Cover Page for Lab Report Group Portion. Compressible Flow in a Converging-Diverging Nozzle

Size: px
Start display at page:

Download "Cover Page for Lab Report Group Portion. Compressible Flow in a Converging-Diverging Nozzle"

Transcription

1 Cover Page for Lab Report Group Portion Compressible Flow in a Converging-Diverging Nozzle Prepared by Professor J. M. Cimbala, Penn State University Latest revision: Prof. Steve Lynch, 14 February 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number: ME 325. Group # Score (For instructor or TA use only): Lab experiment and results, plots, tables, etc. - Procedure portion Discussion Neatness & grammar TOTAL / 45 / 15 / 10 / 70 Comments (For instructor or TA use only):

2 Procedure and Presentations of Results Safety Precautions: Wear safety goggles at all times the air in the wind tunnel is pressurized. Leave the protective Plexiglas cover on the test section except when performing flow visualizations. Wear hearing protection if the sound level is bothersome. A hearing protector is available for each lab member. A. Getting familiar with the schlieren optical technique Before visualizing shock waves in the test section of the supersonic wind tunnel, familiarize yourself with the schlieren system by looking at some other simpler flow fields: 1. Turn on the LED light. Be careful not to bump any of the optics stands. 2. A schematic diagram of the schlieren setup is sketched In Figure 10. Verify that the schlieren imaging system is operating correctly. An image of the test section should be visible through the viewfinder of the camera. If the light passing through the test section is out of focus, adjust the manual focus ring on the camera lens. If the system falls out of alignment, get help from your instructor or TA. Figure 10. Schematic diagram of schlieren setup, view from the top. The key dimensions for this system are that the slit and knife-edge are located at the focal point of lens 1 and lens 2, respectively. These lenses are 70mm diameter with a 500mm focal length. The LED, condenser lens, and slit are all mounted together here. The knife edge is replaced by a color filter to convert from black-and-white schlieren imaging to color schlieren imaging. 3. With one group member holding the soldering iron inline with the test section, just inside the field of view of the schlieren system (do not touch the soldering iron tip to anything), the other group members can observe the image through the camera viewfinder. Turn on the soldering iron and see if you can observe a thermal plume. Take turns so that every group member gets to see the schlieren image. 4. Visualize other compressible flow phenomena, such as compressed air streaming out of a spray can, shop air exiting a nozzle (you should be able to see shock diamonds in the jet), the thermal plume from your hand, etc. B. Visualization of shock waves using the schlieren optical technique Before starting this section, make sure the schlieren system is working properly, and that your group can see the output from the camera on the TV monitor. The behavior in the nozzle changes as the system pressure decreases, so be ready to observe. The following procedure should be used to start the flow facility. Use Figures 8 and 9 of the Introduction as a guide. 1. Remove the Plexiglas protective cover from the test section. Everyone in the lab group should wear safety goggles. 2. Open backpressure Valve 3 (the large one) as fully open as you can, and open back pressure Valve 4 (the small one) as fully open as you can, to make the backpressure as low as possible. Ask the TA if you re not sure if they are open. 3. Open Valve 2 slowly until fully open. You should hear the rush of air through the system. The facility is now operating, and can be controlled somewhat by the two back pressure valves, Valves 3 and 4. Use Valve 3 for gross adjustment and Valve 4 for fine adjustment. Never close both back pressure valves completely; otherwise high pressure builds up in the test section, and the optical glass can shatter. Note: If at any time the pressure relief valve blows, or the test section glass shatters, shut off Valve 2 immediately, and call your instructor or TA. 4. With Valves 3 and 4 fully open, observe the flow patterns in the camera viewfinder as the air flows through the nozzle. Are you able to observe a shock wave? An example is shown in Figure 11. 1

3 (a) (b) Figure 11. Color schlieren images in the compressible flow rig: (a) back pressure such that a shock wave is observed just downstream of the throat, and (b) lower back pressure such that the shock wave is much further downstream and Mach lines are observed in the isentropic flow region upstream of the shock structures. Note that no compressible-flow phenomena are observed upstream of the nozzle throat. (4) 5. Briefly describe below what happens to the shock wave as the air tank drains down. Do your observations agree with the theoretical description of Figure 1 of the Introduction? 6. Close Valve 2 after the pressure gauge directly upstream of Valve 2 (near the wall) drops below 10 psig. The air compressor will immediately start recharging the air tank. Wait until the gauge reads above 120 psig (the air compressor should shut off at about 170 psig) before starting the next step. (3) 7. Reopen Valve 2 to start airflow, but after a few minutes when the shock has stopped moving around, slowly close Valve 3, and then slowly adjust Valve 4 to create higher backpressure. On a separate page, sketch the observed flow pattern for two flow conditions, including one with no shock present and one with a shock present in the nozzle. You may also record the images with the camera. To operate the camera, begin by turning it on (it should be powered either by an internal battery or plugged into the wall). The camera should be set to manual operation (M), with the f-stop set to 1.8 and the shutter to Adjust the f-stop by rotating the dial near the shutter button on the lens-side of the camera. The shutter is adjusted by the dial on the view-screen-side of the camera. The shutter may need to be adjusted to record a properly illuminated image depending on the knife-edge position. Keep the f-stop full-open at 1.8. Remove the camera memory card and use one of the computers to save the images. For more detailed camera instructions, see the instruction manual or ask your TA for assistance. See Figures. 2

4 C. Drain time of the air compressor tank Due to a miscalculation in the air compressor flowrate, the current system (as of Spring 2017) is undersized. This means that the air compressor cannot deliver enough flow continuously, and the air tank will be drained. In this section you will estimate the drain time of the tank and compare to a measurement. Equations (5) and (6) from the precalculations for this lab are useful here. (2) 1. Using any measuring equipment you can find (tape measure, yardstick, string?), measure the dimensions of the air compressor tank located across the hallway, outside of the lab. Your TA or instructor can point out the location of the compressor. What is your estimate of the volume of the air tank? 2. Look on the air compressor on the top of the tank for the rated flow delivery of the compressor (usually given in standard cubic feet per minute), and the outlet pressure at that delivery flow, and record below. Note here std refers to standard conditions (T std =23 C, P std =14.7 psia), and act refers to the delivery conditions. std = cfm (cubic feet/minute) P act = psig (psi, in gauge) (2) 3. Convert the standard volumetric flowrate to actual volumetric flowrate using the equation below. Assume that T act =1, and be careful to convert pressures to absolute. T std act= std T act P std (1) T std P act act = cfm (cubic feet/minute) Also find the mass flowrate from the compressor, using the definition of massflow and the ideal gas law: m compr = ρ act= P act RT act act (2) m compr = kg/s (3) 4. Using Equations (5)-(6) in the Precalculations for this lab and your answer for Question 6, update your calculation of the time required to drain the tank to a level of 25 psia, for the tank volume you just measured, and the initial pressure of the air tank as observed on the gauge next to Valve 2. The throat area A * is equal to m 2 Show your work below: 3

5 Answer: Tank will reach 25 psia in minutes. (3) 5. Open Valves 3 and 4 fully. Get the stopwatch, and have one team member ready to start timing as soon as Valve 2 is opened, until the pressure gauge upstream of Valve 2 reads 25 psia (recall the gauge reports psig). Record the time below. How does this compare to your calculation? What might be some reasons for the difference? D. Measurement of mass flow rate The test rig contains two flow rate measuring devices: a) a diaphragm meter and b) a Venturi meter. Only the diaphragm meter will be used in this lab experiment. This device directly measures the volume of gas passing through the meter. It works by rotating a vane inside, which is attached by gears to a counter and a revolving pointer. You may have seen similar meters for measuring the volume flow of water or natural gas in your home. The accuracy of this type of flow meter is around 2%, except when the volume flow rate falls below 5% of rated capacity. For our meter, one revolution of the pointer corresponds to 5 cubic feet of air, which is equivalent to a volume of m 3. To compute mass flow rate, use its definition, along with the ideal gas law, i.e. P V m Q (1) RT t where Q is the volume flow rate, measured as V t, where V is the volume of air passing through the meter in a measured time period t. Gas density is computed from the ideal gas law in Equation (7). Pressure P and temperature T must be measured just upstream of the flow meter. On the control panel, these correspond to the pressure toggle switch labeled Flow Meter Inlet, and thermocouple T 1 (number 1 on the dial). The control panel permits measurement of any of the pressure taps (see Figures 8 and 9 of the Introduction), with the pressure being read from the large Heise absolute pressure gauge. When measuring pressure, only one of the pressure toggle switches should be open at any time. The toggle switches merely connect the line from the chosen pressure tap directly into the input line for the Heise pressure gauge. Temperature is measured by thermocouples and a digital display unit. The temperature dial should be turned to the desired position to read the chosen temperature in degrees Centigrade. 1. Turn both Valve 3 and Valve 4 to their fully open (counterclockwise as far as possible) condition so that the imum flow rate is achieved through the system. Wait for the air tank to drain down, until the pressure just upstream of the flow meter is no longer changing with time. This may take several minutes. Once the pressure is steady, measure the pressure and temperature just upstream of the flow meter, as discussed above. Record (in the spaces provided below) these readings: P flow meter inlet = psia T flow meter inlet = T 1 = C (4) 2. With a stopwatch, measure the volume flow rate through the diaphragm meter, and calculate m using Equation (1). Show all your calculations in the space provided below. Show all units in your calculations, and be careful that the units combine correctly into kg/s. Note that 1 psia = N/m 2 = Pascals. 4

6 m = kg/s (2) 3. For this same set of flow conditions (imum flow rate), measure both P 0 and P b. On the control panel, these are labeled P 2 and P 10 respectively. Again, note that only one pressure toggle switch should be open at a time; otherwise the pressure reading will be in error. Calculate the back pressure ratio for these conditions. Record your measurements in the spaces provided below: P 0 = P 2 = psia P b = p 10 = psia P b /P 0 = (2) 4. The theoretical imum flow rate for air is given by * PA m o (2) 1/ 2 RT o In our experimental test rig, the stagnation temperature T 0 is equal to T 3 on the control panel, and throat area A * is equal to m 2. Calculate m for this same set of flow conditions. Show all your work (include units) in the space provided below: m = kg/s. 5. For this same set of flow conditions, measure and record pressures P 2 through P 10. Tabulate your results neatly in a table. This data will be used in Part F. (4) 6. Repeat Steps 1 through 5 above for two other back pressures by closing Valve 3, and turning Valve 4 slowly clockwise. Using the schlieren image as a guide, include a case where the shockwave is just in the nozzle throat, as well as a case where the flow is fully subsonic everywhere (no shock, Valve 3 fully closed and Valve 4 nearly closed). For each case, measure P 0, P b, P flow meter inlet, T o, T flow meter inlet, and the volume flow rate using the flow meter and stopwatch as in Step 2 above. Also sketch the flow conditions in the converging-diverging nozzle for each case, pointing out the shock wave (if one exists). Calculate P b /P 0, m, m, and m/ m for each case as well. Put all your results into a neatly labeled table. See Table. (4) 7. Plot m/ m as a function of back pressure ratio P b /P 0. Compare your results with Figure 1c. Have you observed choking? Explain. 5

7 See Figure. E. Measurement of pressure distribution in the converging-diverging nozzle (4) 1. Using the data collected in Part C for pressures P 2 through P 10, tabulate your results neatly in a table which should also include nondimensional pressure ratios P/P 0 for pressure tap locations 2 through 9, where again, P 0 is taken as pressure P 2. See Table. (4) 2. Using the table created in Part C Step 5, plot P/P 0 as a function of streamwise coordinate x for all your cases in Step 1 above on the same plot. Include on your plot both the subsonic and supersonic theoretical calculations of P/P 0 from Table 1. If a shock wave is present, indicate its location on your plot. Note: The values of streamwise coordinate x can be obtained from Table 1. See Figure. 3. Shut off the flow in reverse order from the procedure to turn on the flow. Make sure the schlieren light bulb is turned off. Turn off the digital thermometer display unit. Make sure the Plexiglas safety cover has been reinstalled on the test section for protection. 6

8 Discussion (5) 1. Briefly summarize what you have learned about choking, and what it means. (5) 2. How well do your measurements of pressure agree with those of Figure 1 of the Introduction for the various back pressure ratios? Discuss possible reasons for any disagreement. (5) 3. When a shock wave is present in the diverging part of the nozzle, does the pressure jump up suddenly as indicated in Figure 1b of the Introduction? Why or why not? 7

Cover Page for Lab Report Group Portion. Compressible Flow in a Converging-Diverging Nozzle

Cover Page for Lab Report Group Portion. Compressible Flow in a Converging-Diverging Nozzle Cover Page for Lab Report Group Portion Compressible Flow in a Converging-Diverging Nozzle Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 13 January 2012 Name 1: Name 2: Name

More information

Lab # 03: Visualization of Shock Waves by using Schlieren Technique

Lab # 03: Visualization of Shock Waves by using Schlieren Technique AerE545 Lab # 03: Visualization of Shock Waves by using Schlieren Technique Objectives: 1. To get hands-on experiences about Schlieren technique for flow visualization. 2. To learn how to do the optics

More information

A & AE 520 Background Information, Adapted from AAE334L, last revised 10-Feb-14 Page 1 1. SUPERSONIC WIND TUNNEL

A & AE 520 Background Information, Adapted from AAE334L, last revised 10-Feb-14 Page 1 1. SUPERSONIC WIND TUNNEL A & AE 50 Background Information, Adapted from AAE334L, last revised 10-Feb-14 Page 1 1.1 BACKGROUND 1. SUPERSONIC WIND TUNNEL 1.1.1 Objectives: This handout is adapted from the one once used in AAE334L

More information

Cover Page for Lab Report Group Portion. Head Losses in Pipes

Cover Page for Lab Report Group Portion. Head Losses in Pipes Cover Page for Lab Report Group Portion Head Losses in Pipes Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 February 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

S.A. Klein and G.F. Nellis Cambridge University Press, 2011 16-1 A flow nozzle is to be used to determine the mass flow rate of air through a 1.5 inch internal diameter pipe. The air in the line upstream of the meters is at 70 F and 95 psig. The barometric pressure

More information

AE3610 Experiments in Fluid and Solid Mechanics OPTICAL/PRESSURE MEASUREMENTS IN SUPERSONIC FLOW

AE3610 Experiments in Fluid and Solid Mechanics OPTICAL/PRESSURE MEASUREMENTS IN SUPERSONIC FLOW AE3610 Experiments in Fluid and Solid Mechanics OPTICAL/PRESSURE MEASUREMENTS IN SUPERSONIC FLOW Objective This lab covers the use of taps, probes and transducers for measurement of static and stagnation

More information

Cover Page for Lab Report Group Portion. Drag on Spheres

Cover Page for Lab Report Group Portion. Drag on Spheres Cover Page for Lab Report Group Portion Drag on Spheres Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 29 September 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Lab 1c Isentropic Blow-down Process and Discharge Coefficient

Lab 1c Isentropic Blow-down Process and Discharge Coefficient 058:080 Experimental Engineering Lab 1c Isentropic Blow-down Process and Discharge Coefficient OBJECTIVES - To study the transient discharge of a rigid pressurized tank; To determine the discharge coefficients

More information

Cover Page for Lab Report Group Portion. Boundary Layer Measurements

Cover Page for Lab Report Group Portion. Boundary Layer Measurements Cover Page for Lab Report Group Portion Boundary Layer Measurements Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 30 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

Cover Page for Lab Report Group Portion. Flow Visualization in a Water Channel

Cover Page for Lab Report Group Portion. Flow Visualization in a Water Channel Cover Page for Lab Report Group Portion Flow Visualization in a Water Channel Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 08 September 2017 Name 1: Name 2: Name 3: [Name

More information

Flow in a shock tube

Flow in a shock tube Flow in a shock tube April 30, 05 Summary In the lab the shock Mach number as well as the Mach number downstream the moving shock are determined for different pressure ratios between the high and low pressure

More information

Cover Page for Lab Report Group Portion. Lift on a Wing

Cover Page for Lab Report Group Portion. Lift on a Wing Cover Page for Lab Report Group Portion Lift on a Wing Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 17 January 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Design of a Solid Wall Transonic Wind Tunnel

Design of a Solid Wall Transonic Wind Tunnel Design of a Solid Wall Transonic Wind Tunnel David Wall * Auburn University, Auburn, Alabama, 36849 A solid wall transonic wind tunnel was designed with optical access from three sides to allow for flow

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Manual for continuous distillation

Manual for continuous distillation Manual for continuous distillation 1. Week 1: Objectives: Run the column at total reflux. When steady state is reached, take the sample from the top and bottom of the column in order to determine the overall

More information

User Manual for the Mars Calibration Bench

User Manual for the Mars Calibration Bench User Manual for the Mars Calibration Bench Fall 2013 Table of Contents Table of Contents Table of Contents... iii Introduction... v Chapter 1: The Mars Calibration Bench... 1 What Is the Mars Calibration

More information

3 GALLON, OILLESS PANCAKE COMPRESSOR INSTRUCTIONS. Item #31289

3 GALLON, OILLESS PANCAKE COMPRESSOR INSTRUCTIONS. Item #31289 3 GALLON, OILLESS PANCAKE COMPRESSOR INSTRUCTIONS Item #31289 The EASTWOOD 3 GALLON, OILLESS PANCAKE COMPRESSOR, with an Integral Air Regulator, efficiently supplies all compressed air requirements for

More information

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller CHEMICAL ENGINEERING LABORATORY CHEG 239W Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller Objective The experiment involves tuning a commercial process controller for temperature

More information

256 Pneumatic Pressure Indicator

256 Pneumatic Pressure Indicator 256 Pneumatic Pressure Indicator 51425699 Copyright 2002 Slope Indicator Company. All Rights Reserved. This equipment should be installed, maintained, and operated by technically qualified personnel. Any

More information

****** * EX * ****** DWN W.W.POWELL CALCULATION OF FLOW LOSSES IN INLET CHK D.PAPA AND DISCHARGE HEADERS ASSOCIATED WITH

****** * EX * ****** DWN W.W.POWELL CALCULATION OF FLOW LOSSES IN INLET CHK D.PAPA AND DISCHARGE HEADERS ASSOCIATED WITH BC ****** * EX * ****** DWN W.W.POWELL 4-17-75 CALCULATION OF FLOW LOSSES IN INLET CHK D.PAPA 4-17-75 AND DISCHARGE HEADERS ASSOCIATED WITH APPR APPR SAFETY RELIEF VALVES SIZE REV APPR A 02.0175.128 L

More information

Model 130M Pneumatic Controller

Model 130M Pneumatic Controller Instruction MI 017-450 May 1978 Model 130M Pneumatic Controller Installation and Operation Manual Control Unit Controller Model 130M Controller is a pneumatic, shelf-mounted instrument with a separate

More information

HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope.

HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope. HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope. The solar cell/solar panel shown above depict how a semiconductor can transform solar power into electrical power. Consider the solar panel

More information

OPERATION MANUAL NTF-15

OPERATION MANUAL NTF-15 OPERATION MANUAL NTF-15 Nitrogen Tire Filling Valve Stem Caps (Qty=200) Order P/N 436075 RTI Technologies, Inc 10 Innovation Drive York, PA 17402 800-468-2321 www.rtitech.com 035-81235-00 (Rev B) TABLE

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 5-3 Wet Reference Leg EXERCISE OBJECTIVE Learn to measure the level in a vessel using a wet reference leg. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Measuring

More information

VERTICAL AIR COMPRESSORS

VERTICAL AIR COMPRESSORS VERTICAL AIR COMPRESSORS MODEL NO: VE15C150, VE18C150, VE25C150 PART NO: 2226010, 2226020, 2226025 OPERATION & MAINTENANCE INSTRUCTIONS LS0715 INTRODUCTION Thank you for purchasing this CLARKE Vertical

More information

DEVELOPMENT OF HIGH ALTITUDE TEST FACILITY FOR COLD JET SIMULATION

DEVELOPMENT OF HIGH ALTITUDE TEST FACILITY FOR COLD JET SIMULATION DEVELOPMENT OF HIGH ALTITUDE TEST FACILITY FOR COLD JET SIMULATION Aldin Justin 1, Robin James, Shruti Panicker 2,A.N.Subash,Saravana Kumar 1 Assistant Professor,Karunya University, aldinjustin@karunya.edu

More information

2. Determine how the mass transfer rate is affected by gas flow rate and liquid flow rate.

2. Determine how the mass transfer rate is affected by gas flow rate and liquid flow rate. Goals for Gas Absorption Experiment: 1. Evaluate the performance of packed gas-liquid absorption tower. 2. Determine how the mass transfer rate is affected by gas flow rate and liquid flow rate. 3. Consider

More information

Application Worksheet

Application Worksheet Application Worksheet All dimensions are nominal. Dimensions in [ ] are in millimeters. Service Conditions Medium Through Valve: Required C v : Temperature Maximum: Minimum: Normal: Flow Maximum: Minimum:

More information

MANUAL BE SERIES Test Benches

MANUAL BE SERIES Test Benches The CustomCrimp Manual BE Series Test Benches are designed with features that make proof and burst testing of hydraulic hose assemblies a quick and easy procedure. CUSTOMIZED AND SPECIAL DESIGN BENCHES

More information

1. Study the performance of a binary distillation column operated in batch mode.

1. Study the performance of a binary distillation column operated in batch mode. Goals for batch distillation using the East distillation column: 1. Study the performance of a binary distillation column operated in batch mode. 2. Determine the overall and local efficiency of the column

More information

Schedule of Requirements THERMODYNAMICS LABORATORY- CHEMICAL ENGINEERING DEPARTMENT

Schedule of Requirements THERMODYNAMICS LABORATORY- CHEMICAL ENGINEERING DEPARTMENT S. No 1 Description Calorimeter The Unit should be designed for the accurate determination of the calorific value of liquid and solid hydrocarbons and other fuels. Specifications: A temperature-controlled

More information

Mounting and Operating Instructions EB EN. Type Supply Pressure Regulator. with increased air capacity

Mounting and Operating Instructions EB EN. Type Supply Pressure Regulator. with increased air capacity Type 4708-45 Supply Pressure Regulator with increased air capacity Translation of original instructions Mounting and Operating Instructions EB 8546-1 EN Edition March 2016 Note on these mounting and operating

More information

WIKA INSTRUMENT CORPORATION

WIKA INSTRUMENT CORPORATION WIKA INSTRUMENT CORPORATION Instruction Manual DIFFERENTIAL PRESSURE GAUGE Series 1500 Series 1000 Series 300 WIKA Instrument Corporation 1000 Wiegand Boulevard Lawrenceville, GA 30043 1-888-945-2872 http://www.wika.com

More information

The University of Hong Kong Department of Physics Experimental Physics Laboratory

The University of Hong Kong Department of Physics Experimental Physics Laboratory The University of Hong Kong Department of Physics Experimental Physics Laboratory PHYS2260 Heat and Waves 2260-1 LABORATORY MANUAL Experiment 1: Adiabatic Gas Law Part A. Ideal Gas Law Equipment Required:

More information

Operating Instructions

Operating Instructions Operating Instructions Before operating the thin film evaporator, please be aware of all safety concerns associated with this experiment: Burn hazard from the column and steam lines, Chemical hazards associated

More information

OPERATION MANUAL NTF-60 Plus

OPERATION MANUAL NTF-60 Plus OPERATION MANUAL NTF-60 Plus Nitrogen Tire Filling Valve Stem Caps (Qty=200) Order P/N 436075 RTI Technologies, Inc 10 Innovation Drive York, PA 17402 800-468-2321 www.rtitech.com 035-81264-00 (Rev A)

More information

Supersonic Flow and Shockwaves

Supersonic Flow and Shockwaves AER 304S Aerospace Laboratory II Supersonic Flow and Shockwaves http://sps.aerospace.utoronto.ca/labs/raal Experiment Duration: 150 min Instructor M. R. Emami Aerospace Undergraduate Laboratories University

More information

Standard Operating and Maintenance Instructions for Pumping System Model PS-150

Standard Operating and Maintenance Instructions for Pumping System Model PS-150 Standard Operating and Maintenance Instructions for Pumping System Model PS-150 High Pressure Equipment Company, LLC 2955 West 17th Street, Suite 6 PO Box 8248 Erie, PA 16505 USA 814-838-2028 (phone) 814-838-6075

More information

MEGR-1627 Instruction Manual

MEGR-1627 Instruction Manual MEGR-1627 HIGH FLOW GAS REGULATOR Instruction Manual- Look Inside For: Description Installation Remote Vent Line Installations Startup and Adjustment Shutdown Maintenance Body Maintenance Procedures Diaphragm

More information

Development of Gasdynamic Probe for Total Temperature Measurement in gases

Development of Gasdynamic Probe for Total Temperature Measurement in gases ASET 20- National Conference on Emerging Trends in Propulsion Technology Development of Gasdynamic Probe for Total Temperature Measurement in gases K Sathiyamoorthy, Souren Misra 2, Srinivas J, Baskaran

More information

Types 749B and R130 Changeover Manifolds

Types 749B and R130 Changeover Manifolds Instruction Manual MCK-1179 Types 749B and R130 June 2012 Types 749B and R130 Changeover Manifolds TYPE HSRL-749B TYPE 64SR/122 TYPE R130/21 TYPE 749B/21 Figure 1. Changeover Manifolds and Regulator Assemblies

More information

PRO-50 Instrument Supply Regulator

PRO-50 Instrument Supply Regulator Features CRN Approved The PRO-50 Regulator has been granted a Canadian Registration Number. Sour Service Capability Available in NACE configurations that comply with NACE MR0175/MR0103. Environmental limits

More information

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed.

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed. GLOSSARY OF TERMS Absolute pressure Total pressure measured from absolute zero i.e. a perfect vacuum. As a practical matter, gauge pressure plus atmospheric pressure. Absolute temperature Temperature measured

More information

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C Exercise 2-3 EXERCISE OBJECTIVE C C C To describe the operation of a flow control valve; To establish the relationship between flow rate and velocity; To operate meter-in, meter-out, and bypass flow control

More information

Introduction. Part one: Identify the Hydraulic Trainer Components

Introduction. Part one: Identify the Hydraulic Trainer Components The University Of Jordan School of Engineering Mechatronics Engineering Department Fluid Power Engineering Lab Experiments No.4 Introduction to Hydraulic Trainer Objective: Students will be able to identify

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

VERTICAL AIR COMPRESSORS

VERTICAL AIR COMPRESSORS VERTICAL AIR COMPRESSORS MODEL NO: VE11C150, VE15C150, VE18C150 PART NO: 2226005, 2226000, 2226015 OPERATION & MAINTENANCE INSTRUCTIONS LS0615 INTRODUCTION Thank you for purchasing this CLARKE Vertical

More information

Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle

Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle RESEARCH ARTICLE OPEN ACCESS Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle Shyamshankar.M.B*, Sankar.V** *(Department of Aeronautical

More information

Pressure Control. where: p is the pressure F is the normal component of the force A is the area

Pressure Control. where: p is the pressure F is the normal component of the force A is the area Pressure Control First of all, what is pressure, the property we want to control? From Wikipedia, the free encyclopedia. Pressure is the application of force to a surface, and the concentration of that

More information

4150K and 4160K Series Wizard II Pressure Controllers and Transmitters

4150K and 4160K Series Wizard II Pressure Controllers and Transmitters Instruction Manual Form 5177 March 1999 4150K and 4160K Series 4150K and 4160K Series Wizard II Pressure Controllers and Transmitters Contents Introduction.............................. 2 Scope of Manual.............................

More information

AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION

AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION Engineering MECHANICS, Vol. 20, 2013, No. 3/4, p. 213 220 213 AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION Václav Dvořák* The article deals with axial-symmetric subsonic air-to-air

More information

Research and optimization of intake restrictor for Formula SAE car engine

Research and optimization of intake restrictor for Formula SAE car engine International Journal of Scientific and Research Publications, Volume 4, Issue 4, April 2014 1 Research and optimization of intake restrictor for Formula SAE car engine Pranav Anil Shinde Mechanical Engineering,

More information

Portable Oil Lube Air Compressors

Portable Oil Lube Air Compressors Portable Oil Lube Air Compressors 8003631 8003632 0410149 8018968 8018940 Owner s Manual Read and understand operating instructions before use Safety definitions The information listed below should be

More information

NTF-230 OPERATION MANUAL

NTF-230 OPERATION MANUAL NTF-230 OPERATION MANUAL MAHLE Aftermarket Inc., Service Solutions 10 Innovation Drive York, Pennsylvania 17402 USA Phone: 717-840-0678 Toll Free: 800-468-2321 Web-site: www.servicesolutions.mahle.com

More information

Device Description. Operating Information. CP Q (eq. 1) GT. Technical Bulletin TB-0607-CFP Hawkeye Industries Critical Flow Prover

Device Description. Operating Information. CP Q (eq. 1) GT. Technical Bulletin TB-0607-CFP Hawkeye Industries Critical Flow Prover A compressible fluid traveling at subsonic velocity through a duct of constant cross section will increase velocity when passing through a region of reduced cross-sectional area (in this case, an orifice)

More information

Gas Flow Calibration Basics

Gas Flow Calibration Basics Basics - May, 2012 Gas Flow Calibration Basics Gas Flow Calibration Basics - May, 2012 Prepared By: Edward Morrell VP of Engineering - Bios Gas & Flow & Calibration Flow is the Quantity of material transported

More information

300 Held Drive Northampton Pa

300 Held Drive Northampton Pa 300 Held Drive Northampton Pa 18067 610.262.6090 June 10, 2015 Recommended testing for verifying device performance. Intervals of testing are to be set by the Healthcare Provider / Dealer. Table of Contents

More information

CHAPTER 3 : AIR COMPRESSOR

CHAPTER 3 : AIR COMPRESSOR CHAPTER 3 : AIR COMPRESSOR Robotic & Automation Department FACULTY OF MANUFACTURING ENGINEERING, UTeM Learning Objectives Identify types of compressors available Calculate air capacity rating of compressor

More information

Experiment 8: Minor Losses

Experiment 8: Minor Losses Experiment 8: Minor Losses Purpose: To determine the loss factors for flow through a range of pipe fittings including bends, a contraction, an enlargement and a gate-valve. Introduction: Energy losses

More information

To plot the following performance characteristics; A pump is a device, which lifts water from a lower level to a higher

To plot the following performance characteristics; A pump is a device, which lifts water from a lower level to a higher LABORATORY MANUAL ON RECIPROCATING PUMP TEST RIG Prepared By Prof. (Dr.) M. K. Roul Professor and Principal Department of Mechanical Engineering Gandhi Institute for Technological Advancement (GITA), Bhubaneswar-752054

More information

XDF BURNERS DUAL FUEL EXCESS AIR BURNER FEATURES DESCRIPTION EXCESS AIR OPERATION

XDF BURNERS DUAL FUEL EXCESS AIR BURNER FEATURES DESCRIPTION EXCESS AIR OPERATION DUAL FUEL EXCESS AIR BURNER MODEL: 3610, 3651 Revision: 0 FEATURES Burns all fuel gases or light oils Nozzle mix design for on ratio control or excess air 350% excess air all sizes on gas or oil Turndown

More information

24L AIR COMPRESSOR OPERATION & MAINTENANCE INSTRUCTIONS MODEL NO: RANGER 7/240 PART NO: LS0913

24L AIR COMPRESSOR OPERATION & MAINTENANCE INSTRUCTIONS MODEL NO: RANGER 7/240 PART NO: LS0913 24L AIR COMPRESSOR MODEL NO: RANGER 7/240 PART NO: 2242000 OPERATION & MAINTENANCE INSTRUCTIONS LS0913 INTRODUCTION Thank you for purchasing this CLARKE 24L Air Compressor. Please read this manual fully

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

24L AIR COMPRESSOR MODEL NO: TIGER 11/250 PART NO: OPERATION & MAINTENANCE INSTRUCTIONS LS01/13

24L AIR COMPRESSOR MODEL NO: TIGER 11/250 PART NO: OPERATION & MAINTENANCE INSTRUCTIONS LS01/13 24L AIR COMPRESSOR MODEL NO: TIGER 11/250 PART NO: 2244010 OPERATION & MAINTENANCE INSTRUCTIONS LS01/13 INTRODUCTION Thank you for purchasing this product. Before attempting to use this product, please

More information

The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through the Muffler Combined With Valve Motion

The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through the Muffler Combined With Valve Motion Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through

More information

Operation Manual - PN A MENSOR MODEL 73 SHOP AIR BOOSTER

Operation Manual - PN A MENSOR MODEL 73 SHOP AIR BOOSTER Operation Manual - PN 0017946001 A MENSOR MODEL 73 SHOP AIR BOOSTER Mensor Model 73 Shop Air Booster System (750 psi Version) April 23, 2012 Trademarks / Copyright Mensor is a registered trademark of Mensor

More information

WARNING: Installation Instructions. Natural Gas High Altitude Conversion Kit United States Installations Only

WARNING: Installation Instructions. Natural Gas High Altitude Conversion Kit United States Installations Only Natural Gas High Altitude Conversion Kit United States Installations Only Installation Instructions Light Commercial Packaged Gas Electric Units R7TQ Series 6, - 7 1/2, & 10 Ton (2,001 FT - 10,000 FT)

More information

INSTALLATION INSTRUCTIONS. CVS 67CFR Pressure Reducing Instrument Supply Regulator INTRODUCTION

INSTALLATION INSTRUCTIONS. CVS 67CFR Pressure Reducing Instrument Supply Regulator INTRODUCTION INSTALLATION INSTRUCTIONS CVS 67CFR Pressure Reducing Instrument Supply Regulator INTRODUCTION The CVS Controls 67CFR Filter regulator is a pressure reducing supply regulator typically used for pneumatic

More information

product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels

product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels 12.09 product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels Introduction: This manual covers the installation and operation of Humboldt FlexPanels for Triaxial and Permeability

More information

PIG MOTION AND DYNAMICS IN COMPLEX GAS NETWORKS. Dr Aidan O Donoghue, Pipeline Research Limited, Glasgow

PIG MOTION AND DYNAMICS IN COMPLEX GAS NETWORKS. Dr Aidan O Donoghue, Pipeline Research Limited, Glasgow PIG MOTION AND DYNAMICS IN COMPLEX GAS NETWORKS Dr Aidan O Donoghue, Pipeline Research Limited, Glasgow A model to examine pigging and inspection of gas networks with multiple pipelines, connections and

More information

Two phase discharge flow prediction in safety valves

Two phase discharge flow prediction in safety valves Dempster W, Elmayyah W/ ICPVT-13 1 Two phase discharge flow prediction in safety valves William Dempster a, Wael Elmayyah b a Department of Mechanical and Aerospace Engineering, University of Strathclyde,

More information

24L OIL FREE AIR COMPRESSOR MODEL NO: TIGER 7/250 PART NO: OPERATION & MAINTENANCE INSTRUCTIONS LS10/13

24L OIL FREE AIR COMPRESSOR MODEL NO: TIGER 7/250 PART NO: OPERATION & MAINTENANCE INSTRUCTIONS LS10/13 24L OIL FREE AIR COMPRESSOR MODEL NO: TIGER 7/250 PART NO: 2244030 OPERATION & MAINTENANCE INSTRUCTIONS LS10/13 INTRODUCTION Thank you for purchasing this product. Before attempting to use this product,

More information

Tutorial. BOSfluids. Relief valve

Tutorial. BOSfluids. Relief valve Tutorial Relief valve The Relief valve tutorial describes the theory and modeling process of a pressure relief valve or safety valve. It covers the algorithm BOSfluids uses to model the valve and a worked

More information

100L AIR COMPRESSOR MODEL NO: TIGER 16/1010 PART NO: OPERATION & MAINTENANCE INSTRUCTIONS LS01/13

100L AIR COMPRESSOR MODEL NO: TIGER 16/1010 PART NO: OPERATION & MAINTENANCE INSTRUCTIONS LS01/13 100L AIR COMPRESSOR MODEL NO: TIGER 16/1010 PART NO: 2244025 OPERATION & MAINTENANCE INSTRUCTIONS LS01/13 INTRODUCTION Thank you for purchasing this product. Before attempting to use this product, please

More information

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 CEE 331 Lab 1 Page 1 of 9 SAFETY Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 Laboratory exercise based on an exercise developed by Dr. Monroe Weber-Shirk The major safety hazard in this

More information

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps Exercise 4-2 Centrifugal Pumps EXERCISE OBJECTIVE Familiarize yourself with the basics of liquid pumps, specifically with the basics of centrifugal pumps. DISCUSSION OUTLINE The Discussion of this exercise

More information

LAMINAR FLAME SPEED ANALYSIS USING PIV (PARTICLE IMAGE VELOCIMETRY)

LAMINAR FLAME SPEED ANALYSIS USING PIV (PARTICLE IMAGE VELOCIMETRY) LAMINAR FLAME SPEED ANALYSIS USING PIV (PARTICLE IMAGE VELOCIMETRY) OPERATIONAL PROCEDURES Venue: Project Room, Hopkinson Lab, CUED Experimental date: 25 March 2008 Prepared by: Cheng Tung Chong (ctc31@camacuk)

More information

Operating Instructions Model and Hydrostatic Test Pump

Operating Instructions Model and Hydrostatic Test Pump Operating Instructions Model 29200 and 2920 Hydrostatic Test Pump Dimension Weight Pump Pressure for 29200 Pump Pressure for 2920 Gauge for 29200 Gauge for 2920 Inlet Connection Outlet Connection Hose

More information

Industrial Pneumatics

Industrial Pneumatics Industrial Pneumatics Industrial Training Manual 1 Level 1 Version 3.0 April 2015 This manual was developed for use with the following products: FluidSIM Pneumatics 5.0 English DEPCO Pneumatics Training

More information

Natural Gas High-Altitude Conversion Kit For Installations in the United States (2,001 10,000 Feet)

Natural Gas High-Altitude Conversion Kit For Installations in the United States (2,001 10,000 Feet) Natural Gas High-Altitude Conversion Kit For Installations in the United States (2,001 10,000 Feet) INSTALLATION INSTRUCTIONS For R7 Series Light Commercial Packaged Gas Electric Units IIMPORTANT: Please

More information

4 ANGLE GRINDER MODEL NO: CAT 52 PART

4 ANGLE GRINDER MODEL NO: CAT 52 PART 4 ANGLE GRINDER 4 ANGLE GRINDER MODEL NO: CAT 52 PART No: 3110685 OPERATION & MAINTENANCE INSTRUCTIONS 0807 Fig.1 SPECIFICATIONS Model:...CAG52 Part Number:...3110685 Rated Wheel...Capacity: 4 x 1/4 (type

More information

Optimization of Ejector's Performance With a CFD Analysis. Amanda Mattos Karolline Ropelato Ricardo Medronho

Optimization of Ejector's Performance With a CFD Analysis. Amanda Mattos Karolline Ropelato Ricardo Medronho Optimization of Ejector's Performance With a CFD Analysis Amanda Mattos Karolline Ropelato Ricardo Medronho 2 Introduction Ejectors Equipment industrially used and based on the Venturi phenomena; With

More information

Air Operated Hydraulic Pumping Systems to 50,000 psi

Air Operated Hydraulic Pumping Systems to 50,000 psi High Pressure Equipment Air Operated Hydraulic Pumping Systems to 50,000 psi PS-10: 10,000 psi PS-20: 20,000 psi PS-30: 30,000 psi PS-40: 40,000 psi PS-50: 50,000 psi PS-90: 90,000 psi High Pressure air

More information

(AS AT 31 st MARCH, 2002)

(AS AT 31 st MARCH, 2002) ACACA PROTOCOL 2000 (AS AT 31 st MARCH, 2002) ACACA PROTOCOL 2000 INCLUDES (A) CODE OF PRACTICE FOR MANUFACTURERS AND/OR SUPPLIERS OF COMMERCIAL AIR COMPRESSORS AND METHOD FOR DETERMINING (B) RECIPROCATING

More information

Installation and User Manual

Installation and User Manual 49124589 Revision A August 2015 PacE Flow Controller Installation and User Manual Save These Instructions Table of contents Table of contents..................................................... 2 INSTALLATION............................................................3

More information

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

More information

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

More information

Advanced Management of Compressed Air Systems Pre-Workshop Assignment

Advanced Management of Compressed Air Systems Pre-Workshop Assignment Advanced Management of Compressed Air Systems Page 1 In order to ensure that the Compressed Air Challenge Level II Training is most useful to you, it will be important for you to bring information about

More information

Workhorse-15 Oxygen Generator

Workhorse-15 Oxygen Generator 11436 Sorrento Valley Road, San Diego CA 92121 USA 858-558-0202 Fax 858-558-1915 Workhorse-15 Oxygen Generator Model No. 5719, 5727, 5735 for Domestic and International Units Part number 1432 Revision

More information

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles International Journal of Engineering Research and Development e-issn: 7-067X, p-issn: 7-00X, www.ijerd.com Volume 3, Issue 4 (August ), PP. 33-39 Experimental Analysis on Vortex Tube Refrigerator Using

More information

Installation of Your SprayMaster System

Installation of Your SprayMaster System Installation of Your SprayMaster System 1. At the installation site, remove all equipment from the corrugated box and the polyethylene drum and replace the drum lid. Check the picture to identify each

More information

1 PIPESYS Application

1 PIPESYS Application PIPESYS Application 1-1 1 PIPESYS Application 1.1 Gas Condensate Gathering System In this PIPESYS Application, the performance of a small gascondensate gathering system is modelled. Figure 1.1 shows the

More information

Introductory Lab: Vacuum Methods

Introductory Lab: Vacuum Methods Introductory Lab: Vacuum Methods Experiments in Modern Physics (P451) In this lab you will become familiar with the various components of the lab vacuum system. There are many books on this topic one of

More information

Chapter 3 EXPERIMENTAL: EQUIPMENT, SET-UP, AND PROCEDURE

Chapter 3 EXPERIMENTAL: EQUIPMENT, SET-UP, AND PROCEDURE Chapter 3 EXPERIMENTAL: EQUIPMENT, SET-UP, AND PROCEDURE 72 3.0 Introduction The experimental work was carried out in three stages. First stage: a laboratory scale single nozzle horizontal jet ejector

More information

VACUUM REGULATORS CONTENTS

VACUUM REGULATORS CONTENTS CAD drawing data catalog is available. ACCESSORIES GENERAL CATALOG AIR TREATMENT, AUXILIARY, VACUUM, AND FLUORORESIN PRODUCTS CONTENTS Small Regulators Features 759 Specifications, Order Codes, Flow Rate

More information

Test Apparatus for Performance Evaluation of Compressed Air End-Use Applications

Test Apparatus for Performance Evaluation of Compressed Air End-Use Applications Open Journal of Energy Efficiency, 2013, 2, 29-33 http://dx.doi.org/10.4236/ojee.2013.21005 Published Online March 2013 (http://www.scirp.org/journal/ojee) Test Apparatus for Performance Evaluation of

More information

PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL

PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL S R Bhoi and G K Suryanarayana National Trisonic Aerodynamic Facilities, National Aerospace Laboratories,

More information

Genie Supreme Model 123 Installation & Operation Instructions

Genie Supreme Model 123 Installation & Operation Instructions Genie Supreme Model 123 Installation & Operation Instructions Manufacturing Contact Information A+ Corporation, LLC Call for expert product application assistance: 41041 Black Bayou Rd. Gonzales, LA 70737

More information

Warnings: Notes: Revised: October 5, 2015

Warnings: Notes: Revised: October 5, 2015 Karl Suss MA6 Mask Aligner Standard Operating Procedure Faculty Supervisor: Prof. Robert White, Mechanical Engineering (x72210) Safety Office: Peter Nowak x73246 (Just dial this directly on any campus

More information