ALVEOLAR VENTIALTION SHUNT Figure 4. The effect on carbon dioxide from an alveolar dead space, ADS, receiving 50% of the alveolar ventilation (left graph). The PaCO 2 is ~ double the PACO 2. Increasing pulmonary circulation (right graph) by volume or/and inotropes results in more of the lung being circulated and the ADS decreases, in this example to 25% of the alveolar ventilation. PaCO 2 falls with 25% but the end-tidal CO 2 concentration remains unchanged. The ventilation/perfusion ratio is a function of hemoglobin level, cardiac output and metabolism in this context oxygen consumption and carbon dioxide excretion. Thus, a patient with a PaO 2 /F I O 2 ratio of 199, which correlates with ARDS by the NAECC definition, has a shunt of 0.28 if he has a hemoglobin of 150 g/l, an oxygen consumption of 300 ml/min and a cardiac output of 6 L/min and a F I O 2 of 1.0. In another patient with the same PaO 2 /F I O 2 ratio the shunt is only 0.15 because the Hb was 100 g/l, the oxygen consumption 240 ml/min and the cardiac output 4 L/min and a F I O 2 of 0.5. Thus, despite these patients having the same PaO 2 /F I O 2 ratio, which classifies them both as having ARDS, their level of pulmonary dysfunction is totally different. Both of the patients have respiratory failure, but the severity of their pulmonary conditions is totally misjudged by the P/F ratio, and shunt is a much better measure of the severity of ventilation/perfusion mismatching. 74

5 FIGURE 5. THE EFFECT OF INCREASING F I O 2 FROM 0.5 TO 1.0 ON A CASE WITH 50% SHUNT FLOW Figure 5. The effect of increasing FIO 2 from o.5 to 1.0 on a case with 50% shunt flow. The small increase in arterial oxygen saturation is a result of an increase in physically dissolved oxygen in the blood passing the ventilated lung compartment. Shunt is calculated by the standard shunt formula (CcapO2 CaO2)/(CcapO2 CvO2) where CcapO2 is the content of oxygen in lung capillary blood and CaO2 is the arterial oxygen content and CvO 2 is the oxygen content of mixed venous blood. The CcapO 2 can be accurately calculated assuming fully saturated hemoglobin plus oxygen dissolved in plasma as PAO 2 (kpa) times 0.23 ml (PAO 2 (mmhg) times 0.03 ml. (kpa = mmhg/7.5). The PAO 2 (kpa) can for clinical purposes be regarded as equivalent to end-tidal oxygen concentration (%). The PAO 2 can be calculated as the inspired oxygen concentration (%) minus the endtidal carbon dioxide concentration (%). In the absence of a pulmonary artery catheter the central venous oxygen content can be used as a reasonable surrogate for SvO 2 [2,3] but the shunt can also be estimated using a default value for the arterial mixed-venous oxygen content difference. A value of 50ml has been proposed and shown to give good correlation between true shunt and estimated shunt [4,5], but in patients with a hyperdynamic circulation a value of 40ml may be more adequate (Figure 5,6,7,8,9 and 10). FIGURE 6. THE EFFECT OF INCREASING CARDIAC OUTPUT ON IN A PATIENT WITH 50% SHUNT FLOW Figure 6. The effect of increasing cardiac output on in a patient with 50% shunt flow. Arterial oxygen saturation increases substantially from 74 to 86% as the increase in cardiac output results in a lower a-v oxygen content difference, which results in an increase in mixed venous oxygen saturation from 48 to 72 %. 75

6 FIGURE 7. THE EFFECT OF AN INCREASE IN HEMOGLOBIN CONCENTRATION IN A PATIENT WITH 50% SHUNT FLOW Figure 7. The effect of an increase in hemoglobin concentration in a patient with 50% shunt flow. The increase in arterial oxygen saturation is a result of the decrease in a-v oxygen content difference following the increase in hemoglobin. FIGURE 8. THE EFFECT OF NITRIC OXIDE INHALATION IN A PATIENT WITH 50% SHUNT FLOW Figure 8. The effect of nitric oxide inhalation in a patient with 50% shunt flow. The marked increase in arterial oxygen saturation is a result of a selective dilatation of the pulmonary vasculature in the ventilated part of the lung, which will divert blood from the shunt to ventilated lung. 76

7 FIGURE 9. THE EFFECT OF A DECREASE IN METABOLISM/OXYGEN CONSUMPTION IN A PATIENT WITH 50 % SHUNT FLOW Figure 9. The effect of a decrease in metabolism/oxygen consumption in a patient with 50 % shunt flow. The marked increase in arterial oxygen saturation is a result of the decrease in a-v oxygen content difference when the oxygen uptake decreases. FIGURE 10. THE EFFECT OF A RECRUIT MANOEUVRE AND INCREASED PEEP AFTERWARDS IN A PATIENT WITH 50 % SHUNT FLOW Figure 10. The effect of a recruit manoeuvre and increased PEEP afterwards in a patient with 50 % shunt flow. The recruitment manoeuvre opens up collapsed lung and the non-ventilated lung compartment with shunt flow decreases. Arterial oxygen saturation increases markedly. 77

8 REFERENCES: 1. Riley RL CA, Donald KW: Factors affecting partial pressures of O2 and CO2 in gas and blood of lung: Methods. J Appl Physiol 1951, 4: Ladakis C, Myrianthefs P, Karabinis A, Karatzas G, Dosios T, Fildissis G, Gogas J, Baltopoulos G: Central venous and mixed venous oxygen saturation in critically ill patients. Respiration 2001, 68: Rivers EP, Ander DS, Powell D: Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care 2001, 7: Zetterstrom H: Assessment of the efficiency of pulmonary oxygenation. The choice of oxygenation index. Acta Anaesthesiol Scand 1988, 32: Benatar SR, Hewlett AM, Nunn JF: The use of iso-shunt lines for control of oxygen therapy. Br J Anaesth 1973, 45:

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

Rodney Shandukani 14/03/2012

Rodney Shandukani 14/03/2012 Rodney Shandukani 14/03/2012 OXYGEN THERAPY Aerobic metabolism accounts for 90% of Oxygen consumption by tissues. generates ATP by oxidative phosphorylation. Oxygen cascade: Oxygen exerts a partial pressure,

More information

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning CHAPTER 6 Oxygen Transport Normal Blood Gas Value Ranges Table 6-1 OXYGEN TRANSPORT Oxygen Dissolved in the Blood Plasma Dissolve means that the gas maintains its precise molecular structure About.003

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange By: Aseel Jamil Al-twaijer Lec : physical principles of gas exchange Date:30 /10/2017 this lecture is about the exchange of gases between the blood and the alveoli. I might add some external definitions

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE Instant download and all chapters Test Bank Respiratory Care Anatomy and Physiology Foundations for Clinical Practice 3rd Edition Will Beachey https://testbanklab.com/download/test-bank-respiratory-care-anatomy-physiologyfoundations-clinical-practice-3rd-edition-will-beachey/

More information

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Blood gas adventures at various altitudes Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Mount Everest 8848 M Any point in bird watching here? Respiration is gas exchange: the process

More information

Respiratory physiology II.

Respiratory physiology II. Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

More information

Table of Contents. By Adam Hollingworth

Table of Contents. By Adam Hollingworth By Adam Hollingworth Table of Contents Oxygen Cascade... 2 Diffusion... 2 Laws of Diffusion... 2 Diffusion & Perfusion Limitations... 3 Oxygen Uptake Along Pulmon Capillary... 4 Measurement of Diffusing

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

RESPIRATORY MONITORING AND OXIMETRY

RESPIRATORY MONITORING AND OXIMETRY RESPIRATORY MONITORING AND OXIMETRY EE 471 F2016 Prof. Yasser Mostafa Kadah Introduction Respiratory monitoring includes measurement, evaluation, and monitoring of parameters of respiratory system, First

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD Respiratory System Prepared by: Dorota Marczuk-Krynicka, MD, PhD Lungs: Ventilation Perfusion Gas Exchange - Diffusion 1. Airways and Airway Resistance (AWR) 2. Mechanics of Breathing and Lung (Elastic)

More information

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here Respiratory Medicine A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics See online here Alveolar gas equation helps to calculate the partial pressure of oxygen in alveoli and A-a gradient is the

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS VENTILATION AND PERFUSION IN HEALTH AND DISEASE Dr.HARIPRASAD VS Ventilation Total ventilation - total rate of air flow in and out of the lung during normal tidal breathing. Alveolar ventilation -represents

More information

Let s talk about Capnography

Let s talk about Capnography Let s talk about Capnography This is one of a series of articles by Keith Simpson BVSc MRCVS MIET (Electronics) discussing the practical aspects of some common monitoring techniques. Capnometry is the

More information

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi Oxygen and Carbon dioxide Transport Dr. Laila Al-Dokhi Objectives 1. Understand the forms of oxygen transport in the blood, the importance of each. 2. Differentiate between O2 capacity, O2 content and

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie RESPIRATORY PHYSIOLOGY Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie Outline Ventilation Diffusion Perfusion Ventilation-Perfusion relationship Work of breathing Control of Ventilation 2 This image

More information

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%)

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%) 148 PHYSIOLOGY CASES AND PROBLEMS Case 26 Carbon Monoxide Poisoning Herman Neiswander is a 65-year-old retired landscape architect in northern Wisconsin. One cold January morning, he decided to warm his

More information

Fysiologie van de ademhaling - gasuitwisseling

Fysiologie van de ademhaling - gasuitwisseling What you will learn in this lecture... Lessenreeks co s 014-015 Fysiologie van de ademhaling - gasuitwisseling Professor Dr. Steffen Rex Department of Anesthesiology University Hospitals Leuven Department

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

Monitoring, Ventilation & Capnography

Monitoring, Ventilation & Capnography Why do we need to monitor? Monitoring, Ventilation & Capnography Keith Simpson BVSc MRCVS MIET(Electronics) Torquay, Devon. Under anaesthesia animals no longer have the ability to adequately control their

More information

Gas exchange and ventilation perfusion relationships in the lung

Gas exchange and ventilation perfusion relationships in the lung ERJ Express. Published on July 28, 214 as doi: 1.1183/931936.3714 REVIEW IN PRESS CORRECTED PROOF Gas exchange and ventilation perfusion relationships in the lung Johan Petersson 1,2 and Robb W. Glenny

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

Lung Volumes and Ventilation

Lung Volumes and Ventilation Respiratory System ssrisuma@rics.bwh.harvard.edu Lung Volumes and Ventilation Minute ventilation Volume of an inspired or expired air per minute = tidal volume (V T ) x respiratory rate Dead space ventilation

More information

The Safe Use and Prescription of Medical Oxygen. Luke Howard

The Safe Use and Prescription of Medical Oxygen. Luke Howard The Safe Use and Prescription of Medical Oxygen Luke Howard Consultant Respiratory Physician Imperial College Healthcare NHS Trust & Co-Chair, British Thoracic Society Emergency Oxygen Guideline Group

More information

CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY

CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY CARBON DIOXIDE METABOLISM Production Transportation Elimination Carbon Dioxide production CO 2 is the metabolite produced by the utilization by cells of oxygen

More information

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Essential Skills Course Acute Care Module Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Acknowledgements This pre course workbook has been complied and updated with reference to the original

More information

ROUTINE PREOXYGENATION

ROUTINE PREOXYGENATION EDITORIAL ROUTINE PREOXYGENATION It is a fact of great clinical importance that the body oxygen stores are so small, and if replenishment ceases, they are normally insufficient to sustain life for more

More information

TERMINOLOGY AND SYMBOLS USED LN RESPIRATORY PHYSIOLOGY. Assistant, Medical Unit, Middlesex Hospital, London, W.i

TERMINOLOGY AND SYMBOLS USED LN RESPIRATORY PHYSIOLOGY. Assistant, Medical Unit, Middlesex Hospital, London, W.i Brit. J. Anaesth. (1957), 29, 534 TERMINOLOGY AND SYMBOLS USED LN RESPIRATORY PHYSIOLOGY BY E. J. MORAN CAMPBELL Assistant, Medical Unit, Middlesex Hospital, London, W.i INTRODUCTION MANY anaesthetists

More information

TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml)

TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml) By: Amin alajlouni Lec: 2nd record Date: 29/10/2017 First of all, this is my first sheet so excuse any mistakes I might make and let's start: As we said before in our last lecture about lung capacities

More information

exchange of carbon dioxide and of oxygen between the blood and the air in

exchange of carbon dioxide and of oxygen between the blood and the air in M. M. HENRY WILLIAMS, JR.*Cardiorespiratory Laboratory, Grasslands WILLIAMS, JR.* Hospital, Valhalla, New York SOME APPLICATIONS OF PULMONARY PHYSIOLOGY TO CLINICAL MEDICINE During the past ten years a

More information

Blood Gas Interpretation

Blood Gas Interpretation Blood Gas Interpretation Pa O2 Saturation (SaO 2 ) Oxygen Therapy Monitoring Oxygen content (O( 2 Ct) Venous Oximetry Mixed venous oxygen saturation SvO 2 Surrogate for Systemic oxygen delivery and

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

Pulmonary Circulation Linda Costanzo Ph.D.

Pulmonary Circulation Linda Costanzo Ph.D. Pulmonary Circulation Linda Costanzo Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The differences between pressures in the pulmonary and systemic circulations. 2. How

More information

4. For external respiration to occur effectively, you need three parameters. They are:

4. For external respiration to occur effectively, you need three parameters. They are: Self Assessment Module D Name: ANSWER KEY 1. Hypoxia should be assumed whenever the PaO 2 is below 45 mm Hg. 2. Name some clinical conditions that will result in hyperventilation (respiratory alkalosis).

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

Review of gas frac9ons in atmospheric air 2/2/16. Metabolic Calculations of Indirect Calorimetry. Expired gas analysis.

Review of gas frac9ons in atmospheric air 2/2/16. Metabolic Calculations of Indirect Calorimetry. Expired gas analysis. Metabolic Calculations of Indirect Calorimetry Understanding atmospheric air and gas volumes Calcula9ng VO2 The Haldane Transforma9on Calcula9ng VCO2 Calcula9ng RER Calcula9ng caloric expenditure Expired

More information

ONLINE DATA SUPPLEMENT. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg

ONLINE DATA SUPPLEMENT. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg APPENDIX 1 Appendix 1. Complete respiratory protocol. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg predicted body weight (PBW)) (NEJM 2000; 342

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

12. Laboratory testing

12. Laboratory testing 12. Laboratory testing The performance lab of a Sports Medical Center offers various tests. In this paper we elaborate the testing of the aerobic system of a runner on a treadmill. To test the aerobic

More information

The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases

The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases ERJ Express. Published on October 16, 214 as doi: 1.1183/931936.39214 REVIEW IN PRESS CORRECTED PROOF The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial

More information

Respiratory Anatomy and Physiology. Respiratory Anatomy. Function of the Respiratory System

Respiratory Anatomy and Physiology. Respiratory Anatomy. Function of the Respiratory System Respiratory Anatomy and Physiology Michaela Dixon Clinical Development Nurse PICU BRHFC Respiratory Anatomy Function of the Respiratory System - In conjunction with the cardiovascular system, to supply

More information

Pulmonary Circulation

Pulmonary Circulation Pulmonary Circulation resin cast of pulmonary arteries resin cast of pulmonary veins Blood Flow to the Lungs Pulmonary Circulation Systemic Circulation Blood supply to the conducting zone provided by the

More information

BREATH-BY-BREATH METHOD

BREATH-BY-BREATH METHOD BREATH-BY-BREATH METHOD COR-MAN-0000-005-IN / EN Issue A, Rev. 2 2013-07 INNOISION ApS Skovvænge DK-5620 Glamsbjerg Denmark Tel.: +45 65 95 91 00 Fax: +45 65 95 78 00 info@innovision.dk www.innovision.dk

More information

GE Healthcare. CARESCAPE R860 Nutritional Assessment Tools Appliguide

GE Healthcare. CARESCAPE R860 Nutritional Assessment Tools Appliguide GE Healthcare CARESCAPE R860 Nutritional Assessment Tools Appliguide 1 Contents Introduction... 3 Scope of this appliguide... 3 Structure of this appliguide... 3 Indirect Calorimetry... 4 Limitations of

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives exercise 7 Respiratory System Mechanics Objectives 1. To explain how the respiratory and circulatory systems work together to enable gas exchange among the lungs, blood, and body tissues 2. To define respiration,

More information

LUNG CLEARANCE INDEX. COR-MAN IN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark

LUNG CLEARANCE INDEX. COR-MAN IN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark LUNG CLEARANCE INDEX METHOD COR-MAN-0000-008-IN Issue A, Rev. 3 2013-07-01 INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark Tel.: +45 65 95 91 00 Fax: +45 65 95 78 00 info@innovision.dk www.innovision.dk

More information

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY Louis Al-Saleem 5/4/13 OXYGEN PHYSIOLOGY AND PULSE OXIMETRY A very experienced senior resuscitation nurse approached me at work recently, and asked if there was any circulating academic evidence about

More information

A Decision Support System for Mechanical Ventilation

A Decision Support System for Mechanical Ventilation A Decision Support System for Mechanical Ventilation A Decision Support System for Mechanical Ventilation Description and Retrospective Clinical Evaluation PhD Thesis by Charlotte Allerød Deparment of

More information

CDI Blood Parameter Monitoring System 500 A New Tool for the Clinical Perfusionist

CDI Blood Parameter Monitoring System 500 A New Tool for the Clinical Perfusionist Original Article Blood Parameter Monitoring System 500 A New Tool for the Clinical Perfusionist David W. Fried, MS Ed, CCP; Joseph J. Leo, BS, CCP; Gabriel J. Mattioni, BS, CCP; Hasratt Mohamed, CCP; Raymond

More information

APNOEA AND PRE-OXYGENATION

APNOEA AND PRE-OXYGENATION APNOEA AND PRE-OXYGENATION Original article by Dr Andrew Biffen, Dr Richard Hughes Torbay Hospital, UK INTRODUCTION The purpose of pre-oxygenation is to increase physiological stores of oxygen in order

More information

Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective

Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective Cory M. Alwardt, PhD, CCP Chief Perfusionist/ECMO Coordinator Assistant Professor of Surgery Mayo Clinic Hospital, Phoenix alwardt.cory@mayo.edu

More information

Tter person TERM PAPER. Date: 30/4/ MEDICAL VENTILATOR

Tter person TERM PAPER. Date: 30/4/ MEDICAL VENTILATOR Tter person TERM PAPER BM 600 Nuruddin Bahar Date: 30/4/2012 09002040 MEDICAL VENTILATOR It is an artificial ventilating device which is used to mechanically move breathable air in and out of lungs at

More information

RC-178 a/a ratio. Better. PaO2 ACM than. a/a= PAO2. guessing!! Copyrights All rights reserved Louis M. Sinopoli

RC-178 a/a ratio. Better. PaO2 ACM than. a/a= PAO2. guessing!! Copyrights All rights reserved Louis M. Sinopoli RC-178 a/a ratio Better a/a= PaO2 ACM than PAO2 guessing!! 1 A relative RC-178 a/a ratio way to judge the lungs ability to transport O2. Determine new FIO2 to achieve PaO 2 amount that got through the:

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

After having worked out this lecture, you will be able to describe the oxygen cascade and to calculate the inspiratory and the alveolar partial

After having worked out this lecture, you will be able to describe the oxygen cascade and to calculate the inspiratory and the alveolar partial 1 After having worked out this lecture, you will be able to describe the oxygen cascade and to calculate the inspiratory and the alveolar partial pressure of oxygen. You will have understood the process

More information

Alveolar dead space (VDalv) impairs pulmonary

Alveolar dead space (VDalv) impairs pulmonary Estimating Alveolar Dead Space from the Arterial to End-Tidal CO 2 Gradient: A Modeling Analysis Jonathan G. Hardman, FRCA, and Alan R. Aitkenhead, FRCA From the University Department of Anaesthesia, University

More information

medical physiology :: Pulmonary Physiology in a Nutshell by:

medical physiology :: Pulmonary Physiology in a Nutshell by: medical physiology :: Pulmonary Physiology in a Nutshell by: Johan H Koeslag Medical Physiology Stellenbosch University PO Box 19063 Tygerberg, 7505. South Africa Mail me INTRODUCTION The lungs are not

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

Initiation and Management of Airway Pressure Release Ventilation (APRV)

Initiation and Management of Airway Pressure Release Ventilation (APRV) Initiation and Management of Airway Pressure Release Ventilation (APRV) Eric Kriner RRT Pulmonary Critical Care Clinical Specialist Pulmonary Services Department Medstar Washington Hospital Center Disclosures

More information

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan The Physiologic Basis of DLCO testing Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan Objectives Review gas transport from inhaled gas to the rest of the

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG GAS EXCHANGE AND TRANSPORT I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O 2 to generate CO 2 & H 2 O. This is cellular respiration II. HOW GAS ENTERS A CELL A. The composition of air: 79% N

More information

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

PHTY 300 Wk 1 Lectures

PHTY 300 Wk 1 Lectures PHTY 300 Wk 1 Lectures Arterial Blood Gas Components The test provides information on - Acid base balance - Oxygenation - Hemoglobin levels - Electrolyte blood glucose, lactate, renal function When initially

More information

Capnography. The Other Vital Sign. 3 rd Edition J. D Urbano, RCP, CRT Capnography The Other Vital Sign 3 rd Edition

Capnography. The Other Vital Sign. 3 rd Edition J. D Urbano, RCP, CRT Capnography The Other Vital Sign 3 rd Edition The Other Vital Sign 3 rd Edition Send questions or comments to: J. D Urbano, RCP, CRT BreathSounds jdurbano@breathsounds.org Visit Our Website: http://www.breathsounds.org Join Our Forum: http://www.breathsounds.org/reportroom/

More information

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES GENERAL PROVISIONS: EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES Individuals providing Inter-facility transport with Mechanical Ventilator must have successfully completed

More information

Section 01: The Pulmonary System

Section 01: The Pulmonary System Section 01: The Pulmonary System Chapter 12 Pulmonary Structure and Function Chapter 13 Gas Exchange and Transport Chapter 14 Dynamics of Pulmonary Ventilation HPHE 6710 Exercise Physiology II Dr. Cheatham

More information

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi Course : PG Pathshala-Biophysics Paper 13 : Physiological Biophysics Module 17 : Gas transport and pulmonary circulation Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Link full download: http://testbankair.com/download/test-bank-for-pilbeams-mechanicalventilation-physiological-and-clinical-applications-6th-edition-by-cairo/

More information

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood Breathing rate is regulated by blood ph and C02 breathing reduces plasma [CO2]; plasma [CO2] increases breathing. When C02 levels are high, breating rate increases to blow off C02 In low C02 conditions,

More information

Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease

Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease References: Saladin, KS: Anatomy and Physiology, The Unity of Form and Function 7 th (2015) Be sure you have read

More information

Respiratory system & exercise. Dr. Rehab F Gwada

Respiratory system & exercise. Dr. Rehab F Gwada Respiratory system & exercise Dr. Rehab F Gwada Objectives of lecture Outline the major anatomical components & important functions of the respiratory system. Describe the mechanics of ventilation. List

More information

Respiratory Physiology. Adeyomoye O.I

Respiratory Physiology. Adeyomoye O.I Respiratory Physiology By Adeyomoye O.I Outline Introduction Hypoxia Dyspnea Control of breathing Ventilation/perfusion ratios Respiratory/barometric changes in exercise Intra-pulmonary & intra-pleural

More information

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

UNDERSTANDING THE BLUE PATIENT Amy Breton Newfield, CVT, VTS (ECC) BluePearl Veterinary Partners, Waltham, MA USA

UNDERSTANDING THE BLUE PATIENT Amy Breton Newfield, CVT, VTS (ECC) BluePearl Veterinary Partners, Waltham, MA USA UNDERSTANDING THE BLUE PATIENT Amy Breton Newfield, CVT, VTS (ECC) BluePearl Veterinary Partners, Waltham, MA USA Amy.Newfield@bluepearlvet.com INTRODUCTION As a veterinary nurse you will likely be the

More information

VENTILATORS PURPOSE OBJECTIVES

VENTILATORS PURPOSE OBJECTIVES VENTILATORS PURPOSE To familiarize and acquaint the transfer Paramedic with the skills and knowledge necessary to adequately maintain a ventilator in the interfacility transfer environment. COGNITIVE OBJECTIVES

More information

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have - How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have the highest blood flow of all organs, which makes them

More information

INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES

INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES PROVIDE THE DEFINITION FOR BI-VENT EXPLAIN THE BENEFITS OF BI-VENT EXPLAIN SET PARAMETERS IDENTIFY RECRUITMENT IN APRV USING

More information

Respiratory System Study Guide, Chapter 16

Respiratory System Study Guide, Chapter 16 Part I. Clinical Applications Name: Respiratory System Study Guide, Chapter 16 Lab Day/Time: 1. A person with ketoacidosis may hyperventilate. Explain why this occurs, and explain why this hyperventilation

More information

Some major points on the Effects of Hypoxia

Some major points on the Effects of Hypoxia Some major points on the Effects of Hypoxia Source: Kings College London http://www.kcl.ac.uk/teares/gktvc/vc/dental/year1/lectures/rbmsmajorpoints/effectsofhypoxia.htm Cells obtain their energy from oxygen.

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): John G. Younger, M.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Respiration. The resspiratory system

Respiration. The resspiratory system Respiration The resspiratory system The Alveoli The lungs have about 300 million alveoli, with a total crosssec onal area of 50 70 m2.. Each alveolar sac is surrounded by blood capillaries. The walls of

More information

New Generation System M, leading the World in the Non-Invasive Measurement of Critical Real-Time Parameters.

New Generation System M, leading the World in the Non-Invasive Measurement of Critical Real-Time Parameters. New Generation System M, leading the World in the Non-Invasive Measurement of Critical Real-Time Parameters. System M Spectrum Medicals total commitment to continuous product improvement is demonstrated

More information

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL Dr Nick Taylor Visiting Emergency Specialist Teaching Hospital Karapitiya Senior Specialist and Director ED Training Clinical Lecturer, Australian National

More information

49 Arterial Blood Gases

49 Arterial Blood Gases 49 Arterial Blood Gases E. P. TRULOCK, III Definition Arterial blood gases (ABGs) is a collective term applied to three separate measurements-ph, Pco 2, and Poe -generally made together to evaluate acid-base

More information