Using LOPA for Other Applications

Size: px
Start display at page:

Download "Using LOPA for Other Applications"

Transcription

1 10 Using LOPA for Other Applications Purpose LOPA is a tool used to perform risk assessments. Previous chapters described its use in assessing the risk level of process hazards scenarios and in evaluating whether adequate layers of protection exist. The objective of this chapter is to identify and discuss other specific uses of LOPA. This chapter will describe how LOPA is used in: capital improvement planning management of change mechanical integrity programs or risk-based inspection/risk-based maintenance risk-based operator training emergency response planning determining a credible design basis for overpressure protection evaluating facility siting risks evaluating the need for emergency isolation valves evaluating the removal of a safety system from service incident investigations determining SIL for SIF. 163

2 Using LOPA for Other Applications Using LOPA in Capital Improvement Planning Costs are associated with risk mitigation measures. There are also benefits derived from risk mitigation actions. Some companies are using cost benefit analyses to evaluate the relative merits of alternative risk-reducing cost expenditures. These results are used to prioritize projects. At the completion of a LOPA, a risk level is determined and safeguards to reduce the risk are identified. These safeguards can reduce risk by lowering the frequency of occurrence of a scenario (or, in some cases, by reducing the severity of the consequence). A capital expenditure is usually required to obtain the desired risk reduction. A decision must be made on which safeguard or set of safeguards to select. The LOPA method can be integrated with a cost benefit method to assist with this decision. Integrating LOPA with a cost benefit analysis is a tool that Captures the economic benefit from reducing risk. Enables decision makers to allocate resources to provide the greatest benefit. This also helps the organization decide on which of several options to pursue to achieve an acceptable risk level for a given project. Compares the economic attractiveness of different projects. This also helps the organization decide when to further reduce the risk level for several projects which are marginally acceptable versus tolerable risk criteria. The parameters and procedures of this cost benefit analysis are organization dependent, but the general principle is the same in all cases. Organizations must assign a dollar value to both the unmitigated scenario and mitigated scenario and to the risk reduction effort. Most use a net present value calculation where the time value of money is accounted for as a function of time and interest rate. Tax consequences and inflation can be incorporated into the models, or the models can be kept simple. All of the scenarios evaluated with this procedure are equated to a financial impact, which is defined in terms of what is important to the organization. Financial impact can be identified in many ways. Some of the categories used by companies are the cost of minor/major injuries/fatalities to employees, minor/major injuries/fatalities to the off-site population, equipment loss/replacement, business loss due to production down time, business loss due to undesirable publicity, productivity loss due to employee morale, legal action, environmental cleanup, regulatory agency fines.

3 10.3. Using LOPA in Management of Change 165 The benefit of the risk reduction is defined as the difference between the financial impact at the high-risk condition and the financial impact at the lowrisk condition. This difference is divided by the cost of the risk reduction effort and the result is called the benefit to cost ratio. Most companies compare the alternatives on a relative basis rather than expecting the analysis to yield absolute cost savings. The method can be used to compare competing or alternate projects which will reduce the same risk scenario, or can be used to help decide which projects to undertake among all risk reduction projects. The important point is the establishment of the link with the LOPA technique and the use of the LOPA evaluation findings in the cost benefit analysis Using LOPA in Management of Change LOPA is well suited for use in the management of change (MOC) process to identify the safety issues involved in the modification of a process, procedures, equipment, instrumentation, etc., and whether the modification will meet corporate risk tolerance criteria. The LOPA summary sheet (see Appendices A and C) provides a concise means of documenting the results of the analysis and can be included with the other MOC documentation. A suitably qualified analyst must either perform the LOPA studies or review the results. All referenced documentation must be available to the analyst. A typical procedure for using LOPA in the MOC process, if no previous LOPA analysis has been performed on the system, involves the following steps: 1. Specify the process, procedure, equipment, instrumentation, etc., involved in the change. 2. Develop scenarios for the unmodified process, procedure, equipment, instrumentation, etc., to assess the current risk level using LOPA, and document the results. Effects that may propagate into other parts of the process must also be included in the analysis. 3. Repeat the LOPA analysis using the proposed modification(s) to assess the risk, and document the results. 4. Summarize the findings of the LOPA study and, if appropriate, document that the proposed change meets the corporate risk tolerance criteria. Attach this documentation with the complete MOC documentation. If a LOPA analysis has already been completed, then only steps 3 and 4 must be performed. LOPA studies can help an organization focus on the important issues involved in making a change. LOPA studies are self-documenting, and the MOC documentation should refer to the LOPA documentation.

4 Using LOPA for Other Applications Using LOPA in Mechanical Integrity Programs or Risk- Based Inspection/Risk-Based Maintenance Programs Safety critical equipment (SCE) are engineering controls that provide independent layers of protection to lower the risk category of a specific scenario or scenarios from unacceptable to acceptable as defined by the organizational risk tolerance criteria. Chapter 6 contains several rules for determining if an engineering control is an IPL. In particular, the engineering control must be independent of other engineering controls, must be specifically designed to prevent or mitigate the consequence of a potentially hazardous event, and must be auditable. It is important to note that some IPLs may not be safety critical equipment because they may simply lower the risk from acceptable to even more acceptable. LOPA is an excellent way to identify safety critical equipment. Scenario 2a in Section 6.7 identified the dike for the existing hexane storage tank, the tank s existing BPCS LIC, and the proposed SIF as IPLs whose probabilities of failure on demand were , , and , respectively. If the approach presented in this section is applied, these IPLs would be considered SCEs. After claiming these PFDs, these SCEs must be maintained to insure their effectiveness. For example, they could be placed on a safety critical equipment list to insure that they are inspected, tested, and maintained. Many companies use risk-based decision-making tools like LOPA to identify SCEs and to drive risk-based inspection and maintenance programs. For example, one company uses a frequency/consequence tool that is very similar to LOPA to prioritize its inspection and maintenance activities. This company recently reported the following benefits associated with their program (Leonard and Lodal, 1998): Significant opportunities for improving mechanical integrity of critical safety equipment. Major improvements in their overall process safety programs. Improved business results due to higher utilization of existing equipment, fewer unplanned shutdowns due to unexpected failures, and targeting of scarce resources to the most risk-critical processes. Decreased production costs without adverse affects on the environment, safety, or health Using LOPA in Risk-Based Operator Training LOPA is an excellent tool to identify safety critical actions, such as administrative or human actions that provide independent layers of protection to lower the risk category from unacceptable to acceptable. An example of a safety critical action is an operator response (e.g, closing a valve) to an alarm.

5 10.7. Using LOPA for Overpressure Protection 167 A second example is a procedure that ensures that blinds and caps on openended valves or connections are kept in place to prevent release of material if the valve is inadvertently opened. A third example is the wiring of the ears on quick-disconnect hose connection fittings to prevent the hose from disconnecting during loading or unloading operations. The safety critical actions identified can be placed on a safety critical action list to insure that the operators receive more frequent and focused training to insure operator knowledge and performance. The amount of training should be commensurate with the assumed PFD. This means that a company can realize significant savings by targeting training resources to the most critical operations. LOPA can also be used to improve operating procedures by highlighting critical operations and consequences of exceeding established operating limits Using LOPA in Emergency Response Planning As discussed in Chapter 4, two important inputs to the LOPA program for a potential accident scenario are the mitigated as is consequence and the mitigated as is frequency of occurrence. A company using LOPA would be able to document a substantial number of estimated mitigated as is offsite consequences. The following benefits would then be realized when this documentation is shared with local emergency planners: Planners would better understand the community risk. Local emergency response planning would improve because planners will be able to combine the more likely and significant accidental release information with other local planning. Coordination would increase between emergency response planners and facility personnel. Public confidence and acceptance of the emergency response planning process would increase. Emergency response planners would be able to conduct more effective table top and evacuation drills and develop more effective gas detection monitoring systems to protect human health and the environment. The chemical industry s involvement in community response planning would be expanded Using LOPA to Determine a Credible Design Basis for Overpressure Protection In1995/1996, ASME approved Code Case 2211 (ASME, 1995). This allows pressure vessels to be protected by system design in lieu of mechanical relief devices subject to the following conditions (Windhorst, 1998):

6 Using LOPA for Other Applications 1. The vessel is not exclusively in air, water or steam service. 2. The decision to provide a vessel with overpressure protection by system design is the responsibility of the user. The manufacturer is only responsible for verifying that the user has specified overpressure protection by system design, and for listing this Code Case on the data report. 3. The user shall ensure that the MAWP (maximum allowable working pressure) of the vessel is greater than or equal to the highest pressure that can reasonably be expected to be achieved by the system. The user shall conduct a detailed analysis, which examines all credible scenarios that can result in an overpressure condition. CAUTION This is a short summary of the results of ASME CODE CASE The reader is advised to study the code in detail before proceeding with this practice. IPLs used to reduce the frequency of a scenario to the extent that a mechanical relief device is not required must be inspected, maintained, and tested to ensure that the necessary PFDs are achieved. Some companies apply ASME Code Case 2211 to evaluate critically scenarios that are considered in determining the worst credible relief system design basis. In such evaluations LOPA can be used to determine the existing IPLs and their failure probabilities, and to help define the worst credible event design basis for sizing pressure relief devices. A credible event has been defined in Guidelines for Pressure Relief and Effluent Handling Systems (CCPS, 1998b) as a scenario or event that has reasonable and sufficient likelihood of occurrence that it should be considered in selecting the design basis for an emergency relief system. This should be based on a risk analysis that includes a careful and thorough review of process characteristics, experience with similar systems, the hazardous nature of the materials handled, and the consequences of an incident. LOPA provides an organization with a risk assessment tool to help ensure that credible scenarios are determined in a uniform, consistent manner throughout the corporation (see Chapter 4). An important aspect in the selection of the design basis for relief systems is the ability to identify the non-credible scenarios and to document why they were not selected as the design basis. The definition of a non-credible scenario is based on the company s risk tolerance criteria. LOPA is an effective tool in this type of screening. There are normally many scenarios resulting in overpressure that are considered during the design of emergency relief systems. These scenarios

7 10.7. Using LOPA for Overpressure Protection 169 include, but are not limited to, runaway reactions, fire exposure, a blocked outlet pipe, utility failures and operational and equipment failures. The relief devices are sized to handle the most severe credible design case. For many exothermic batch reaction systems, the runaway reaction scenario is often the worst case design basis. In many instances the relief device size required to safely handle these exothermic runaway reactions would be so large that it would be impractical/uneconomical to proceed with the required design. LOPA can be used as a screening tool to evaluate if additional layers of protection could be added to reduce the likelihood of the runaway reaction-initiating event to a sufficiently low level so that it would not be considered a credible design basis scenario. In this example, if the likelihood of a runaway reaction is reduced to a noncredible level, then the fire exposure case or other credible scenario would become the design basis. When LOPA screening indicates a sufficiently low scenario frequency, a quantitative risk analysis should be performed to confirm the low occurrence frequency of the undesired scenario. Typical factors that companies use to decide whether a full FTA (fault tree analysis) is required are the conservatism in the scenario development, and the magnitude of the difference between the projected mitigated risk level and the maximum tolerable risk level. Under no circumstances should LOPA by itself be used to eliminate relief devices for a specific system. CAUTION When the results of a LOPA screening suggest a sufficiently low frequency of a specific scenario, it is strongly recommended that this be verified by a CPQRA study before removing the scenario from the basis for relief device sizing Using LOPA in Evaluating Facility Siting Risks LOPA is also a useful tool for evaluating facility siting risks within the company s fence line. This procedure is as follows: 1. Identify and develop credible fire, explosion, and/or toxicity scenarios which could impact occupants in buildings or affect buildings where people congregate or must go for emergency equipment. 2. Use LOPA to estimate the frequency of occurrence, consequence category, and the existing risk level within the existing layers of protection.

8 Using LOPA for Other Applications 3. If the existing risk level is deemed unacceptable per the organization s facility siting risk tolerance criteria, LOPA can be used to identify opportunities to reduce these risks and screen out certain scenarios from facility siting consequence analysis by identifying appropriate and additional IPLs. Some companies have obtained significant dollar savings by applying LOPA by avoiding the relocation of occupied buildings, installation of new blast walls, or implementation of other measures. CCPS has issued a detailed eight-step procedure for identifying and reducing facility siting risks. Several application examples are shown in Guidelines for Evaluating Process Plant Buildings for External Explosions and Fires (CCPS, 1996a). All of the CCPS examples use quantitative risk decision-making tools. LOPA can be used as a screening tool within the eight-step protocol Using LOPA to Evaluate the Need for Emergency Isolation Valves Isolation valves are used to isolate a process unit if a leak occurs in a piping system or if a fire threatens to cause such a leak. These valves are usually located in a piping system so that, when closed, they prevent the sustained release of a large volume of flammable, toxic, or environmentally detrimental material. Such a release could result in a large widespread fire or the generation of a vapor cloud explosion. Examples include ethylene and propylene pipelines, propylene or LNG storage spheres and large liquid phase reactor systems. Such valves are often designed to be fire-safe and can be actuated from the control room or from local panels in the field. They may also have a dedicated air cylinder to provide back-up to the plant air system. These systems are expensive and are normally installed only in selected locations. Another use of LOPA is for evaluating the need/justification for these isolation systems. Once a company has decided which type of consequence analysis to use (see Chapter 3) and how to set its risk acceptance criteria (see Chapters 7 and 8) the method would involve, for each candidate system: 1. Determining the release size that could, as a minimum, produce the consequence(s) of interest. This might be in terms of a given mass of material, a fatality, a certain estimated capital damage, lost production, etc. (see Chapter 3). 2. Creating scenarios that would result in the release of large quantities of toxic or flammable materials assuming no isolation valve is in place. These could include: An external fire that could cause another release by damaging piping, pumps, instrument lines, etc. Piping or flange leaks

9 Using LOPA to Evaluate Taking a Safety System Out of Service 171 Pump seal failures Third party intervention 3. Calculating the frequency of these initiating events (see Chapter 5). For example, for piping leaks the calculation is done by multiplying the total length of pipe by the expected frequency (per unit length) of the type of leak that leads to the consequence of interest. 4. Determining the risk associated with the system without an isolation valve in place. This could involve using a consequence/frequency matrix, or fatality frequency, or some other method to judge whether the risk associated with the system without isolation valves is acceptable given the particular risk tolerance criteria used. Depending upon the method employed, the frequency associated with each scenario can be examined individually, or the total frequency for all scenarios associated with the system can be calculated. If the risk is acceptable then the installation of an isolation valve is not necessary (see Chapters 6, 7 and 8). 5. Determining viable options if the risk is unacceptable (see Chapter 8): Installing isolation valves Examining the mechanical design of the system to make it less susceptible to failures. This might include using welded piping, using a different pipe size, changing the pump seal designs, etc. Examining the process design of the system to determine if the amount of material released could be reduced. This could involve changing the pipe size, operating conditions, or materials. This is not normally a viable option, especially for existing facilities. CAUTION The design and installation of isolation valve systems is complex and must be considered carefully. If such a system is used to reduce risk it must meet the requirements for an IPL and the appropriate PFD must be applied to assure that the level of risk reduction gained by installing such a system is sufficient. In addition, unless the isolation valves are activated immediately after the leak occurs, they may not prevent a significant vapor cloud formation or a significant toxic release. Therefore, a quick, reliable detection and actuation system is essential Using LOPA to Evaluate Taking a Safety System Out of Service LOPA can be used to determine whether a critical IPL safety system can be bypassed or taken out of service for a short, known time duration and to

10 Using LOPA for Other Applications determine what additional layers of protection would be required in the interim. The procedure for doing this is as follows: 1. Identifying the accident scenarios where the IPL is critical. 2. Identifying alternative safeguards that can take the place of the bypassed IPL to maintain the same risk level. (There may be some cases where an option of increasing the risk level for a short time duration is possible, as long as this new risk level is tolerable by the company s risk criteria standards.) One example of this type of action is a simple temperature control system that is part of a basic process control system. If high temperature is detected in a reactor system, an automatic control valve in the emergency cooling water line is opened and the emergency cooling water is used to bring the temperature back to the desired level. If this system must be taken off-line for service, it may be acceptable to use an operator to monitor the temperature of the reactor if the temperature begins to rise, the operator opens a manual valve to allow emergency cooling water flow to the reactor. LOPA performed on this scenario would indicate whether this is acceptable for a given company or whether additional layers of protection are required. There are many other cases where LOPA can be used to evaluate the safeguards utilized by a company when a primary safety system is bypassed Using LOPA during Incident Investigations Several companies have found LOPA to be a useful analysis and communication tool during incident investigations. For example, one company used LOPA to show how additional IPLs could have prevented a recent gas fired spray dryer explosion incident at its chemical plant. LOPA has been used to identify scenarios with a common IPL that was compromised in an incident and to show how to add additional IPLs to reduce the frequency of occurrence Using LOPA in the Determination of SIL for SIF LOPA can be used to determine the required SIL (safety integrity level) for SIFs (safety instrumented functions). See the continuing example in Chapter 8 for more details. In LOPA, the necessary PFD of a SIF is specified to meet the risk tolerance criteria. One form of LOPA for this purpose is referenced in IEC 61511, Part 3 (IEC, 2001). Click here to go to Chapter 11

Advanced LOPA Topics

Advanced LOPA Topics 11 Advanced LOPA Topics 11.1. Purpose The purpose of this chapter is to discuss more complex methods for using the LOPA technique. It is intended for analysts who are competent with applying the basic

More information

Impact on People. A minor injury with no permanent health damage

Impact on People. A minor injury with no permanent health damage Practical Experience of applying Layer of Protection Analysis For Safety Instrumented Systems (SIS) to comply with IEC 61511. Richard Gowland. Director European Process Safety Centre. (Rtgowland@aol.com,

More information

Identification and Screening of Scenarios for LOPA. Ken First Dow Chemical Company Midland, MI

Identification and Screening of Scenarios for LOPA. Ken First Dow Chemical Company Midland, MI Identification and Screening of Scenarios for LOPA Ken First Dow Chemical Company Midland, MI 1 Layers of Protection Analysis (LOPA) LOPA is a semi-quantitative tool for analyzing and assessing risk. The

More information

innova-ve entrepreneurial global 1

innova-ve entrepreneurial global 1 www.utm.my innova-ve entrepreneurial global Safety Integrity Level (SIL) is defined as: Relative level of risk-reduction provided by a safety function to specify a target level of risk reduction. SIL is

More information

AUSTRALIA ARGENTINA CANADA EGYPT NORTH SEA U.S. CENTRAL U.S. GULF. SEMS HAZARD ANALYSIS TRAINING September 29, 2011

AUSTRALIA ARGENTINA CANADA EGYPT NORTH SEA U.S. CENTRAL U.S. GULF. SEMS HAZARD ANALYSIS TRAINING September 29, 2011 AUSTRALIA ARGENTINA CANADA EGYPT NORTH SEA U.S. CENTRAL U.S. GULF SEMS HAZARD ANALYSIS TRAINING September 29, 2011 Purpose The purpose of this meeting is to provide guidelines for determination of hazard

More information

DETERMINATION OF SAFETY REQUIREMENTS FOR SAFETY- RELATED PROTECTION AND CONTROL SYSTEMS - IEC 61508

DETERMINATION OF SAFETY REQUIREMENTS FOR SAFETY- RELATED PROTECTION AND CONTROL SYSTEMS - IEC 61508 DETERMINATION OF SAFETY REQUIREMENTS FOR SAFETY- RELATED PROTECTION AND CONTROL SYSTEMS - IEC 61508 Simon J Brown Technology Division, Health & Safety Executive, Bootle, Merseyside L20 3QZ, UK Crown Copyright

More information

Process Safety Management Of Highly Hazardous Chemicals OSHA 29 CFR

Process Safety Management Of Highly Hazardous Chemicals OSHA 29 CFR Process Safety Management Of Highly Hazardous Chemicals OSHA 29 CFR 1910.119 PSM - Definition Not all refining hazards are caused by the same factors or involve ve the same degree of potential damage.

More information

The Risk of LOPA and SIL Classification in the process industry

The Risk of LOPA and SIL Classification in the process industry The Risk of LOPA and SIL Classification in the process industry Mary Kay O Connor Process Safety Center International Symposium Beyond Regulatory Compliance, Making Safety Second Nature October 28-29,

More information

Every things under control High-Integrity Pressure Protection System (HIPPS)

Every things under control High-Integrity Pressure Protection System (HIPPS) Every things under control www.adico.co info@adico.co Table Of Contents 1. Introduction... 2 2. Standards... 3 3. HIPPS vs Emergency Shut Down... 4 4. Safety Requirement Specification... 4 5. Device Integrity

More information

SAFETY SEMINAR Rio de Janeiro, Brazil - August 3-7, Authors: Francisco Carlos da Costa Barros Edson Romano Marins

SAFETY SEMINAR Rio de Janeiro, Brazil - August 3-7, Authors: Francisco Carlos da Costa Barros Edson Romano Marins SAFETY SEINAR Rio de Janeiro, Brazil - August 3-7, 2009 Using HAZOP and LOPA ethodologies to Improve Safety in the Coke Drums Cycles Authors: Gilsa Pacheco onteiro Francisco Carlos da Costa Barros Edson

More information

Introduction to Emergency Response & Contingency Planning

Introduction to Emergency Response & Contingency Planning & Contingency Planning Rationale Why is it important for you to learn this material? Designed for those who may witness a release, this is an introductory course designed to help ensure those who are likely

More information

Understanding safety life cycles

Understanding safety life cycles Understanding safety life cycles IEC/EN 61508 is the basis for the specification, design, and operation of safety instrumented systems (SIS) Fast Forward: IEC/EN 61508 standards need to be implemented

More information

Implementing IEC Standards for Safety Instrumented Systems

Implementing IEC Standards for Safety Instrumented Systems Implementing IEC Standards for Safety Instrumented Systems ABHAY THODGE TUV Certificate: PFSE-06-607 INVENSYS OPERATIONS MANAGEMENT What is a Safety Instrumented System (SIS)? An SIS is designed to: respond

More information

MAHB. INSPECTION Process Hazard Analysis

MAHB. INSPECTION Process Hazard Analysis Number 5 2016 seveso common MAHB INSPECTION s e r i e s criteria Process Hazard Analysis Major Accident Hazards Bureau Security Technology Assessment Unit This publication of the European community on

More information

Inherently Safer Design Analysis Approaches

Inherently Safer Design Analysis Approaches Inherently Safer Design Analysis Approaches There are a number of ways inherent safety can be analyzed. In any case, the intent is to formalize the consideration of inherent safety rather than to include

More information

Knowledge, Certification, Networking

Knowledge, Certification, Networking www.iacpe.com Knowledge, Certification, Networking Page :1 of 71 Rev 01 Sept 2016 IACPE No 19, Jalan Bilal Mahmood 80100 Johor Bahru Malaysia The International of is providing the introduction to the Training

More information

General Duty Clause. Section 112(r)(1) of CAA. Chris Rascher, EPA Region 1

General Duty Clause. Section 112(r)(1) of CAA. Chris Rascher, EPA Region 1 General Duty Clause Section 112(r)(1) of CAA Chris Rascher, EPA Region 1 Background on the General Duty Clause General Duty Clause 112(r)(1) of CAA Prevention of Accidental Releases Purpose and General

More information

QUANTIFYING THE TOLERABILITY OF POTENTIAL IGNITION SOURCES FROM UNCERTIFIED MECHANICAL EQUIPMENT INSTALLED IN HAZARDOUS AREAS

QUANTIFYING THE TOLERABILITY OF POTENTIAL IGNITION SOURCES FROM UNCERTIFIED MECHANICAL EQUIPMENT INSTALLED IN HAZARDOUS AREAS QUANTIFYING THE TOLERABILITY OF POTENTIAL IGNITION SOURCES FROM UNCERTIFIED MECHANICAL EQUIPMENT INSTALLED IN HAZARDOUS AREAS Steve Sherwen Senior Consultant, ABB Engineering Services, Daresbury Park,

More information

VALIDATE LOPA ASSUMPTIONS WITH DATA FROM YOUR OWN PROCESS

VALIDATE LOPA ASSUMPTIONS WITH DATA FROM YOUR OWN PROCESS Honeywell Advanced Materials new Low-Global-Warming Refrigerant Plant in Geismar, LA Tony Downes Sept 2018 VALIDATE LOPA ASSUMPTIONS WITH DATA FROM YOUR OWN PROCESS A little about the presenter 1 Led over

More information

Expert System for LOPA - Incident Scenario Development -

Expert System for LOPA - Incident Scenario Development - Expert System for LOPA - Incident Scenario Development - Adam Markowski a, Jaffee Suardin b, and M.Sam Mannan b a Process and Ecological Safety Division, Technical University of Lodz, Poland b Mary Kay

More information

Understanding IPL Boundaries

Understanding IPL Boundaries Understanding IPL Boundaries A.M. (Art) Dowell, III Principal Engineer Process Improvement Institute, Inc. 16430 Locke Haven Dr. Houston, TX 77059 USA adowell@piii.com Copyright 2018, all rights reserved,

More information

Engineering Safety into the Design

Engineering Safety into the Design Engineering safety into the design Peter Scantlebury P.Eng Technical Safety Manager Amec Foster Wheeler, Oil & Gas Canada Abstract Safety by design is Amec Foster Wheeler s systematic approach to engineering

More information

PRAGMATIC ASSESSMENT OF EXPLOSION RISKS TO THE CONTROL ROOM BUILDING OF A VINYL CHLORIDE PLANT

PRAGMATIC ASSESSMENT OF EXPLOSION RISKS TO THE CONTROL ROOM BUILDING OF A VINYL CHLORIDE PLANT PRAGMATIC ASSESSMENT OF EXPLOSION RISKS TO THE CONTROL ROOM BUILDING OF A VINYL CHLORIDE PLANT L.P. Sluijs 1, B.J. Haitsma 1 and P. Beaufort 2 1 Vectra Group Ltd. 2 Shin-Etsu (contact details: Vectra Group

More information

SIL explained. Understanding the use of valve actuators in SIL rated safety instrumented systems ACTUATION

SIL explained. Understanding the use of valve actuators in SIL rated safety instrumented systems ACTUATION SIL explained Understanding the use of valve actuators in SIL rated safety instrumented systems The requirement for Safety Integrity Level (SIL) equipment can be complicated and confusing. In this document,

More information

Safety Engineering - Hazard Identification Techniques - M. Jahoda

Safety Engineering - Hazard Identification Techniques - M. Jahoda Safety Engineering - Hazard Identification Techniques - M. Jahoda Hazard identification The risk management of a plant 2 Identification of the hazards involved in the operation of the plant, due to the

More information

Designing to proposed API WHB tube failure document

Designing to proposed API WHB tube failure document Designing to proposed API WHB tube failure document Dennis H. Martens Consultant and Technical Advisor (martensdh@pm-engr.com) Porter McGuffie Inc. Lon Stern Consultant (lhstern@earthlink.net) Stern Treating

More information

BSR GPTC Z TR GM References and Reporting Page 1 of 8

BSR GPTC Z TR GM References and Reporting Page 1 of 8 Page 1 of 8 PRIMARY: 192.605 SECONDARY: 191.23 PURPOSE: Review guide material added by TR 2009-17 to 5.1(e) and consider restructuring the guide material under 192.605 as discussed further below. ORIGIN/RATIONALE

More information

Section 1: Multiple Choice

Section 1: Multiple Choice CFSP Process Applications Section 1: Multiple Choice EXAMPLE Candidate Exam Number (No Name): Please write down your name in the above provided space. Only one answer is correct. Please circle only the

More information

SAFETY PLAN REVIEW. FirstElement Safety Plan Review Submission for the California Energy Commission General Funding Opportunity GFO

SAFETY PLAN REVIEW. FirstElement Safety Plan Review Submission for the California Energy Commission General Funding Opportunity GFO FirstElement Safety Plan Review Submission for the California Energy Commission General Funding Opportunity GFO-15-605 Background At the request of the California Energy Commission, members of the Hydrogen

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Risk assessment study of the mutual interactive influence of working procedures on terminals handling dangerous goods in port of Koper (Slovenia) L. Battelino Water Management Institute, Maritime Engineering

More information

Dow s New Practice for Locating Temporary Portable Buildings. P. Partridge 9/29/05 UNRESTRICTED - May be shared with anyone Slide 1

Dow s New Practice for Locating Temporary Portable Buildings. P. Partridge 9/29/05 UNRESTRICTED - May be shared with anyone Slide 1 Dow s New Practice for Locating Temporary Portable Buildings P. Partridge 9/29/05 UNRESTRICTED - May be shared with anyone Slide 1 Dow guidelines issued following the explosion at BP s Texas City facility

More information

Quantitative Risk Analysis (QRA)

Quantitative Risk Analysis (QRA) Quantitative Risk Analysis (QRA) A realistic approach to relief header and flare system design Siemens AG 2017, All rights reserved 1 Quantitative Risk Analysis Introduction Most existing pressure relief

More information

SEMS II: BSEE should focus on eliminating human error

SEMS II: BSEE should focus on eliminating human error SEMS II: BSEE should focus on eliminating human error How US companies can prevent accidents on start-ups and shut-downs by using valve interlocks The proposed changes to BSEE s SEMS (Safety and Environmental

More information

The Relationship Between Automation Complexity and Operator Error

The Relationship Between Automation Complexity and Operator Error The Relationship Between Automation Complexity and Operator Error presented by Russell Ogle, Ph.D., P.E., CSP rogle@exponent.com (630) 274-3215 Chemical Plant Control Control physical and chemical processes

More information

Improving Accuracy of Frequency Estimation of Major Vapor Cloud Explosions for Evaluating Control Room Location through Quantitative Risk Assessment

Improving Accuracy of Frequency Estimation of Major Vapor Cloud Explosions for Evaluating Control Room Location through Quantitative Risk Assessment Improving Accuracy of Frequency Estimation of Major Vapor Cloud Explosions for Evaluating Control Room Location through Quantitative Risk Assessment Naser Badri 1, Farshad Nourai 2 and Davod Rashtchian

More information

Proposal title: Biogas robust processing with combined catalytic reformer and trap. Acronym: BioRobur

Proposal title: Biogas robust processing with combined catalytic reformer and trap. Acronym: BioRobur Proposal title: Biogas robust processing with combined catalytic reformer and trap Acronym: BioRobur Initiative: Fuel Cells and Hydrogen Joint Undertaking (FCH-JU) Funding scheme: Collaborative project

More information

Solenoid Valves used in Safety Instrumented Systems

Solenoid Valves used in Safety Instrumented Systems I&M V9629R1 Solenoid Valves used in Safety Instrumented Systems Operating Manual in accordance with IEC 61508 ASCO Valves Page 1 of 7 Table of Contents 1 Introduction...3 1.1 Terms and Abbreviations...3

More information

Major Hazard Facilities. Control Measures and Adequacy

Major Hazard Facilities. Control Measures and Adequacy Major Hazard Facilities Control Measures and Adequacy Overview The seminar has been developed to provide: Context with MHF Regulations An overview of what is required An overview of the steps required

More information

Best Practice RBI Technology Process by SVT-PP SIMTECH

Best Practice RBI Technology Process by SVT-PP SIMTECH Best Practice RBI Technology Process by SVT-PP SIMTECH We define the best practice in RBI as a proactive technology process which is used to formally and reliably optimise the inspection efforts for each

More information

Ultima. X Series Gas Monitor

Ultima. X Series Gas Monitor Ultima X Series Gas Monitor Safety Manual SIL 2 Certified " The Ultima X Series Gas Monitor is qualified as an SIL 2 device under IEC 61508 and must be installed, used, and maintained in accordance with

More information

Hazardous Materials Management Guidelines

Hazardous Materials Management Guidelines Environmental, Health and Safety Guidelines Hazardous Materials Management Guidelines Applicability These guidelines apply to facilities and activities involving the transportation, production, handling,

More information

DeZURIK Double Block & Bleed (DBB) Knife Gate Valve Safety Manual

DeZURIK Double Block & Bleed (DBB) Knife Gate Valve Safety Manual Double Block & Bleed (DBB) Knife Gate Valve Safety Manual Manual D11044 September, 2015 Table of Contents 1 Introduction... 3 1.1 Terms... 3 1.2 Abbreviations... 4 1.3 Product Support... 4 1.4 Related

More information

DeZURIK. KSV Knife Gate Valve. Safety Manual

DeZURIK. KSV Knife Gate Valve. Safety Manual KSV Knife Gate Valve Safety Manual Manual D11035 August 29, 2014 Table of Contents 1 Introduction... 3 1.1 Terms... 3 1.2 Abbreviations... 4 1.3 Product Support... 4 1.4 Related Literature... 4 1.5 Reference

More information

Operator Exposed to Chlorine Gas

Operator Exposed to Chlorine Gas Operator Exposed to Chlorine Gas Lessons Learned Volume 04 Issue 29 2004 USW Operator Exposed to Chlorine Gas Purpose To conduct a small group lessons learned activity to share information gained from

More information

INSPECTIONS OF THE LPG ESTABLISHMENTS IN PORTUGAL. Graça Bravo. 26th September 2017

INSPECTIONS OF THE LPG ESTABLISHMENTS IN PORTUGAL. Graça Bravo. 26th September 2017 INSPECTIONS OF THE LPG ESTABLISHMENTS IN PORTUGAL Graça Bravo 26th September 2017 SUMMARY 1. IDENTIFICATION OF THE LPG ESTABLISHMENTS 2. GENERAL DESCRIPTION OF THE LPG ESTABLISHMENT 3. INSPECTION SUPPORTING

More information

PSM TRAINING COURSES. Courses can be conducted in multi-languages

PSM TRAINING COURSES. Courses can be conducted in multi-languages Courses can be conducted in multi-languages One set of hardcopy course notes will be sent to client for printing and distribution to course participants. The courses will be held at the client s training

More information

A study on the relation between safety analysis process and system engineering process of train control system

A study on the relation between safety analysis process and system engineering process of train control system A study on the relation between safety analysis process and system engineering process of train control system Abstract - In this paper, the relationship between system engineering lifecycle and safety

More information

THE BAKER REPORT HOW FINDINGS HAVE BEEN USED BY JOHNSON MATTHEY TO REVIEW THEIR MANUFACTURING OPERATIONS

THE BAKER REPORT HOW FINDINGS HAVE BEEN USED BY JOHNSON MATTHEY TO REVIEW THEIR MANUFACTURING OPERATIONS THE BAKER REPORT HOW FINDINGS HAVE BEEN USED BY JOHNSON MATTHEY TO REVIEW THEIR MANUFACTURING OPERATIONS Colin P. Lynas, Elizabeth Campbell and Hendrik J. Koornhof Johnson Matthey Catalysts This paper

More information

FP15 Interface Valve. SIL Safety Manual. SIL SM.018 Rev 1. Compiled By : G. Elliott, Date: 30/10/2017. Innovative and Reliable Valve & Pump Solutions

FP15 Interface Valve. SIL Safety Manual. SIL SM.018 Rev 1. Compiled By : G. Elliott, Date: 30/10/2017. Innovative and Reliable Valve & Pump Solutions SIL SM.018 Rev 1 FP15 Interface Valve Compiled By : G. Elliott, Date: 30/10/2017 FP15/L1 FP15/H1 Contents Terminology Definitions......3 Acronyms & Abbreviations...4 1. Introduction...5 1.1 Scope.. 5 1.2

More information

FUNCTIONAL SAFETY: SIL DETERMINATION AND BEYOND A CASE STUDY FROM A CHEMICAL MANUFACTURING SITE

FUNCTIONAL SAFETY: SIL DETERMINATION AND BEYOND A CASE STUDY FROM A CHEMICAL MANUFACTURING SITE FUNCTIONAL SAFETY: SIL DETERMINATION AND BEYOND A CASE STUDY FROM A CHEMICAL MANUFACTURING SITE Jasjeet Singh and Neil Croft, HFL Risk Services Ltd, Manchester, UK Industrial chemical processes increasingly

More information

High Integrity Pressure Protection Systems HIPPS

High Integrity Pressure Protection Systems HIPPS High Integrity Pressure Protection Systems HIPPS HIPPS > High Integrity Pressure Protection Systems WHAT IS A HIPPS The High Integrity Pressure Protection Systems (HIPPS) is a mechanical and electrical

More information

DeZURIK. KGC Cast Knife Gate Valve. Safety Manual

DeZURIK. KGC Cast Knife Gate Valve. Safety Manual KGC Cast Knife Gate Valve Safety Manual Manual D11036 August 29, 2014 Table of Contents 1 Introduction... 3 1.1 Terms... 3 1.2 Abbreviations... 4 1.3 Product Support... 4 1.4 Related Literature... 4 1.5

More information

Title: Pressure Relieving and Venting Devices Function: Ecology & Safety No.: BC Page: 1 of 7 Reviewed: 6/30/12 Effective: 7/1/12 (Rev.

Title: Pressure Relieving and Venting Devices Function: Ecology & Safety No.: BC Page: 1 of 7 Reviewed: 6/30/12 Effective: 7/1/12 (Rev. Preparer: Team Member, North America, Process Safety Center of Expertise No.: BC032.020 Page: 1 of 7 Owner: Manager, North America Process Safety Center of Expertise Approver: Sr. Vice President, Ecology

More information

Pneumatic QEV. SIL Safety Manual SIL SM Compiled By : G. Elliott, Date: 8/19/2015. Innovative and Reliable Valve & Pump Solutions

Pneumatic QEV. SIL Safety Manual SIL SM Compiled By : G. Elliott, Date: 8/19/2015. Innovative and Reliable Valve & Pump Solutions SIL SM.0010 1 Pneumatic QEV Compiled By : G. Elliott, Date: 8/19/2015 Contents Terminology Definitions......3 Acronyms & Abbreviations..4 1. Introduction 5 1.1 Scope 5 1.2 Relevant Standards 5 1.3 Other

More information

Session One: A Practical Approach to Managing Safety Critical Equipment and Systems in Process Plants

Session One: A Practical Approach to Managing Safety Critical Equipment and Systems in Process Plants Session One: A Practical Approach to Managing Safety Critical Equipment and Systems in Process Plants Tahir Rafique Lead Electrical and Instruments Engineer: Qenos Botany Site Douglas Lloyd Senior Electrical

More information

Eutectic Plug Valve. SIL Safety Manual. SIL SM.015 Rev 0. Compiled By : G. Elliott, Date: 19/10/2016. Innovative and Reliable Valve & Pump Solutions

Eutectic Plug Valve. SIL Safety Manual. SIL SM.015 Rev 0. Compiled By : G. Elliott, Date: 19/10/2016. Innovative and Reliable Valve & Pump Solutions SIL SM.015 Rev 0 Eutectic Plug Valve Compiled By : G. Elliott, Date: 19/10/2016 Contents Terminology Definitions......3 Acronyms & Abbreviations...4 1. Introduction..5 1.1 Scope 5 1.2 Relevant Standards

More information

Drain Splash Back Burns Operator

Drain Splash Back Burns Operator Purpose To share lessons learned gained from incident investigations through a small group discussion method format. To understand lessons learned through a Systems of Safety viewpoint. This material was

More information

Raw Material Spill. Lessons Learned. Volume 05 Issue USW

Raw Material Spill. Lessons Learned. Volume 05 Issue USW Raw Material Spill Lessons Learned Volume 05 Issue 14 2005 USW Raw Material Spill Purpose To conduct a small group lessons learned activity to share information gained from incident investigations. To

More information

Proposed Abstract for the 2011 Texas A&M Instrumentation Symposium for the Process Industries

Proposed Abstract for the 2011 Texas A&M Instrumentation Symposium for the Process Industries Proposed Abstract for the 2011 Texas A&M Instrumentation Symposium for the Process Industries Focus Area: Automation HMI Title: Author: Shared Field Instruments in SIS: Incidents Caused by Poor Design

More information

Codex Seven HACCP Principles. (Hazard Identification, Risk Assessment & Management)

Codex Seven HACCP Principles. (Hazard Identification, Risk Assessment & Management) Codex Seven HACCP Principles (Hazard Identification, Risk Assessment & Management) Logic sequence for application of HACCP Assemble the HACCP team Describe product Identify intended use Construct a flow

More information

Module No. # 01 Lecture No. # 6.2 HAZOP (continued)

Module No. # 01 Lecture No. # 6.2 HAZOP (continued) Health, Safety and Environmental Management in Petroleum and Offshore Engineering Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute Of Technology, Madras Module No. # 01

More information

Reliability Assessment of the Whistler Propane Vaporizers

Reliability Assessment of the Whistler Propane Vaporizers Reliability Assessment of the Whistler Propane Vaporizers Prepared for: Terasen & Fransen Engineering Prepared by: ClearSky Risk Management Inc. 815 23 rd Ave East Vancouver, BC V6B 5Z3 Phone: 604.899.1470

More information

NORMAL OPERATING PROCEDURES Operating Parameter Information

NORMAL OPERATING PROCEDURES Operating Parameter Information Operating Parameter Information Each operator performing the normal operating procedures (routine checks) of the facility should be familiar with the current normal operating parameters of all systems

More information

Addendum 4 Levels of Response

Addendum 4 Levels of Response Addendum 4 Levels of Response Levels of Response to a Hazardous Materials Incident A. Criteria for Categorization Hazardous materials incidents are categorized as Level I, II, or III depending on the severity

More information

SPR - Pneumatic Spool Valve

SPR - Pneumatic Spool Valve SIL SM.008 Rev 7 SPR - Pneumatic Spool Valve Compiled By : G. Elliott, Date: 31/08/17 Contents Terminology Definitions:... 3 Acronyms & Abbreviations:... 4 1.0 Introduction... 5 1.1 Purpose & Scope...

More information

Hazard Operability Analysis

Hazard Operability Analysis Hazard Operability Analysis Politecnico di Milano Dipartimento di Energia HAZOP Qualitative Deductive (search for causes) Inductive (consequence analysis) AIM: Identification of possible process anomalies

More information

Process Safety and the Human Factor

Process Safety and the Human Factor Process Safety and the Human Factor INTRODUCTION The increasing lifetime of industrial processing plants creates a growing challenge for plant owners/operators to continue to run in a safe and efficient

More information

Calibration Requirements for Direct Reading Confined Space Gas Detectors

Calibration Requirements for Direct Reading Confined Space Gas Detectors : Calibration Requirements for Direct Reading Confined Space Gas Detectors However, the definition of bump test has always been a little slippery. Some manufacturers differentiate between a bump test that

More information

Risk-Based Inspection Requirements for Pressure Equipment

Risk-Based Inspection Requirements for Pressure Equipment the pressure equipment safety authority Risk-Based Inspection Requirements for Pressure Equipment AB 505 Edition 2, Revision 2 Issued 2017-08-24 Table of Contents FOREWORD... ii 1.0 INTRODUCTION... 1 2.0

More information

OPERATING PROCEDURES

OPERATING PROCEDURES OPERATING PROCEDURES 1.0 Purpose This element identifies Petsec s Operating Procedures for its Safety and Environmental Management System (SEMS) Program; it applies to all Petsec operations. Petsec is

More information

The Best Use of Lockout/Tagout and Control Reliable Circuits

The Best Use of Lockout/Tagout and Control Reliable Circuits Session No. 565 The Best Use of Lockout/Tagout and Control Reliable Circuits Introduction L. Tyson Ross, P.E., C.S.P. Principal LJB Inc. Dayton, Ohio Anyone involved in the design, installation, operation,

More information

Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons

Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons Faeq Azam Khan & Dr. Nihal A. Siddiqui HSE Department, University of Petroleum & Energy Studies, Dehradun, Uttarakhand,

More information

RESILIENT SEATED BUTTERFLY VALVES FUNCTIONAL SAFETY MANUAL

RESILIENT SEATED BUTTERFLY VALVES FUNCTIONAL SAFETY MANUAL Per IEC 61508 and IEC 61511 Standards BRAY.COM Table of Contents 1.0 Introduction.................................................... 1 1.1 Terms and Abbreviations...........................................

More information

A GUIDE TO RISK ASSESSMENT IN SHIP OPERATIONS

A GUIDE TO RISK ASSESSMENT IN SHIP OPERATIONS A GUIDE TO RISK ASSESSMENT IN SHIP OPERATIONS Page 1 of 7 INTRODUCTION Although it is not often referred to as such, the development and implementation of a documented safety management system is an exercise

More information

TEST BENCH SAFETY VALVES ¼ - 5 DN10 DN125

TEST BENCH SAFETY VALVES ¼ - 5 DN10 DN125 TEST BENCH SAFETY VALVES ¼ - 5 DN10 DN125 Model: VC-40-VYC Table of contents 1. - Installing the test bench 1.1.1- Connecting the compressed air / nitrogen source 1.1.2- Maximum test pressure according

More information

Absorption - The process of contacting a vapor and gas stream with an absorbing liquid to remove specific materials from the gas stream.

Absorption - The process of contacting a vapor and gas stream with an absorbing liquid to remove specific materials from the gas stream. Sufe Design and Optvation ofpi-oc.ess Vents and Emission Contid $wteins by Center for Chemical Process Safety Copyright 0 2006 John Wiley & Sons, Tnc. APPENDIX B GLOSSARY Absorption - The process of contacting

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER P: REFERENCE OPERATING CONDITION STUDIES (PCC)

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER P: REFERENCE OPERATING CONDITION STUDIES (PCC) PAGE : 1 / 11 1. PASSIVE SINGLE FAILURE ANALYSIS The aim of the accident analysis in Chapter P is to demonstrate that the safety objectives have been fully achieved, despite the most adverse single failure.

More information

Hydraulic (Subsea) Shuttle Valves

Hydraulic (Subsea) Shuttle Valves SIL SM.009 0 Hydraulic (Subsea) Shuttle Valves Compiled By : G. Elliott, Date: 11/3/2014 Contents Terminology Definitions......3 Acronyms & Abbreviations..4 1. Introduction 5 1.1 Scope 5 1.2 Relevant Standards

More information

Spirax Compact FREME Flash Recovery Energy Management Equipment

Spirax Compact FREME Flash Recovery Energy Management Equipment IM-UK-cFREME UK Issue 1 Spirax Compact FREME Flash Recovery Energy Management Equipment Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4.

More information

BROCHURE. Pressure relief A proven approach

BROCHURE. Pressure relief A proven approach BROCHURE Pressure relief A proven approach 2 PRESSURE RELIEF A PROVEN APPROACH Pressure relief Pressure relief systems are a vital layer of protection for your processes. To provide this protection, systems

More information

Solenoid Valves For Gas Service FP02G & FP05G

Solenoid Valves For Gas Service FP02G & FP05G SIL Safety Manual SM.0002 Rev 02 Solenoid Valves For Gas Service FP02G & FP05G Compiled By : G. Elliott, Date: 31/10/2017 Reviewed By : Peter Kyrycz Date: 31/10/2017 Contents Terminology Definitions......3

More information

Section 1: Multiple Choice Explained EXAMPLE

Section 1: Multiple Choice Explained EXAMPLE CFSP Process Applications Section 1: Multiple Choice Explained EXAMPLE Candidate Exam Number (No Name): Please write down your name in the above provided space. Only one answer is correct. Please circle

More information

Lockout/Tagout Training Overview. Safety Fest 2013

Lockout/Tagout Training Overview. Safety Fest 2013 Lockout/Tagout Training Overview Safety Fest 2013 Purpose of Lockout/Tagout The standard covers the servicing and maintenance of machine and equipment in which the unexpected energization or start up of

More information

Title of Paper Interpretation of IP15 in Process Plant Design: a Commonsense Approach ---------------------------------------------------------------------------------------------------------------------------

More information

Section 1. Registration Information

Section 1. Registration Information Section 1. Registration Information Source Identification Facility Name: Parent Company #1 Name: Parent Company #2 Name: Submission and Acceptance Submission Type: Subsequent RMP Submission Reason: Description:

More information

PI MODERN RELIABILITY TECHNIQUES OBJECTIVES. 5.1 Describe each of the following reliability assessment techniques by:

PI MODERN RELIABILITY TECHNIQUES OBJECTIVES. 5.1 Describe each of the following reliability assessment techniques by: PI 21. 05 PI 21. 05 MODERN RELIABILITY TECHNIQUES OBJECTIVES 5.1 Describe each of the following reliability assessment techniques by: ~) Stating its purpose. i1) Giving an e ample of where it is used.

More information

A large Layer of Protection Analysis for a Gas terminal scenarios/ cause consequence pairs

A large Layer of Protection Analysis for a Gas terminal scenarios/ cause consequence pairs A large Layer of Protection Analysis for a Gas terminal 2000+ scenarios/ cause consequence pairs Richard Gowland European process Safety Centre The scope of the study was a large gas terminal handling

More information

Safety manual for Fisher GX Control Valve and Actuator

Safety manual for Fisher GX Control Valve and Actuator Instruction Manual Supplement GX Valve and Actuator Safety manual for Fisher GX Control Valve and Actuator Purpose This safety manual provides information necessary to design, install, verify and maintain

More information

RELIEF VALVES IN PARALLEL

RELIEF VALVES IN PARALLEL RELIEF VALVES IN PARALLEL Mary Kay O'Connor Process Safety Center International Symposium BEYOND REGULATORY COMPLIANCE MAKING SAFETY SECOND NATURE October 26-28, 2010 James R. Lawrence Sr. Why use a Relief

More information

Safe Work Practices and Permit-to-Work System

Safe Work Practices and Permit-to-Work System CHAPTER 24 Safe Work Practices and Permit-to-Work System 24.1 INTRODUCTION OSHA s Process Safety Management (PSM) Standard (OSHA, 1992) requires employers to develop and implement safe work practices (SWPs)

More information

ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS

ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS Annex 3, page 2 ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS The text of existing chapter 15 is replaced by the following: "1 Application This

More information

NEW IGC CODE AND IGF CODE

NEW IGC CODE AND IGF CODE NEW IGC CODE AND IGF CODE SAFETY ASPECTS Raffaele Piciocchi Gas Center - Greece SAFETY4SEAS - Athens 1 October 2014 Content NEW IGC CODE DRAFT IGF CODE 2 The New IGC Code A new IGC Code has been approved

More information

Bespoke Hydraulic Manifold Assembly

Bespoke Hydraulic Manifold Assembly SIL SM.0003 1 Bespoke Hydraulic Manifold Assembly Compiled By : G. Elliott, Date: 12/17/2015 Contents Terminology Definitions......3 Acronyms & Abbreviations..4 1. Introduction 5 1.1 Scope 5 1.2 Relevant

More information

SIL Allocation. - Deterministic vs. risk-based approach - Layer Of Protection Analysis (LOPA) overview

SIL Allocation. - Deterministic vs. risk-based approach - Layer Of Protection Analysis (LOPA) overview SIL Allocation - Deterministic vs. risk-based approach - Layer Of Protection Analysis (LOPA) overview Origin and causes of accidents involving control system failure 44% Specification 20% Changes after

More information

Process Safety Value and Learnings Central Valley Chemical Safety Day March 20, 2014

Process Safety Value and Learnings Central Valley Chemical Safety Day March 20, 2014 Process Safety Value and Learnings Central Valley Chemical Safety Day March 20, 2014 Randy Bennett Sr. Staff Health & Safety Engineer Process Safety Management Group Aera Energy LLC Key Points Process

More information

2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES

2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES Industry Guidelines Part 2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES ISSUE 5.1 Ref: POP10B 15 MAR 2010 Disclaimer In formulating this guideline PIPA has relied

More information

INFORMATION FOR THE PUBLIC ABOUT A COMAH ESTABLISHMENT

INFORMATION FOR THE PUBLIC ABOUT A COMAH ESTABLISHMENT INFORMATION FOR THE PUBLIC ABOUT A COMAH ESTABLISHMENT Information for the public about an establishment subject to the Control of Major Accident Hazards Regulations 2015 (COMAH) The system to provide

More information

Vessel Overflow Burns Operator

Vessel Overflow Burns Operator Vessel Overflow Burns Operator Lessons Learned Volume 05 Issue 06 2005 USW Vessel Overflow Burns Operator Purpose To conduct a small group lessons learned activity to share information gained from incident

More information

INTRODUCTION UNIFIED COMMAND

INTRODUCTION UNIFIED COMMAND INTRODUCTION The Hazardous Materials organizational module is designed to provide an organizational structure that will provide necessary supervision and control for the essential functions required at

More information

This manual provides necessary requirements for meeting the IEC or IEC functional safety standards.

This manual provides necessary requirements for meeting the IEC or IEC functional safety standards. Instruction Manual Supplement Safety manual for Fisher Vee-Ball Series Purpose This safety manual provides information necessary to design, install, verify and maintain a Safety Instrumented Function (SIF)

More information