For more information about how to cite these materials visit

Size: px
Start display at page:

Download "For more information about how to cite these materials visit"

Transcription

1 Author(s): Louis D Alecy, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content. For more information about how to cite these materials visit Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition. Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

2 Citation Key for more information see: Use + Share + Adapt { Content the copyright holder, author, or law permits you to use, share and adapt. } Public Domain Government: Works that are produced by the U.S. Government. (USC ) Public Domain Expired: Works that are no longer protected due to an expired copyright term. Public Domain Self Dedicated: Works that a copyright holder has dedicated to the public domain. Creative Commons Zero Waiver Creative Commons Attribution License Creative Commons Attribution Share Alike License Creative Commons Attribution Noncommercial License Creative Commons Attribution Noncommercial Share Alike License GNU Free Documentation License Make Your Own Assessment { Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. } Public Domain Ineligible: Works that are ineligible for copyright protection in the U.S. (USC (b)) *laws in your jurisdiction may differ { Content Open.Michigan has used under a Fair Use determination. } Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC ) *laws in your jurisdiction may differ Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair. To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

3 O 2 and CO 2 Transport M1 Cardiovascular/ Respiratory Sequence Louis D Alecy, Ph.D. Fall

4 Tuesday 11/18/08, 9:00 O 2 and CO 2 Transport 35 slides, 50 minutes 1. Describe the amount of oxygen dissolved and combined in blood. 2. Define oxygen delivery to a tissue. 3. Describe the characteristics of the oxygen-hb saturation curve. 4. Describe the shifts produced in the oxygen-hb saturation curve. 5. Describe the effects of anemia on oxygen content and PO State the three forms in which CO 2 is carried in the blood. 7. Describe the role of carbonic anhydrase in CO 2 transport. 8. Describe the chemical events associated with the uptake and release of CO Defines chloride shift. 4

5 Liquid blood Alveolar gas Source Undetermined O 2 content of blood = Dissolved + Hb bound O 2 5

6 How much gas is dissolved? A gas dissolves in a liquid in direct proportion to its partial pressure and solubility. Henry s Law 6

7 Henry s Law for O 2 The content of dissolved oxygen is equal to the product of the oxygen solubility coefficient and oxygen partial pressure. CdO = a O2 P O 2 Linear straight line Relationship like y = mx. = CdO2 content of dissolved O 2 ml/dl a 2 = solubility coefficient for O 2 in blood a O2 = ml/mm Hg/dL dl = 100 ml 7

8 Dissolved O 2 At PO 2 of 100 mmhg X you get 0.3 ml O 2 /dl dissolved oxygen in blood. With cardiac output of 5000 ml/min or 50 dl/min you would deliver (50 dl X 0.3 ml/dl) or 15 ml O 2 /min. BUT We consume 20 X that or 250 ml O 2 /min so dissolved just will not do it!! You need hemoglobin to bind and transport O 2. dl = 100 ml 8

9 Zephyris (wikipedia), Hemoglobin 9

10 Air Air Plasma Dissolved only D Alecy RBC Hb-O 2 bound + O 2 dissolved Not all Hb has O 2 10

11 How much O 2 is in blood? Concentration = Content ml/dl = ml/100ml = Vol% (ml of O 2 in 100 ml blood) i.e. arterial blood has 20 Vol% O 2 Content %Hb Saturation % Hb Saturation = O 2 bound to Hb X 100% O 2 capacity of Hb 11

12 O 2 content (with flow) determines O 2 delivery. Thus O 2 content is more important to O 2 delivery than is O 2 saturation. O 2 Content %Hb Saturation So why do we talk about O 2 saturation? O 2 saturation is relatively easier to measure and O 2 content is much more difficult to measure. We need to understand the differences!!!! 12

13 Hb Saturation Curve Normal Arterial Blood ~ 27 mmhg Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. 13

14 % Hb Sat Or Sat Most O 2 combined. Linear straight line relationship. O 2 Content (ml / 100mL) Source Undetermined 14

15 O 2 Content (ml / 100mL) Different amounts of Hb but all 100% saturated! H b O 2 Saturation (%) Hb=10 Hb=15 Hb=20 Normal blood Hb = 15 gm/dl Source Undetermined 15

16 DO 2 (cc/m 2 /min) Anemia or Blood loss CI (L/m 2 /min) Bartlett, Critical Care Physiology 16

17 i.e. ANEMIA Decreased Hb concentration so that % saturation can be normal (97-100%) but O 2 content is decreased. 1. Decreased number of RBC 2. Decreased Hb content per RBC Normal blood Hb = 15 gm/dl 17

18 Denver? O 2 bars? O 2 Content (ml / 100mL) Source Undetermined Breathing 100% O 2. 18

19 Hemoglobin Bound Oxygen Content ml O 2 /dl C b O = S O 2 [ Hb ] Hb s 2 S O = % Hb saturation = O 2 bound to Hb X 100% O 2 capacity of Hb [ Hb ] = hemoglobin content gm/dl blood Hb s = saturated Hb O 2 content ml O 2 /gm Hb Hb s = 1.36 ml O 2 /gm Hb = O 2 capacity 19

20 Typical Arterial Blood Oxygen Content P O Dissolved O = 100 mm Hg S = 97% [ Hb ] = 15 gm/dl O 2 2 C d O 2 Bound O = a O 2 P O 2 = x 100 = 0.31 ml / dl C = S [ Hb ] Hb = 0.97 x 15 x 1.36 = ml / dl b O s O 2 2 Total Oxygen Content C d O 2 + C b O 2 = = 20.1 ml / dl 20

21 Bound Cb O ml / dl 20.1 Dissolved Cd O Total C O H b O 2 Saturation (%) % Source Undetermined 21

22 Content P ao2 C ao2 S O2 mm Hg ml / dl % Normal Hb 15 g/dl Breathing Room Air Anemia Hb 7.5 g/dl Breathing 100% O 2 Normal Hb 15 g/dl Anemia Hb 7.5 g/dl Thus breathing 100% O 2 does not fix reduced oxygen transport capacity due to anemia. 22

23 2X or 3X CO could compensate DO 2 (cc/m 2 /min) Anemia or Blood loss CI (L/m 2 /min) Bartlett, Critical Care Physiology 23

24 ph on O 2 Saturation of Hb Acid unloads O 2 from Hb (Bohr Effect) At any PO 2 less O 2 bound Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. 24

25 CO 2 on O 2 Saturation of Hb CO 2 unloads O 2 from Hb (Bohr Effect) At any PO 2 less O 2 bound Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. 25

26 Temperature on O 2 Saturation of Hb Temperature unloads O 2 from Hb At any PO 2 less O 2 bound Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. 26

27 2,3-BPG on O 2 Saturation of Hb More 2,3-BPG unloads O 2 from Hb Lost in stored blood ~ canʼt unload O 2 Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. 27

28 Venous blood on O 2 Saturation of Hb Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Venous blood unloads O 2 from Hb P 50 is PO 2 at 50% O2 saturation. 28

29 left shift (lungs) H + CO 2 temperature 2,3 BPG At any PO 2 more O 2 bound. right shift (tissues) Source Undetermined At any PO 2 less O 2 bound. 29

30 O 2 is unloaded in tissues O 2 HbO 2 D Alecy tissue metabolism right shift + H Temperature CO 2 30

31 In tissues CO 2 is stored in blood (for transport). CO 2 CO 2 CO 2 + H 2 O H 2 CO 3 C.A. = carbonic anhydrase chloride Shifts in Cl - HCO H + HbO 2 Bohr shift Buffer Action. O 2 O 2 O 2 + HHb tissue ISF plasma RBC Source Undetermined In tissues O 2 is unloaded from blood. 31

32 In lungs CO 2 is unloaded from blood. CO 2 CO 2 CO 2 + H 2 O chloride Shift out HCO 3 - H 2 CO 3 HCO H + Cl - C.A. = carbonic anhydrase HbO 2 Haldane shift O 2 O 2 O 2 + HHb alveolus plasma RBC Source Undetermined In lungs O 2 is stored in blood. 32

33 How is CO 2 Transported? CO 2 is about 20 x more soluble than O 2 But still only 5% (art.) to 10% (ven.) of transport is dissolved!! The content of dissolved gas (C dx ) is the product of the solubility coefficient (a x ) and the partial pressure of the gas (P x ). Cdx = a x P x Cdx = dissolved gas content ml/dl a O2 = ml / mm Hg /dl = 0.06 ml / mm Hg /dl a CO2 33

34 Some Most Carbonic Anhydrase H + + Hb-NHCOO - = Hb + CO 2 + H 2 O = H + + HCO3 - Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. 34

35 Reduced (de-ox)hb binds more CO 2 than HbO 2 Source Undetermined 35

36 Source Undetermined 36

37 Reduced (de-ox)hb binds more CO 2 than HbO 2, venous blood can carry more CO 2 then arterial blood. Venous Venous blood Arterial blood Arterial Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. 37

38 left shift (lungs) H + CO 2 temperature 2,3 BPG At any PO 2 more O 2 bound. right shift (tissues) Source Undetermined At any PO 2 less O 2 bound. 38

39 Slide 5: Source Undetermined Slide 9: GFDL, Zephyris (wikipedia), Slide 10: D Alecy Slide 13: Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Slide 14: Source Undetermined Slide 15: Source Undetermined Slide 16: Bartlett, Critical Care Physiology Slide 18: Source Undetermined Slide 21: Source Undetermined Slide 23: Bartlett, Critical Care Physiology Slide 24: Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Slide 25: Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Slide 26: Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Slide 27: Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Slide 28: Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Slide 29: Source Undetermined Slide 30: D Alecy Slide 31: Source Undetermined Slide 32: Source Undetermined Slide 34: Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Slide 35: Source Undetermined Slide 36: Source Undetermined Slide 37: Levitzky. Pulmonary Physiology. McGraw-Hill, th ed. Slide 38: Source Undetermined Additional Source Information for more information see:

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Louis D Alecy, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi Oxygen and Carbon dioxide Transport Dr. Laila Al-Dokhi Objectives 1. Understand the forms of oxygen transport in the blood, the importance of each. 2. Differentiate between O2 capacity, O2 content and

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Louis D Alecy, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood Breathing rate is regulated by blood ph and C02 breathing reduces plasma [CO2]; plasma [CO2] increases breathing. When C02 levels are high, breating rate increases to blow off C02 In low C02 conditions,

More information

Respiratory physiology II.

Respiratory physiology II. Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

More information

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi Course : PG Pathshala-Biophysics Paper 13 : Physiological Biophysics Module 17 : Gas transport and pulmonary circulation Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity and minor gases argon,

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity other minor gases argon,

More information

Gases and Respiration. Respiration Overview I

Gases and Respiration. Respiration Overview I Respiration Overview I Respiration Overview II Gas Laws Equation of State: PV = nrt Same volumes of different gases have same # of molecules BTPS: body temp, atmospheric pressure, saturated ATPS: ambient

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning CHAPTER 6 Oxygen Transport Normal Blood Gas Value Ranges Table 6-1 OXYGEN TRANSPORT Oxygen Dissolved in the Blood Plasma Dissolve means that the gas maintains its precise molecular structure About.003

More information

Respiratory System Study Guide, Chapter 16

Respiratory System Study Guide, Chapter 16 Part I. Clinical Applications Name: Respiratory System Study Guide, Chapter 16 Lab Day/Time: 1. A person with ketoacidosis may hyperventilate. Explain why this occurs, and explain why this hyperventilation

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): John G. Younger, M.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Essential Skills Course Acute Care Module Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Acknowledgements This pre course workbook has been complied and updated with reference to the original

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%)

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%) 148 PHYSIOLOGY CASES AND PROBLEMS Case 26 Carbon Monoxide Poisoning Herman Neiswander is a 65-year-old retired landscape architect in northern Wisconsin. One cold January morning, he decided to warm his

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG GAS EXCHANGE AND TRANSPORT I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O 2 to generate CO 2 & H 2 O. This is cellular respiration II. HOW GAS ENTERS A CELL A. The composition of air: 79% N

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

Gas Exchange Respiratory Systems

Gas Exchange Respiratory Systems alveoli gills Gas Exchange Respiratory Systems elephant seals 2008-2009 Why do we need a respiratory system? respiration for respiration Need O 2 in for aerobic cellular respiration make ATP Need CO 2

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan The Physiologic Basis of DLCO testing Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan Objectives Review gas transport from inhaled gas to the rest of the

More information

Alveolus and Respiratory Membrane

Alveolus and Respiratory Membrane Alveolus and Respiratory Membrane thin membrane where gas exchange occurs in the lungs, simple squamous epithelium (Squamous cells have the appearance of thin, flat plates. They fit closely together in

More information

P215 Respiratory System, Part 2

P215 Respiratory System, Part 2 P15 Respiratory System, Part Gas Exchange Oxygen and Carbon Dioxide constant need for oxygen constant production of carbon dioxide exchange (and movement) lung alveoli pulmonary arteries pulmonary capillaries

More information

AP Biology. Gas Exchange Respiratory Systems. Gas exchange. Why do we need a respiratory system? Optimizing gas exchange. Gas exchange in many forms

AP Biology. Gas Exchange Respiratory Systems. Gas exchange. Why do we need a respiratory system? Optimizing gas exchange. Gas exchange in many forms alveoli Gas Exchange Respiratory Systems gills elephant seals 2008-2009 Why do we need a respiratory system? Need O 2 in food respiration for respiration for aerobic cellular respiration make ATP Need

More information

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology alveoli Chapter 42. Gas Exchange gills elephant seals Gas exchange O 2 & CO 2 exchange exchange between environment & cells provides O 2 for aerobic cellular respiration need moist membrane need high

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

GAS EXCHANGE & PHYSIOLOGY

GAS EXCHANGE & PHYSIOLOGY GAS EXCHANGE & PHYSIOLOGY Atmospheric Pressure Intra-Alveolar Pressure Inspiration 760 mm HG at Sea Level (= 1 atm) Pressure due to gases (N2, O2, CO2, Misc.) Pressure inside the alveolus (air sac) Phrenic

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

AP Biology. Chapter 42. Gas Exchange. Optimizing gas exchange. Gas exchange. Gas exchange in many forms. Evolution of gas exchange structures

AP Biology. Chapter 42. Gas Exchange. Optimizing gas exchange. Gas exchange. Gas exchange in many forms. Evolution of gas exchange structures alveoli Chapter 42. Gas Exchange gills elephant seals Gas exchange & C exchange exchange between environment & cells provides for aerobic cellular respiration need moist membrane need high surface area

More information

Fysiologie van de ademhaling - gasuitwisseling

Fysiologie van de ademhaling - gasuitwisseling What you will learn in this lecture... Lessenreeks co s 014-015 Fysiologie van de ademhaling - gasuitwisseling Professor Dr. Steffen Rex Department of Anesthesiology University Hospitals Leuven Department

More information

Transport of Oxygen and Carbon Dioxide in Blood and Tissue Fluids

Transport of Oxygen and Carbon Dioxide in Blood and Tissue Fluids C H A P T E R 4 Transport of Oxygen and Carbon Dioxide in Blood and Tissue Fluids Once oxygen has diffused from the alveoli into the pulmonary blood, it is transported to the peripheral tissue capillaries

More information

Respiratory Lecture Test Questions Set 3

Respiratory Lecture Test Questions Set 3 Respiratory Lecture Test Questions Set 3 1. The pressure of a gas: a. is inversely proportional to its volume b. is unaffected by temperature changes c. is directly proportional to its volume d. does not

More information

How and why Eurotrol s CueSee Hypoxic works

How and why Eurotrol s CueSee Hypoxic works How and why Eurotrol s CueSee Hypoxic works Thank you for taking the time to learn some of the advantages and principles behind Eurotrol s CueSee Hypoxic for the validation of low po2 blood gas measurements.

More information

Rodney Shandukani 14/03/2012

Rodney Shandukani 14/03/2012 Rodney Shandukani 14/03/2012 OXYGEN THERAPY Aerobic metabolism accounts for 90% of Oxygen consumption by tissues. generates ATP by oxidative phosphorylation. Oxygen cascade: Oxygen exerts a partial pressure,

More information

Table of Contents. By Adam Hollingworth

Table of Contents. By Adam Hollingworth By Adam Hollingworth Table of Contents Oxygen Cascade... 2 Diffusion... 2 Laws of Diffusion... 2 Diffusion & Perfusion Limitations... 3 Oxygen Uptake Along Pulmon Capillary... 4 Measurement of Diffusing

More information

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Blood gas adventures at various altitudes Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Mount Everest 8848 M Any point in bird watching here? Respiration is gas exchange: the process

More information

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

82 Respiratory Tract NOTES

82 Respiratory Tract NOTES 82 Respiratory Tract NOTES RESPIRATORY TRACT The respiratory tract conducts air to the lungs where gaseous exchange occurs. It is separated into air-conducting and respiratory (where gas exchange occurs)

More information

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility.

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility. Physiology, sheet #9 Oxygen, is first dissolved in the plasma and the cytosol of the rbc, we have around blood constitutes 7% of our body weight, oxygen, in the capillaries is present in the rbc s and

More information

RESPIRATION III SEMESTER BOTANY MODULE II

RESPIRATION III SEMESTER BOTANY MODULE II III SEMESTER BOTANY MODULE II RESPIRATION Lung Capacities and Volumes Tidal volume (TV) air that moves into and out of the lungs with each breath (approximately 500 ml) Inspiratory reserve volume (IRV)

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

Lecture 8: Heme/Non Heme Iron Proteins and O 2 Management II. Plus a bit of catalysis in Oxygen processes

Lecture 8: Heme/Non Heme Iron Proteins and O 2 Management II. Plus a bit of catalysis in Oxygen processes Lecture 8: Heme/Non Heme Iron Proteins and O 2 Management II Plus a bit of catalysis in Oxygen processes Hemoglobin Key Properties Ubiquitous O2 transport protein A globular soluble protein, 2X2 chains

More information

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System VI edit Pag 451-499 Chapter 13 The Respiratory System V edit. Pag 459-509 Tissue cell Alveoli of lungs Atmosphere 1 External respiration Ventilation or gas exchange between the atmosphere and air sacs

More information

Author: Thomas Sisson, MD, 2009

Author: Thomas Sisson, MD, 2009 Author: Thomas Sisson, MD, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Chapter 22 The Respiratory System

Chapter 22 The Respiratory System Chapter 22 The Respiratory System 1 Respiration Pulmonary ventilation (breathing): movement of air into and out of the lungs External respiration: O 2 and CO 2 exchange between the lungs and the blood

More information

Physiology of Respiration

Physiology of Respiration Physiology of Respiration External Respiration = pulmonary ventilation breathing involves 2 processes: inspiration expiration Inspiration an active process involves contraction of diaphragm innervated

More information

Chapter 11: Respiratory System Review Assignment

Chapter 11: Respiratory System Review Assignment Name: Date: Mark: / 45 Chapter 11: Respiratory System Review Assignment Multiple Choice = 45 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following

More information

Recitation question # 05

Recitation question # 05 Recitation and Lab # 05 The goal of this recitations / labs is to review material related to the CV and respiratory lectures for the second test of this course. Info required to answer this recitation

More information

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

Section 01: The Pulmonary System

Section 01: The Pulmonary System Section 01: The Pulmonary System Chapter 12 Pulmonary Structure and Function Chapter 13 Gas Exchange and Transport Chapter 14 Dynamics of Pulmonary Ventilation HPHE 6710 Exercise Physiology II Dr. Cheatham

More information

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here Respiratory Medicine A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics See online here Alveolar gas equation helps to calculate the partial pressure of oxygen in alveoli and A-a gradient is the

More information

Respiratory system & exercise. Dr. Rehab F Gwada

Respiratory system & exercise. Dr. Rehab F Gwada Respiratory system & exercise Dr. Rehab F Gwada Objectives of lecture Outline the major anatomical components & important functions of the respiratory system. Describe the mechanics of ventilation. List

More information

Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23

Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23 nd Lecture Fri 06 Mar 009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 009 Kevin Bonine & Kevin Oh Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 1-3 1 Housekeeping,

More information

These two respiratory media (air & water) impose rather different constraints on oxygen uptake:

These two respiratory media (air & water) impose rather different constraints on oxygen uptake: Topic 19: OXYGEN UPTAKE AND TRANSPORT (lectures 29-30) OBJECTIVES: 1. Be able to compare air vs. water as a respiratory medium with respect to oxygen content, diffusion coefficient, viscosity and water

More information

Respiratory/Pulmonary Laboratory Experimentation

Respiratory/Pulmonary Laboratory Experimentation Respiratory/Pulmonary Laboratory Experimentation Introduction Anatomy Review The respiratory system has the dubious honor of being the system that permits the transport of gases from the environment inside

More information

αo 2 : solubility coefficient of O 2

αo 2 : solubility coefficient of O 2 Version 2006 Dr. Puntarica Suwanprathes 1) Fick s law of diffusion 2) facts which limit gas transfer 3) diffusion capacity gas volume gaseous phase dissolved gas exert pressure*** Solubility of Gas C =P.

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

Measurement of cardiac output by Alveolar gas exchange - CO 2 -O 2 based methods

Measurement of cardiac output by Alveolar gas exchange - CO 2 -O 2 based methods Measurement of cardiac output by Alveolar gas exchange - CO 2 -O 2 based methods Carlo Capelli SS.MM. Università degli Studi di Verona Why CO? V O 2 = CO * (C a C v )O 2 It s a determinat of V O 2 It dictates/modulates

More information

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial Gas Exchange in Animals Uptake of O2 from environment and discharge of CO2 Respiratory medium! water for aquatic animals, air for terrestial Respiratory surface! skin, gills, lungs Circulatory System O2/CO2

More information

RESPIRATORY MONITORING AND OXIMETRY

RESPIRATORY MONITORING AND OXIMETRY RESPIRATORY MONITORING AND OXIMETRY EE 471 F2016 Prof. Yasser Mostafa Kadah Introduction Respiratory monitoring includes measurement, evaluation, and monitoring of parameters of respiratory system, First

More information

Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective

Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective Cory M. Alwardt, PhD, CCP Chief Perfusionist/ECMO Coordinator Assistant Professor of Surgery Mayo Clinic Hospital, Phoenix alwardt.cory@mayo.edu

More information

Pulmonary Ventilation

Pulmonary Ventilation Pulmonary Ventilation - Goals of respiration: o Provided O 2 to the tissues/remove CO 2 - To achieve these goals, resp. is divided into 4 events: 1. Pulm. Ventilation = exchange of resp. gases between

More information

CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY

CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY CARBON DIOXIDE METABOLISM Production Transportation Elimination Carbon Dioxide production CO 2 is the metabolite produced by the utilization by cells of oxygen

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange By: Aseel Jamil Al-twaijer Lec : physical principles of gas exchange Date:30 /10/2017 this lecture is about the exchange of gases between the blood and the alveoli. I might add some external definitions

More information

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration.

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration. Biology 12 Respiration Divisions of Respiration Breathing: entrance and exit of air into and out of the lungs External Respiration: exchange of gases(o2 and CO2) between air (in alveoli) and blood Internal

More information

Lesson 9.1: The Importance of an Organ Delivery System

Lesson 9.1: The Importance of an Organ Delivery System Lesson 9.1: The Importance of an Organ Delivery System Animals require a continuous supply of oxygen (O 2 ) for cellular respiration, and they must expel carbon dioxide (CO 2 ), the waste product of this

More information

Respiratory Physiology. Adeyomoye O.I

Respiratory Physiology. Adeyomoye O.I Respiratory Physiology By Adeyomoye O.I Outline Introduction Hypoxia Dyspnea Control of breathing Ventilation/perfusion ratios Respiratory/barometric changes in exercise Intra-pulmonary & intra-pleural

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The tissues exchange O 2 directly with the air in

More information

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie RESPIRATORY PHYSIOLOGY Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie Outline Ventilation Diffusion Perfusion Ventilation-Perfusion relationship Work of breathing Control of Ventilation 2 This image

More information

Gas Exchange & Circulation

Gas Exchange & Circulation Why is gas exchange important? Gas Exchange & Circulation Read Ch. 42 start with 42.5: Gas Exchange in Animals Respiration: C 6 H 12 O 6 + O 2! Energy + CO 2 + H 2 O Photosynthesis: Energy + CO 2 + H 2

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT

GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT Claudio Marconi IBFM-Sect. of Muscle Physiology and Proteome National Research Council Milano, Italy 100 90 80 % s.l. VO 2 max. 70 60 50 40 30 20 10 0 2

More information

Respiration. The resspiratory system

Respiration. The resspiratory system Respiration The resspiratory system The Alveoli The lungs have about 300 million alveoli, with a total crosssec onal area of 50 70 m2.. Each alveolar sac is surrounded by blood capillaries. The walls of

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The cell exchange O 2 directly with the air in the

More information

I. Gas Exchange Respiratory Surfaces Respiratory Surface:

I. Gas Exchange Respiratory Surfaces Respiratory Surface: I. Gas Exchange Respiratory Surfaces Respiratory Surface: Common characteristics of respiratory surfaces: a) Moist: allows for the RAPID diffusion of dissolved gasses across its surface. Whereas the respiratory

More information

system. and then into the tissues. Diffusion of wastes such as Carbon Dioxide from tissues into blood and out of blood into the lungs.

system. and then into the tissues. Diffusion of wastes such as Carbon Dioxide from tissues into blood and out of blood into the lungs. Respiratory System 1.Exchange Why do of we gases breathe? into the Think blood of all and the tissues. reasons Diffusion why we of Oxygen need a respiratory into blood from the lungs system. and then into

More information

CHAPTER 17 BREATHING AND EXCHANGE OF GASES

CHAPTER 17 BREATHING AND EXCHANGE OF GASES 268 BIOLOGY CHAPTER 17 BREATHING AND EXCHANGE OF GASES 17.1 Respiratory Organs 17.2 Mechanism of Breathing 17.3 Exchange of Gases 17.4 Transport of Gases 17.5 Regulation of Respiration 17.6 Disorders of

More information

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 Summary: This set of notes gives an overview of respiration and then follows the overview with a detailed discussion

More information

Ch 16: Respiratory System

Ch 16: Respiratory System Ch 16: Respiratory System SLOs: Explain how intrapulmonary pressures change during breathing Explain surface tension and the role of surfactant in respiratory physiology. Compare and contrast compliance

More information

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD Respiratory System Prepared by: Dorota Marczuk-Krynicka, MD, PhD Lungs: Ventilation Perfusion Gas Exchange - Diffusion 1. Airways and Airway Resistance (AWR) 2. Mechanics of Breathing and Lung (Elastic)

More information

Analysis of Mathematical Models of the Human Lung

Analysis of Mathematical Models of the Human Lung Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2013 Analysis of Mathematical Models of the Human Lung Cooper Racheal Virginia Commonwealth University Follow

More information