Respiratory Pulmonary Ventilation

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Respiratory Pulmonary Ventilation"

Transcription

1 Respiratory Pulmonary Ventilation Pulmonary Ventilation Pulmonary ventilation is the act of breathing and the first step in the respiratory process. Pulmonary ventilation brings in air with a new supply of oxygen and a very small amount of carbon dioxide from the atmosphere into the alveoli. This mixture then participates in external respiration, the exchange of oxygen and carbon dioxide between the alveoli and pulmonary capillary blood across the respiratory membrane. Internal respiration is the exchange of gasses between the tissues of the body and the blood, which provides oxygen for aerobic cellular respiration and removes carbon dioxide. Aerobic Cellular respiration refers to the intracellular use of oxygen and the generation of carbon dioxide waste through metabolic pathways. Pressure Breathing or ventilation, involves changes in pressure as a result of mechanical work. The physical movement of air into the lungs is a result of the production of differences in total pressure between the interior (alveolar pressure) and exterior (atmospheric pressure) of the respiratory zone. Atmospheric pressure at sea level is typically 1 atmosphere or 760 mmhg, and this value will be used as the reference atmospheric pressure here. One atmosphere is the air pressure that would push a column of the mercury up in a thin tube a distance of 760 mm. Mercury is used because it is a liquid at room temperature, and its density changes very little over pressure and temperature ranges. In the process of ventilation, air moves down pressure gradients going from an area of higher pressure to an area of lower pressure. Assuming a person is at sea level, if his or her intrapulmonary pressure, the pressure in the alveoli, is less than 1 atm, air enters the lungs and fills the alveoli. If his or her intrapulmonary pressure is greater than 1 atm, then air moves out of the lungs into the environment.

2 There is another pressure often discussed in the mechanics of ventilation, intrapleural (sometimes just pleural) pressure. This is the pressure within the pleural sac (space). Intrapleural pressure is maintained slightly less than the pressure in the alveoli. This pressure difference aids in keeping the lungs slightly inflated at all times and ensures that they do not collapse when exhaling. Inspiration and Expiration Gases have a property of distributing to fill whatever size and shape container they occupy. If a closed container is made larger (an increase in volume), the total number of gas molecules will stay the same, but they will redistribute to fill the larger space. In doing so, they decrease their concentration (remember that concentration is a property of mass and volume). This increase in volume but not number of molecules of

3 the gas leads to a corresponding decrease in the pressure exerted by that gas on the walls of the container. If the same closed container is made smaller, the concentration of gases increases( even though the actual number of gas molecules has not changed) and the pressure increases. This is an example of a physical law calledboyle s Law. The law is expressed mathematically as: P 1 V 1 = P 2 V 2 where P = pressure, V = volume, 1 is the initial pressure and volume, and 2 is the resulting pressure and volume. Boyle s Law states that, at a constant temperature, the pressure of a gas is inversely proportional with the volume of its container. Very simply, as volume goes up, pressure goes down, and as volume goes down, pressure goes up. These properties become important for ventilation because the passage of air into and out of the lungs is controlled by the size of the lungs container, the thorax. The difference between the example above and the lungs is that the lungs are not a closed system (unless you have a closed glottis), with the opening to the lungs maintained through the conducting zone. But over very short periods of time Boyle s law still applies. In this case, when we inhale, the movement of the diaphragm and the ribs increases the volume of the thorax. This immediately decreases the air pressure within the thorax, creating a pressure gradient between the atmosphere and the alveoli (the latter is called intrapulmonary pressure), and drawing air into the lungs. Air will enter until the atmospheric and intrapulmonary pressures are equal. However, the volume of the thorax remains larger than before the start of inhalation. To exhale, the thorax is allowed to decrease in volume (the ribs and diaphragm return to their original positions), increasing the intrapulmonary pressure and creating a gradient in the opposite direction resulting in the flow of air out to the atmosphere. Changing the size of the thoracic cavity would be impossible if the ribs were solidly attached to the sternum. If they were solidly attached, it would be like trying to move the sides of a birdcage.

4 The costal cartilage allows the ribs to move and expand or contract the chest wall. Inspiration Inspiration is the act of inhaling. As stated above, inspiration occurs by increasing the volume of the thorax. This active process involves the use of chest and neck muscles. Mostly movement of the diaphragm achieves resting inspiration. The relaxed shape of the diaphragm resembles a shallow dome with the apex pointing toward the lungs, similar to the shape of an open umbrella. When the diaphragm contracts, it tends to flatten out, expanding the volume of the thorax in an inferior direction. Consequently, the intrapleural and intrapulmonary pressures decrease below atmospheric pressure resulting in air being pulled through the conducting zone and into the lungs. The external intercostal muscles work in conjunction with the diaphragm. The normal orientation of the ribs is around the side of the thorax and angled inferiorly to the sternum. When the external intercostal muscles contract, the ribs are pulled up, also expanding the thoracic cavity in a horizontal direction. In adults, ventilation occurs about 12 times a minute and moves roughly 500 ml of air during each breath. A deep breath involves a greater shortening of the diaphragm and the external intercostal muscles plus additional contractions of other neck and chest muscles. The scalene muscles elevate the first two ribs. The sternocleidomastoid muscles elevate the sternum, and the pectoralis minor muscles help to elevate the third, fourth, and fifth ribs. Two physical conditions that interfere with inspiration are obesity and advanced pregnancy. In both cases, the abdominal organs are pushed against the diaphragm, restricting its downward movement and hindering the expansion of the thoracic cavity. Expiration Expiration is the act of exhaling. Resting expiration is a passive process. The muscles used during inspiration relax, and allow the chest wall and the diaphragm to move back to their original position, thus decreasing the volume of the thorax and forcing air from the lungs. The

5 compression of the chest wall also aids in moving blood and lymph through the vessels that drain the lungs. Expiration becomes an active process when a more forceful exhale is required. The internal intercostal muscles pull the ribs down, helping to compress the chest. The external and internal oblique and transverse abdominal muscles press on the abdominal organs, which move them up against the diaphragm and force the diaphragm higher than it would normally go on relaxation, further decreasing the volume of the thoracic cavity. Airway resistance, alveolar surface tension, and lung compliance One thing that works against the pressure gradient created by the expansion of the thorax is the resistance found within the conducting zone. Under normal conditions this resistance is quite low, and the airways have little trouble passing air between the atmosphere and the alveoli. The small amount of resistance found in the system stems mainly from the bronchioles, which are analogous to the arterioles of the vascular system. Both the bronchioles and the arterioles contribute a large portion of the resistance of their entire system, and both have smooth muscles in their walls that allow them to constrict or dilate. Under conditions of bronchiolar constriction (bronchoconstriction), resistance to airflow can increase dramatically. When this happens rapidly, it is classified as an acute asthma attack. The afflicted individual will need to generate much larger changes in intrapulmonary pressure to maintain a normal flow rate of air during breathing. Recall that if resistance increases an increased pressure gradient is necessary to maintain the same flow. To achieve this, the person uses the accessory muscles to breath, and will appear to be straining as he or she does so. Treatment usually involves an inhaler containing a bronchodilator. Resistance will also be affected if the airways become narrowed by mucus (chronic asthma) or aspirated substances. Along with the resistance of the airways, the compliance of the lung tissue also determines how much effort breathing requires. Compliance is a property that explains the relationship between a volume change and pressure change. Typically it takes a 2-3 cm of water change in pleural pressure to change volume in the lungs by 500 ml. This is a

6 compliance of about 200 ml/cm H2O. The compliance of the lungs is dependent on the elasticity of the connective tissues of the lung as well as the alveolar surface tension. Remember that a thin liquid layer containing water as well as other molecules lines the interior lung surface. Because of its polar nature, water exhibits cohesion, such that it takes some effort to separate water molecules (you may have experienced the force of this cohesion if you ever belly flopped into the water). This surface tension is actually enough to collapse the alveoli each time a person exhales. In order to prevent this from happening, the type II alveolar cells make a combination of lipids and proteins that serves as a surfactant in the alveoli. A surfactant is a chemical that acts like a detergent breaking the surface tension of the water lining the alveoli. This action allows the alveoli to remain open when exhaling. Compliance of the lung can be decreased either by fibrosis of the lung tissue creating a stiffening of the tissue (this can occur with conditions such as tuberculosis) or lack of surfactant (common in premature infants). Either way breathing becomes much more difficult, requiring more effort and sometimes mechanical ventilation.

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System Introduction Respiration Chapter 10 The Respiratory System Provides a means of gas exchange between the environment and the body Plays a role in the regulation of acidbase balance during exercise Objectives

More information

Respiratory Physiology Gaseous Exchange

Respiratory Physiology Gaseous Exchange Respiratory Physiology Gaseous Exchange Session Objectives. What you will cover Basic anatomy of the lung including airways Breathing movements Lung volumes and capacities Compliance and Resistance in

More information

(Slide 1) Lecture Notes: Respiratory System

(Slide 1) Lecture Notes: Respiratory System (Slide 1) Lecture Notes: Respiratory System I. (Slide 2) The Respiratory Tract A) Major structures and regions of the respiratory Tract/Route INTO body 1) nose 2) nasal cavity 3) pharynx 4) glottis 5)

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

GASEOUS EXCHANGE IN HUMANS 06 AUGUST 2014

GASEOUS EXCHANGE IN HUMANS 06 AUGUST 2014 GASEOUS EXCHANGE IN HUMANS 06 AUGUST 2014 In this lesson we: Lesson Description Look at gaseous exchange in humans in terms of o Ventilation o Inspiration o Expiration o Transport of gases o Homeostatic

More information

(A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively.

(A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively. DAT Biology - Problem Drill 12: The Respiratory System Question No. 1 of 10 1. Which statement about the partial pressure of oxygen inside the lungs is correct? Question #01 (A) The partial pressure in

More information

GASEOUS EXCHANGE 17 JULY 2013

GASEOUS EXCHANGE 17 JULY 2013 GASEOUS EXCHANGE 17 JULY 2013 Lesson Description In this lesson we: Discuss what is gaseous exchange? Consider requirements of an efficient gaseous exchange surface. Look at diversity in gas exchange systems.

More information

The Human Respiratory System

The Human Respiratory System The Human Respiratory System Functions of the Respiratory System Circulatory system delivers the food that is broken down by digestive system to the cells Metabolism is when the energy in food is released

More information

Respiratory System 1

Respiratory System 1 Respiratory System 1 Outline Respiratory structures Gills Air-Breathing Animals Amphibians and Reptiles Mammals Birds Structures and Mechanisms of Breathing 2 Copyright The McGraw-Hill Companies, Inc.

More information

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46 Human gas exchange Question Paper Level Subject Exam oard Topic Sub Topic ooklet O Level iology ambridge International Examinations Respiration Human gas exchange Question Paper Time llowed: 56 minutes

More information

Lung Volumes and Capacities. To review first

Lung Volumes and Capacities. To review first Lung Volumes and Capacities To review first Age-old story: Age-related respiratory changes Structural changes Nose enlargement (from continued cartilage growth) General atrophy of the tonsils Tracheal

More information

Respiration in Humans is a 3 Step Process. 1) Breathing muscular actions that move air into/out of respiratory passages

Respiration in Humans is a 3 Step Process. 1) Breathing muscular actions that move air into/out of respiratory passages Respiration in Humans is a 3 Step Process 1) Breathing muscular actions that move air into/out of respiratory passages 2)Gas Exchange movement of gases (O 2 and CO 2 ) by diffusion across cell membranes

More information

NOTES: CH 42, part 2 - Gas Exchange in Animals

NOTES: CH 42, part 2 - Gas Exchange in Animals NOTES: CH 42, part 2 - Gas Exchange in Animals Functions of the Respiratory System: 1) Air distribution / gaseous exchange; 2) Filter, warm & humidify air we breathe; 3) Influence speech; 4) Help maintain

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

Most organisms on Earth are aerobic. Meaning, they require oxygen to survive.

Most organisms on Earth are aerobic. Meaning, they require oxygen to survive. Most organisms on Earth are aerobic. Meaning, they require oxygen to survive. The basic function of the respiratory system is to take in oxygen and release carbon dioxide A system that provides a large

More information

Alveolus and Respiratory Membrane

Alveolus and Respiratory Membrane Alveolus and Respiratory Membrane thin membrane where gas exchange occurs in the lungs, simple squamous epithelium (Squamous cells have the appearance of thin, flat plates. They fit closely together in

More information

Animal Systems: The Respiratory System

Animal Systems: The Respiratory System Animal Systems: The Respiratory System Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems The Digestive The Circulatory

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

The Respiratory System. Chapter 13 Bania NHS - SCIENCE

The Respiratory System. Chapter 13 Bania NHS - SCIENCE The Respiratory System Chapter 13 Bania NHS - SCIENCE I. Functions of the Respiratory System A. Distribution of air/diffusion of oxygen and carbon dioxide 1. Between air and blood external respiration

More information

GAS EXCHANGE & PHYSIOLOGY

GAS EXCHANGE & PHYSIOLOGY GAS EXCHANGE & PHYSIOLOGY Atmospheric Pressure Intra-Alveolar Pressure Inspiration 760 mm HG at Sea Level (= 1 atm) Pressure due to gases (N2, O2, CO2, Misc.) Pressure inside the alveolus (air sac) Phrenic

More information

Chapter 22 The Respiratory System

Chapter 22 The Respiratory System Chapter 22 The Respiratory System 1 Respiration Pulmonary ventilation (breathing): movement of air into and out of the lungs External respiration: O 2 and CO 2 exchange between the lungs and the blood

More information

Respiratory Physiology. Adeyomoye O.I

Respiratory Physiology. Adeyomoye O.I Respiratory Physiology By Adeyomoye O.I Outline Introduction Hypoxia Dyspnea Control of breathing Ventilation/perfusion ratios Respiratory/barometric changes in exercise Intra-pulmonary & intra-pleural

More information

Physiology of Respiration

Physiology of Respiration Physiology of Respiration External Respiration = pulmonary ventilation breathing involves 2 processes: inspiration expiration Inspiration an active process involves contraction of diaphragm innervated

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

CHAPTER 17 BREATHING AND EXCHANGE OF GASES

CHAPTER 17 BREATHING AND EXCHANGE OF GASES 268 BIOLOGY CHAPTER 17 BREATHING AND EXCHANGE OF GASES 17.1 Respiratory Organs 17.2 Mechanism of Breathing 17.3 Exchange of Gases 17.4 Transport of Gases 17.5 Regulation of Respiration 17.6 Disorders of

More information

Cardiovascular and respiratory adjustments to exercise

Cardiovascular and respiratory adjustments to exercise Cardiovascular and respiratory adjustments to exercise Additional notes on breathing and use of respiratory belt and pulse transducers Notes on breathing The metabolic activities of tissues use up oxygen

More information

Boards and Beyond: Pulmonary

Boards and Beyond: Pulmonary Boards and Beyond: Pulmonary A Companion Book to the Boards and Beyond Website Jason Ryan, MD, MPH i ii Table of Contents Pulmonary Anatomy 1 Treatment of COPD/Asthma 45 Pulmonary Physiology 4 Pneumonia

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System VI edit Pag 451-499 Chapter 13 The Respiratory System V edit. Pag 459-509 Tissue cell Alveoli of lungs Atmosphere 1 External respiration Ventilation or gas exchange between the atmosphere and air sacs

More information

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC 66 LAB 7 HUMAN RESPIRATORY LAB Assignments: Due before lab: Quiz: Three Respiratory Interactive Physiology Animations pages 69 73. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

More information

inquiry question How does the respiratory system contribute to energy production for movement? UNCORRECTED PAGE PROOFS

inquiry question How does the respiratory system contribute to energy production for movement? UNCORRECTED PAGE PROOFS inquiry question How does the respiratory system contribute to energy production for movement? chapter 7 Structure and functions of the respiratory system The respiratory system is the starting point for

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

SCIENCE 8 RESPIRATION

SCIENCE 8 RESPIRATION SCIENCE 8 RESPIRATION WHEN WE BREATHE, WHAT DO WE BREATHE IN? O2, N2, CO2, O3, NO2 (gas fumes), CO, pollutant, fragrants, toxins, etc. WHAT IS THE PURPOSE OF BREATHING IN? WHAT DOES OUR BODY WANT? O2 WHY?

More information

Ch. 12: Respiratory Physiology

Ch. 12: Respiratory Physiology Ch. 12: Respiratory Physiology Objectives: 1. Review respiratory anatomy. 2. Understand mechanics of breathing, gas pressure vocabulary, and the principles of surface tension, compliance, and recoil. 3.

More information

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases.

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases. Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

More information

1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/

1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/ 1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/ CHAPTER 17 BREATHING AND EXCHANGE OF GASES Oxygen (O2) is utilised by the organisms to indirectly break down nutrient molecules like

More information

These two respiratory media (air & water) impose rather different constraints on oxygen uptake:

These two respiratory media (air & water) impose rather different constraints on oxygen uptake: Topic 19: OXYGEN UPTAKE AND TRANSPORT (lectures 29-30) OBJECTIVES: 1. Be able to compare air vs. water as a respiratory medium with respect to oxygen content, diffusion coefficient, viscosity and water

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

Batter s box. Game 1. Respiratory system essentials. Options. The respiratory system consists of the respiratory tract, the 1

Batter s box. Game 1. Respiratory system essentials. Options. The respiratory system consists of the respiratory tract, the 1 Game 1 Batter s box Fill in the blanks with the appropriate words. Hint: Some answers are used more than once. Respiratory system essentials The respiratory system consists of the respiratory tract, the

More information

The Respiratory System

The Respiratory System Respiration and Excretion Name Date Class The Respiratory System This section describes the parts of the respiratory system and how they work to help you breathe and speak. Use Target Reading Skills As

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

A Liter a Lung Measuring Lung Capacity

A Liter a Lung Measuring Lung Capacity A Liter a Lung Measuring Lung Capacity OBJECTIVE In this investigation, students will compare the actual and expected vital capacities of their classmates. LEVEL Middle Grades Life Science CONNECTIONS

More information

Pop Quiz. What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach?

Pop Quiz. What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach? Pop Quiz What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach? Respiratory System Review Cellular respiration: obtain glucose and oxygen, get

More information

7 Gas exchange in humans

7 Gas exchange in humans Class: Name: ( ) Date: 7 Gas exchange in humans 7.1 The human breathing system (Book 1B, p. 7-3) Cells carry out (1) to release energy for cellular activities. To ensure the supply of (2) to cells and

More information

The Respiratory System

The Respiratory System The Respiratory System (pages 112 120) Respiratory System Functions (pages 113 114) Key Concept: The respiratory system moves oxygen from the outside environment into the body. It also removes carbon dioxide

More information

Pulmonary Circulation Linda Costanzo Ph.D.

Pulmonary Circulation Linda Costanzo Ph.D. Pulmonary Circulation Linda Costanzo Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The differences between pressures in the pulmonary and systemic circulations. 2. How

More information

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system Chapter 16 Respiration Functions of the respiratory system Respiration The term respiration includes 3 separate functions: Ventilation: Breathing. Gas exchange: Occurs between air and blood in the lungs.

More information

The Human Body. Everyone Needs Healthy Systems. Blood Vessels

The Human Body. Everyone Needs Healthy Systems. Blood Vessels The Human Body Everyone Needs Healthy Systems There are several systems that make up the human body. Although their functions differ, they all work together to keep your body running smoothly. Some of

More information

Chapter 23: Respiratory System

Chapter 23: Respiratory System Chapter 23: Respiratory System I. Functions of the Respiratory System A. List and describe the five major functions of the respiratory system: 1. 2. 3. 4. 5. II. Anatomy and Histology of the Respiratory

More information

Respiratory System -Training Handout

Respiratory System -Training Handout Respiratory System -Training Handout Karen L. Lancour National Rules Committee Chairman Life Science FUNCTIONS: Provides oxygen to the blood stream and removes carbon dioxide Enables sound production or

More information

Ch. 12: Respiratory Physiology

Ch. 12: Respiratory Physiology Ch. 12: Respiratory Physiology Objectives: 1. Review respiratory anatomy. 2. Understand mechanics of breathing. 3. Learn lung volumes & respiratory vocabulary 4. Learn gas exchange at lungs & at body tissues

More information

The Respiratory System

The Respiratory System Name Date Class The Respiratory System (pages 564-572) Respiratory System Functions (pages 565-566) Key Concept: The respiratory system moves oxygen from the outside environment into the body. It also

More information

Respiration. Chapter 33

Respiration. Chapter 33 Respiration Chapter 33 Learning Objectives: Understand the basis of gas exchange and factors that influence diffusion of gases in and out of tissues Compare and contrast different respiratory systems among

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

Recitation question # 05

Recitation question # 05 Recitation and Lab # 05 The goal of this recitations / labs is to review material related to the CV and respiratory lectures for the second test of this course. Info required to answer this recitation

More information

GAS EXCHANGE & CIRCULATION CHAPTER 42 ( )

GAS EXCHANGE & CIRCULATION CHAPTER 42 ( ) Winter 08 1 of 10 GAS EXCHANGE & CIRCULATION CHAPTER 42 (867 891) MOVEMENT OF GASES Both O 2 and CO 2 move by The movement down a If a gas produced in one location, it diffuses away But diffusion is usually

More information

Circulation and Gas Exchange Chapter 42

Circulation and Gas Exchange Chapter 42 Circulation and Gas Exchange Chapter 42 Circulatory systems link exchange surfaces with cells throughout the body Diffusion is only efficient over small distances In small and/or thin animals, cells can

More information

BIOLOGY 12 - RESPIRATION - CHAPTER NOTES

BIOLOGY 12 - RESPIRATION - CHAPTER NOTES BIOLOGY 12 - RESPIRATION - CHAPTER NOTES We often think of respiration as just breathing. In fact, breathing is just one part of this physiological process. As biologists, we divide respiration up into

More information

Lab 17. The Respiratory System. Laboratory Objectives

Lab 17. The Respiratory System. Laboratory Objectives Lab 17 The Respiratory System Laboratory Objectives Identify and describe the anatomical structures of the respiratory system. Describe the relationship between volume and pressure. Describe changes in

More information

The Respiratory System

The Respiratory System Name Date Class The Respiratory System This section describes the parts of the respiratory system and how they work to help you breathe and speak. Use Target Reading Skills As you read, complete the flowchart

More information

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology alveoli Chapter 42. Gas Exchange gills elephant seals Gas exchange O 2 & CO 2 exchange exchange between environment & cells provides O 2 for aerobic cellular respiration need moist membrane need high

More information

Anatomy & Physiology of the Respiratory System

Anatomy & Physiology of the Respiratory System Anatomy & Physiology of the Respiratory System Chapter 23 1 Lecture objectives 1. Identify anatomy and physiology of respiratory system. 2. Fully explain the process respiration. 3. Explain the structure

More information

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water.

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water. 1. Answers should be written in continuous prose. Credit will be given for biological accuracy, the organisation and presentation of information and the way in which an answer is expressed. Fick s law

More information

Respiratory System. 1. muscular tube lined by mucous membrane 2. throat 3. nasopharynx, oropharynx, laryngopharynx

Respiratory System. 1. muscular tube lined by mucous membrane 2. throat 3. nasopharynx, oropharynx, laryngopharynx I. Functions of the Respiratory System A. gas exchange B. prevent dehydration C. sound D. olfaction E. ph regulation II. Anatomy of the Respiratory System A. Nose 1. external nares vestibule nasal cavity

More information

2) During exhalation Air is cooled due to condensation and loses its moisture, depositing it on lining in trachea and nose

2) During exhalation Air is cooled due to condensation and loses its moisture, depositing it on lining in trachea and nose Section 10: The Respiratory System A. Functions of the respiratory system: The organs of the respiratory system make sure oxygen enters the body and carbon dioxide leaves the body. 2 stages: Inhalation

More information

THE STUDY OF LUNG VELOCITY UNDER DIFFERENT CONDITIONS

THE STUDY OF LUNG VELOCITY UNDER DIFFERENT CONDITIONS THE STUDY OF LUNG VELOCITY UNDER DIFFERENT CONDITIONS Natasha Chandra Cary Academy ABSTRACT The purpose of this study was to determine which activity made each student have the least lung velocity (L/sec).

More information

3. (a) countercurrent mechanism; helps maintain diffusion gradient; 2

3. (a) countercurrent mechanism; helps maintain diffusion gradient; 2 1. (a) (i) Fish has ventilation system which replaces water; highly oxygenated water (circulatory system brings in) blood with low concentration of oxygen/blood removes oxygen; counter current system/description;

More information

Experiment B-3 Respiration

Experiment B-3 Respiration 1 Experiment B-3 Respiration Objectives To study the diffusion process of oxygen and carbon dioxide between the alveoli and pulmonary capillaries. To determine the percentage of oxygen in exhaled air while

More information

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

More information

How Animals Survive (Circulation and Gas Exchange)

How Animals Survive (Circulation and Gas Exchange) How Animals Survive (Circulation and Gas Exchange) by Flourence Octaviano on February 16, 2018 lesson duration of 30 minutes under Earth and Life Science generated on February 16, 2018 at 12:45 am Tags:

More information

Respiratory Systems: Ventilation & Gas Exchange

Respiratory Systems: Ventilation & Gas Exchange Respiratory Systems: Ventilation & Gas Exchange Ventilation of Respiratory Surfaces Non-directional ventilation: Medium flows past gas exchange surface in an unpredictable pattern. Tidal Ventilation External

More information

Initiation and Management of Airway Pressure Release Ventilation (APRV)

Initiation and Management of Airway Pressure Release Ventilation (APRV) Initiation and Management of Airway Pressure Release Ventilation (APRV) Eric Kriner RRT Pulmonary Critical Care Clinical Specialist Pulmonary Services Department Medstar Washington Hospital Center Disclosures

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

Circulation and Respiration: Vital Signs Student Version

Circulation and Respiration: Vital Signs Student Version Circulation and Respiration: Vital Signs Student Version In this lab, you will learn about the circulatory and respiratory systems. You will test the capacity of your lungs, measure your blood pressure

More information

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS VENTILATION AND PERFUSION IN HEALTH AND DISEASE Dr.HARIPRASAD VS Ventilation Total ventilation - total rate of air flow in and out of the lung during normal tidal breathing. Alveolar ventilation -represents

More information

UNIFYING CONCEPTS OF ANIMAL CIRCULATION

UNIFYING CONCEPTS OF ANIMAL CIRCULATION UNIFYING CONCEPTS OF ANIMAL CIRCULATION Every organism must exchange materials with its environment, relying upon diffusion, the spontaneous movement of molecules from an area of higher concentration to

More information

Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23

Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23 nd Lecture Fri 06 Mar 009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 009 Kevin Bonine & Kevin Oh Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 1-3 1 Housekeeping,

More information

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie RESPIRATORY PHYSIOLOGY Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie Outline Ventilation Diffusion Perfusion Ventilation-Perfusion relationship Work of breathing Control of Ventilation 2 This image

More information

Cell Processes: Diffusion Part 2: Fick s Second Law

Cell Processes: Diffusion Part 2: Fick s Second Law MathBench- Australia Diffusion Part 2 December 2015 page 1 Cell Processes: Diffusion Part 2: Fick s Second Law URL: http://mathbench.org.au/cellular-processes/time-to-diffuse/ Fick s Second Law Learning

More information

G622. APPLIED SCIENCE Monitoring the Activity of the Human Body ADVANCED SUBSIDIARY GCE. Thursday 27 May 2010 Afternoon. Duration: 1 hour 30 minutes

G622. APPLIED SCIENCE Monitoring the Activity of the Human Body ADVANCED SUBSIDIARY GCE. Thursday 27 May 2010 Afternoon. Duration: 1 hour 30 minutes ADVANCED SUBSIDIARY GCE APPLIED SCIENCE Monitoring the Activity of the Human Body G622 *OCE/17533* Candidates answer on the Question Paper OCR Supplied Materials: None Other Materials Required: Electronic

More information

Respiratory System Study Guide, Chapter 16

Respiratory System Study Guide, Chapter 16 Part I. Clinical Applications Name: Respiratory System Study Guide, Chapter 16 Lab Day/Time: 1. A person with ketoacidosis may hyperventilate. Explain why this occurs, and explain why this hyperventilation

More information

Noxious Fumes and Gases

Noxious Fumes and Gases Noxious Fumes and Gases The tissues of the body require oxygen 0 2 for normal metabolic processes (ie. the oxidation of food to produce energy). They must also eliminate CO, which is the waste product

More information

GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014

GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014 GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014 In this lesson, we: Lesson Description Define gaseous exchange o o Look at the requirements for efficient gaseous exchange Study gaseous exchange in various

More information

BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY

BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY Dr.R.Selvakumar.M.D.D.A.DNB Professor of Anaesthesiology, K.A.P.Viswanatham Govt medical college, Trichy. The current practice of Anaesthesiology demands knowledge

More information

Unit 8 B: Respiration

Unit 8 B: Respiration Unit 8 B: Respiration Respiration: Respiration is a chemical reaction that happens in all living cells. It is the way that energy is released from glucose, for our cells to use to keep us functioning.

More information

Respiration BIOLOGY. Visual Learning Company. Reviewers: Stephen Trombulak Ph.D. Professor of Biology Middlebury College

Respiration BIOLOGY. Visual Learning Company. Reviewers: Stephen Trombulak Ph.D. Professor of Biology Middlebury College Instructor s Manual Editors: Brian A. Jerome Ph.D. Stephanie Zak Jerome Assistant Editors: Louise Marrier Lyndsey Canfield Heidi Berry Graphics: Fred Thodal Dean Ladago Reviewers: Stephen Trombulak Ph.D.

More information

Exercise and Respiration Rate

Exercise and Respiration Rate Activity 17 PS-2820 Physiology: Breathing, respiration rate Exercise and Respiration Rate DataStudio GLX setup file: respiration.glx Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002

More information

INTERNATIONAL TURKISH HOPE SCHOOL

INTERNATIONAL TURKISH HOPE SCHOOL INTERNATIONAL TURKISH HOPE SCHOOL 2014 2015 ACADEMIC YEAR CHITTAGONG SENIOR SECTION RESPIRATION and GAS EXCHANGE CLASS IX and X Name :... Date :... SYLLABUS CONTENT Section 2: Structures and functions

More information

Measuring Lung Capacity

Measuring Lung Capacity Name Class Date Chapter 37 Circulatory and Respiratory Systems Measuring Lung Capacity Introduction The amount of air that you move in and out of your lungs depends on how quickly you are breathing. The

More information

Vertebrate Respiration

Vertebrate Respiration Vertebrate Respiration Functions Gas Exchange we animals require oxygen and get rid of Carbon dioxide when too much of it makes the blood acidic, when lowering the ph of the blood it will interfere with

More information

What is breathing an respiration?

What is breathing an respiration? LE SSON 15 What is breathing an respiration? You need energy to live. So do birds, trees, and bacteria. All living things need energy to carry out the life processes. And, there can be no life without

More information

Using the figure above, match the following: 4. Tidal volume. 5. Inspiratory reserve volume. 6. Residual volume. 7. Expiratory reserve volume.

Using the figure above, match the following: 4. Tidal volume. 5. Inspiratory reserve volume. 6. Residual volume. 7. Expiratory reserve volume. Respiratory Physiology Practice Test BIOL 4350: Hamilton Using the figure above, match the following: 1. Primary bronchus 2. Larynx 3. Trachea Using the figure above, match the following: 4. Tidal volume.

More information

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops C h e m i s t r y 1 2 C h a p t e r 11 G a s e s P a g e 1 Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops Gas Properties: Gases have high kinetic energy low

More information