Save this PDF as:

Size: px
Start display at page:

Transcription

1 THE PHYSICS OF FLOW ANAESTHESIA TUTORIAL OF THE WEEK 84 9TH APRIL 2008 Paul Clements, SpR in Anaesthetics, Hope Hospital, Salford, UK. Carl Gwinnutt, Consultant Anaesthetist, Hope Hospital, Salford, UK. The Physics of Flow Introduction Flow is defined as the quantity of fluid (gas, liquid or vapour) that passes a point per unit time. A simple equation to represent this is Flow (F) = Quantity (Q) Time ( t) Flow is sometimes written as Q (rate of change of mass or volume). Due to the number of different fluids that are given to our patients during a routine anaesthetic, flow is obviously an important area of physics to understand. Questions Fig. 1 Rotameters Fig 2. Heliox (helium and oxygen) Why are the scales on rotameters (flowmeters) variable in their heights? Why are there different rotameters for different gases? Under what circumstances is the gas above useful and why? Page 1 of 7

2 Fig. 3 22G and 14G IV cannulas Fig.4. 4mm and 9mm endotracheal tubes How much more fluid can be administered through a 14G cannula than a 22G cannula? Will it make much of a difference ventilating through a size 4 ETT rather than a size 9 ETT? In order to answer these questions we need to understand the physical principles that govern flow. The physics of flow Flow can be divided into 2 different types, laminar and turbulent. A number of different physical characteristics determine whether a fluid obeys the principles of one or the other. Laminar Flow In laminar flow the molecules of the fluid can be imagined to be moving in numerous layers or laminae as shown below. Fig. 5 Diagrammatic representation of laminar flow Although all the molecules are moving in straight lines they are not all uniform in their velocity. If the mean velocity of the flow is v, then the molecules at the centre of the tube are moving at approximately 2v (twice the mean), whilst the molecules at the Page 2 of 7

3 side of the tube are almost stationary. To help to understand this consider what happens when walking across a small river or stream; at the edge of the water by the river bank it does not feel like there is much movement of the water, whereas once you reach the middle the water is moving a lot faster. This is represented by the different lengths of the lines in the diagram. Flow is usually considered to be laminar when a fluid flows through a tube and the rate of flow is low. This is therefore the type of flow we would expect to see when a fluid floes through a cannula or a tracheal tube. For flow to occur, there must be a pressure difference ( P) between the ends of a tube, and it can be demonstrated that Q is directly proportional to P, in other words the greater the pressure difference, the greater the flow. (We squeeze a bag of IV fluid, to increase the pressure difference between the bag and the vein, so that the fluid is given quicker!). As fluid flows through tubes there is resistance, between the fluid and vessel wall that opposes the flow. For any given system, this resistance is constant and can be expressed as: Resistance = P = R (constant) Q (This can be compared with V=IR in electrical physics) Flow is affected by a number of other physical characteristics: Tube diameter If the diameter of the tube is halved the flow through it reduces to onesixteenth. This means that flow is directly proportional to d4. (Think about how much more rapidly fluid flows through a 22G and 16G cannula). Length If the length is doubled the flow is halved, therefore flow is inversely proportional to the length of the tube. (A central line is much longer than a cannula, and for the same diameter fluid flows more slowly. This demonstrates why a cannula is far better for giving fluid rapidly). Viscosity This fluid is a measure of the frictional forces within the layers described above. (Almost how sticky the fluid is). As the viscosity increases the flow decreases proportionally, therefore flow and viscosity are inversely proportional. Viscosity is represented as η (Greek letter eta). Page 3 of 7

4 The Hagan-Poiseuille equation brings together all of the variables that determine flow along with a constant (π/128 that is derived theoretically). Q = π P d4 128 η l Q - flow P - pressure difference d - diameter of tube η - viscosity l - length of tube Turbulent Flow Not all fluid flow is laminar, but under certain physical conditions it becomes turbulent. When this happens, instead of the fluid moving in seemingly ordered layers, the molecules become more disorganised and begin to swirl with the formation of eddy currents, as shown below. Fig. 6 Diagrammatic representation of turbulent flow Now, flow is less ordered and the eddy currents react with each other, increasing drag or resistance to flow. As a result, a greater energy input is required for a given flow rate when flow is turbulent compared to when flow is laminar. This is best demonstrated by the fact that in turbulent flow, the flow rate is proportional to the square root of the pressure gradient, whereas in laminar flow, flow rate is directly proportional to the pressure gradient. This means that to double the flow, the pressure across the tube must be quadrupled. When does turbulent flow occur? Turbulent flow occurs when fluids flow at high velocity, in large diameter tubes and when the fluids are relatively dense. Also, decreasing the viscosity of a fluid leads to turbulent flow. The factors that determine when turbulent flow commences can be combined to form an equation which calculates the Reynolds number: Reynolds number = v ρ d η v = velocity ρ = density d = diameter η = viscosity Page 4 of 7

5 Measurements in tubes have shown that when: Reynolds number < 2000 there is laminar flow. Reynolds number there is transitional flow i.e. a mixture of laminar and turbulent flow Reynolds number >4000 flow will be turbulent [Note that Reynolds number does not have any units associated with it, it is called a dimensionless number!]. This equation shows that for a given fluid, in a given tube, once a critical velocity is reached flow will become turbulent. The relevance of this within the body is that whenever a tube divides (e.g. bronchi, blood vessels) or there is a sharp bend or narrowing, velocity of the fluid increases making turbulent flow likely to occur. Blood flow in the carotid artery becomes turbulent as it flows past an atheromatous plaque, hence the bruit heard with a stethoscope. As we have seen, as the diameter of a tube increases, the Reynolds number increases. Eventually if the diameter of the increases enough, it will exceed the length of the tube. We then call this an orifice (see below). Generally speaking, provided that the critical velocity is not exceeded, flow through a tube is laminar and hence dependent on viscosity, whereas if it is through an orifice it is turbulent and dependent on density. Fig. 7 Difference between a tube and an orifice Tube Orifice Clinical Applications Flowmeter The flowmeters that are commonly used on anaesthetic machines are constant pressure, variable orifice flowmeters (tradename Rotameters ). These are cone shaped tubes that contain a bobbin and are specific for each gas. The gas enters the bottom of the tube applying a force on the bobbin. The bobbin then Page 5 of 7

6 moves up the tube until the force from below pushing it up is cancelled out by the gravitational force of the bobbin pulling it down. At this point it remains at that level and there is a constant pressure across the bobbin (pressure is force divided by area, and the area is constant). At low flows, the bobbin is near the bottom of the tube and the gap between the bobbin and wall of the flowmeter acts like a tube, gas flow is laminar and hence the viscosity of the gas is important. As flow rate increases, the bobbin rises up the flowmeter and the gap increases until it eventually acts like an orifice. At this point the density of the gas affects its flow. Fig. 8 Diagrammatic representation of a rotameter Tube Effect Orifice Effect As flow changes from laminar to turbulent within the flowmeter: -individual gases have different densities and viscosities and therefore the flow past the bobbin will vary for each individual gas. -the flow changes from being directly proportional to pressure to proportional to the square root of pressure and hence the graduations on the flowmeters are not uniform. Heliox Heliox is a mixture of 21% oxygen and 79% helium. Helium is an inert gas that is much less dense than nitrogen (which makes up 79% of air), therefore making heliox much less dense than air. In patients with upper airway obstruction, flow is through an orifice and hence more likely to be turbulent and dependent on the density of the gas passing through it. Therefore for a given pressure gradient (patient effort), there will be a greater flow of a low density gas (heliox) than a higher density gas (air). Although flow in the lower (smaller diameter) airways is considered to be laminar there may still be small areas of turbulence, giving some benefit, but not as much as that in the upper airways. It must be noted that although flow with heliox increases in upper airway obstruction, it only contains 21% oxygen it may not be of benefit in the hypoxic patient. Page 6 of 7

7 Intravenous fluids Intravenous fluids flow in a laminar fashion, therefore the rate of flow is determined by the Hagan-Pouseuille formula. This means that for a given fluid, with the same pressure applied to it, flow is greater through a shorter, wider cannula. That s why they are preferred in resuscitation to central cannulas that are long and small diameter. To re-iterate, if the diameter of the tube is doubled the flow through it is increased by sixteen times. Ventilation The principles here are similar to those with the intravenous cannulae. Flow through a tracheal tube is laminar so the Hagan-Pouseuille formula applies. If a smaller diameter tracheal tube is used, then flow will be significantly reduced as it is proportional to the forth power of the diameter, unless the pressure gradient is increased (changing the tube from an 8mm to a 4mm may reduce flow by up to sixteen-fold!). This may be relatively easy to do with a mechanical ventilator, but if the patient is breathing spontaneously they will need to generate a much greater negative intrathoracic pressure. This will require the patient to work a lot harder and over time they will become exhausted, tidal and minute volume will be reduced and they will become hypercapnic. This is the reason why we don t allow patients to breathe spontaneously for any length of time through narrow tubes, such as those used for laryngeal surgery. Also look at the rest of the breathing circuit: acute angles at connections cause turbulent flow, thereby reducing flow for a given driving pressure, and unnecessary long circuits will reduce flow making the work of breathing greater. Questions Define flow. What different types of flow are there and what physical principles govern them? What is the Hagan-Pouseille equation and what is the relevance of it? Please now refer to the clinical questions at the beginning of the tutorial and attempt them. Page 7 of 7

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure

Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases

Static Fluids. **All simulations and videos required for this package can be found on my website, here:

DP Physics HL Static Fluids **All simulations and videos required for this package can be found on my website, here: http://ismackinsey.weebly.com/fluids-hl.html Fluids are substances that can flow, so

CHEM 355 EXPERIMENT 7. Viscosity of gases: Estimation of molecular diameter

CHEM 355 EXPERIMENT 7 Viscosity of gases: Estimation of molecular diameter Expressed most simply, the viscosity of a fluid (liquid or gas) relates to its resistance to flow. The viscosity of a gas is determined

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model

Fluid Flow Equipment: Water reservoir, output tubes of various dimensions (length, diameter), beaker, electronic scale for each table. Computer and Logger Pro software. Lots of ice.temperature probe on

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

Anaesthesia. Update in. Gases and Vapours. Ben Gupta Correspondence Summary

Update in Anaesthesia Gases and Vapours Ben Gupta Correspondence Email: drbengupta@gmail.com BASIC CONCEPTS All matter exists in one of three states or phases - solid, liquid or gas. When a gas co-exists

Bioreactor System ERT 314. Sidang /2011

Bioreactor System ERT 314 Sidang 1 2010/2011 Chapter 2:Types of Bioreactors Week 4 Flow Patterns in Agitated Tanks The flow pattern in an agitated tank depends on the impeller design, the properties of

Lesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids

Lesson : luid statics, Continuity equation (Sections 9.-9.7) Chapter 9 luids States of Matter - Solid, liquid, gas. luids (liquids and gases) do not hold their shapes. In many cases we can think of liquids

Applied Physics Topics 2

Applied Physics Topics 2 Dr Andrey Varvinskiy Consultant Anaesthetist Torbay Hospital, UK EDAIC Paper B Lead and Examiner TOPICS 2 Gas Laws Other Laws: Dalton, Avogadro Critical temperature Critical pressure

Homework #14, due Wednesday, Nov. 28 before class. Quiz #14, Wednesday November 28 at the beginning of class

ANNOUNCEMENTS Homework #14, due Wednesday, Nov. 28 before class Conceptual questions: Chapter 14, #8 and #16 Problems: Chapter 14, #58, #66 Study Chapter 14 by Wednesday Quiz #14, Wednesday November 28

L 15 Fluids [4] The Venturi Meter. Bernoulli s principle WIND. Basic principles of fluid motion. Why does a roof blow off in high winds?

Basic principles of fluid motion L 15 Fluids [4] >Fluid flow and Bernoulli s s principle >Airplanes and curveballs >viscosity (real fluids) v 1 Continuity equation: v A = constant A 1 A 2 v 2 Bernoulli

AP Physics B Ch 10 Fluids. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name: Period: Date: AP Physics B Ch 10 Fluids 1) The three common phases of matter are A) solid, liquid, and vapor. B) solid, plasma, and gas. C) condensate, plasma, and gas. D) solid, liquid, and gas.

Section 1 Questions. Physics and Clinical Measurement... 3 Clinical Anaesthesia Physiology Pharmacology... 79

Section 1 uestions Physics and Clinical Measurement... 3 Clinical Anaesthesia... 35 Physiology... 47 Pharmacology... 79 in this web service in this web service Physics and Clinical Measurement uestions

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid?

CHAPTER 3 SECTION 3 States of Matter Fluids KEY IDEAS As you read this section, keep these questions in mind: How do fluids exert pressure? What causes objects to float? What happens when pressure in a

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases.

Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

Gases Chapter 8. Chapter 8

Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often

Gases Chapter 8 8.1 Properties of Gases Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases. Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle

EDUCTOR. principle of operation

EDUCTOR principle of operation condensate and mixing eductor s are designed to mix two liquids intimately in various proportions in operations where the pressure liquid is the greater proportion of the

Appendix 2. Basic physical properties applied to the respiratory system

Appendix 2. Basic physical properties applied to the respiratory system Fluid is a general definition of a state of matter characterized by a weak intermolecular connection (Van der Waal's cohesive forces),

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

Bicycles 2. Bicycles 1. Bicycles 4. Bicycles 3. Bicycles 5. Bicycles 6

Bicycles 1 Bicycles 2 Reading Question 4.1a How would raising the height of a sport utility vehicle affect its turning stability? A. Make it less likely to tip over B. Make it more likely to tip over C.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

Flying High. HHJS Science Week Background Information. Forces and Flight

Flying High HHJS Science Week 2013 Background Information Forces and Flight Flight Background Information Flying is defined as controlled movement through the air. Many things can become airborne but this

Questions. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Edexcel Drag Viscosity. Questions. Date: Time: Total marks available:

Name: Edexcel Drag Viscosity Questions Date: Time: Total marks available: Total marks achieved: Questions Q1. A small helium balloon is released into the air. The balloon initially accelerates upwards.

o An experienced and trained assistant is available to help you with induction.

Safe Surgery and Safe Anaesthesiia for Patiient Safety Check Liist before iinduciing anaesthesiia: o An experienced and trained assistant is available to help you with induction. o You have the correct

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

Science 8 Chapter 9 Section 1

Science 8 Chapter 9 Section 1 Forces and Buoyancy (pp. 334-347) Forces Force: anything that causes a change in the motion of an object; a push or pull on an object balanced forces: the condition in which

RSPT 1060 OBJECTIVES OBJECTIVES OBJECTIVES EQUATION OF MOTION. MODULE C Applied Physics Lesson #1 - Mechanics. Ventilation vs.

RSPT 1060 MODULE C Applied Physics Lesson #1 - Mechanics OBJECTIVES At the end of this module, the student should be able to define the terms and abbreviations used in the module. draw & explain the equation

The Discussion of this exercise covers the following points:

Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

Chapter 15 Fluid. Density

Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid

Quiz name: Chapter 13 Test Review - Fluids

Name: Quiz name: Chapter 13 Test Review - Fluids Date: 1. All fluids are A gases B liquids C gasses or liquids D non-metallic E transparent 2. 1 Pa is A 1 N/m B 1 m/n C 1 kg/(m s) D 1 kg/(m s 2 ) E 1 N/m

Guidelines on Monitoring in Anaesthesia

Page 1 of 8 Guidelines on Monitoring in Anaesthesia Version Effective Date 1 OCT 1992 2 FEB 2002 3 APR 2012 4 JUL 2013 5 MAY 2017 Document No. HKCA P1 v5 Prepared by College Guidelines Committee Endorsed

Instruction Manual. Pipe Friction Training Panel

Instruction Manual HL 102 Pipe Friction Training Panel 100 90 80 70 60 50 40 30 20 10 HL 102 Instruction Manual This manual must be kept by the unit. Before operating the unit: - Read this manual. - All

The Fly Higher Tutorial IV

The Fly Higher Tutorial IV THE SCIENCE OF FLIGHT In order for an aircraft to fly we must have two things: 1) Thrust 2) Lift Aerodynamics The Basics Representation of the balance of forces These act against

BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY

BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY Dr.R.Selvakumar.M.D.D.A.DNB Professor of Anaesthesiology, K.A.P.Viswanatham Govt medical college, Trichy. The current practice of Anaesthesiology demands knowledge

CARBON DIOXIDE ELIMINATION FROM SEMICLOSED SYSTEMS

Brit. J. Anaesth. (1956), 28, 196 CARBON DIOXIDE ELIMINATION FROM SEMICLOSED SYSTEMS BY RUSSELL M. DAVIES, I. R. VERNER Queen Victoria Hospital, East Grinstead AND A. BRACKEN Research and Development Centre,

Graham s Law of Diffusion. olecules of gas are in continuous motion. When two or more gases are placed in contact, their molecules mix spontaneously until a homogeneous mixture is formed. ixing of gases

Third measurement MEASUREMENT OF PRESSURE

1. Pressure gauges using liquids Third measurement MEASUREMENT OF PRESSURE U tube manometers are the simplest instruments to measure pressure with. In Fig.22 there can be seen three kinds of U tube manometers

Worksheet 12 - Partial Pressures and the Kinetic Molecular Theory of Gases

Worksheet 12 - Partial Pressures and the Kinetic olecular Theory of Gases Dalton's Law of Partial Pressures states that the sums of the pressures of each gas in the mixture add to give the total pressure

HONG KONG COLLEGE OF ANAESTHESIOLOGISTS TECHNICAL GUIDINES RECOMMENDATIONS ON CHECKING ANAESTHESIA DELIVERY SYSTEMS

RECOMMENDATIONS ON CHECKING ANAESTHESIA DELIVERY SYSTEMS 1. INTRODUCTION An anaesthesia delivery system includes any machine, equipment or apparatus which supplies gases, vapours, local anaesthesia and/or

Properties of Fluids. How do ships float?

How do ships float? Despite their weight ships are able to float. This is because a greater force pushing up on the ship opposes the weight or force of the ship pushing down. How do ships float? This supporting

Density, Pressure Learning Outcomes

1 Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate

Density, Pressure Learning Outcomes

Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate atmospheric

Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow

Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641, Spring 2008 Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow Purpose of Lab 3: 1) To gain a

Flow meter. bellow vaporizer. APL valve. Scavenging system

Introductory Lecture Series: The Anesthesia Machine PORNSIRI WANNADILOK Objectives Anesthesia Machine Ventilators Scavenging Systems System Checkout 1 Flow meter ventilator bellow vaporizer Corrugated

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy

PRE-TEST Module 2 The Principles of Flight Units /60 points

PRE-TEST Module 2 The Principles of Flight Units 1-2-3.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four

THE BEHAVIOR OF GASES

14 THE BEHAVIOR OF GASES SECTION 14.1 PROPERTIES OF GASES (pages 413 417) This section uses kinetic theory to explain the properties of gases. This section also explains how gas pressure is affected by

3 1 PRESSURE. This is illustrated in Fig. 3 3.

P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

Cardio Pulmonary Resuscitation (CPR) 1

CETL 2008 Cardio Pulmonary Resuscitation (CPR) 1 Tracey Gibson, Elaine Cole & Anne McLeod Introduction This presentation has been designed to compliment the CPR lead lecture and seminar presentations within

Dalton s Law How is the total pressure of a mixture of gases related to the partial pressures of the component gases?

Dalton s Law Chapter 4 The Behavior of Gases 4. Properties of Gases 4. The Gas Laws 4. Ideal Gases Dalton s Law How is the total pressure of a mixture of gases related to the partial pressures of the component

Temperature Temperature

Temperature Temperature is a measure of how hot or cold an object is compared to another object. indicates that heat flows from the object with a higher temperature to the object with a lower temperature.

Key Terms Chapter 7. boiling boiling point change of state concentration condensation deposition evaporation flow rate fluid freezing point

Foldable Activity Using the instructions on page 267 in your textbook on how to make foldables, write a key term on each front tab, and the definition on the inside (see example that I made up). You will

Buoyancy Additional Information Any object, fully or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes of Syracuse Archimedes principle

Ventilators. Dr Simon Walton Consultant Anaesthetist Eastbourne DGH KSS Basic Science Course

Ventilators Dr Simon Walton Consultant Anaesthetist Eastbourne DGH KSS Basic Science Course Objectives Discuss Classification/ terminology Look at Modes of ventilation How some specific ventilators work

Properties of Fluids SPH4C

Properties of Fluids SPH4C Fluids Liquids and gases are both fluids: a fluid is any substance that flows and takes the shape of its container. Fluids Liquids and gases are both fluids: a fluid is any substance

ISS0065 Control Instrumentation Lecture 12

ISS0065 Control Instrumentation Lecture 12 1 Flow measurement Flow, defined as volume per unit of time at specified temperature and pressure conditions. The principal classes of flow-measuring instruments

9 Mixing. I Fundamental relations and definitions. Milan Jahoda revision Radim Petříček, Lukáš Valenz

9 ixing ilan Jahoda revision 14-7-017 Radim Petříček, Lukáš Valenz I Fundamental relations and definitions ixing is a hydrodynamic process, in which different methods are used to bring about motion of

Chapter 5 Gas Laws Gas Laws 1. Gases are said to exert pressure. Provide a molecular-level explanation for this. 5 2 Gas Laws 2. How does a barometer measure atmospheric pressure? If the atmospheric pressure

Chapter 9 Fluids and Buoyant Force

Chapter 9 Fluids and Buoyant Force In Physics, liquids and gases are collectively called fluids. 3/0/018 8:56 AM 1 Fluids and Buoyant Force Formula for Mass Density density mass volume m V water 1000 kg

Monitoring, Ventilation & Capnography

Why do we need to monitor? Monitoring, Ventilation & Capnography Keith Simpson BVSc MRCVS MIET(Electronics) Torquay, Devon. Under anaesthesia animals no longer have the ability to adequately control their

Gauge Pressure, Absolute Pressure, and Pressure Measurement

Gauge Pressure, Absolute Pressure, and Pressure Measurement By: OpenStax College Online: This module is copyrig hted by Rice University. It is licensed under the Creative

Name Class Date. What are some properties of gases? How do changes of pressure, temperature, or volume affect a gas?

CHAPTER 3 States of Matter 4 Behavior of Gases SECTION KEY IDEAS As you read this section, keep these questions in mind: What are some properties of gases? How do changes of pressure, temperature, or volume

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

Recommended Minimum Facilities for Safe Anaesthetic Practice in Operating Suites

Page 1 of 11 Recommended Minimum Facilities for Safe Anaesthetic Practice in Operating Suites Version Effective Date 1 OCT 1992 2 FEB 2002 3 NOV 2011 4 DEC 2016 Document No. HKCA T2 v4 Prepared by College

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch 11 Gases STUDY GUIDE Accelerated Chemistry SCANTRON Name /74 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements

Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that

Parasite Drag by David F. Rogers http://www.nar-associates.com Copyright c 2005 David F. Rogers. All rights reserved. How many of you still have a Grimes rotating beacon on both the top and bottom of the

Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler.

Exercise 5-2 Bubblers EXERCISE OBJECTIVE Learn to measure the level in a vessel using a bubbler. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Bubblers How to measure

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D non-metallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights

Atmospheric Pressure. Conceptual Physics 11 th Edition. Atmospheric Pressure. Atmospheric Pressure. The Atmosphere

Atmospheric Pressure Conceptual Physics 11 th Edition Chapter 14: GASES Atmospheric pressure Caused by weight of air Varies from one locality to another Not uniform Measurements are used to predict weather

PHYSICS APPLIED TO ANAESTHESIA III: THE PROPERTIES OF LIQUIDS, GASES AND VAPOURS

Brit. J. Anaesth. (1965), 37, 967 PHYSICS APPLIED TO ANAESTHESIA III: THE PROPERTIES OF LIQUIDS, GASES AND VAPOURS BY D. W. HILL Research Department of Anaesthetics, Royal College of Surgeons of England,

PHYSICS. Mr Rishi Gopie HYDROSTATICS

Mr Rishi Gopie HYDROSTATICS HYDROSTATICS PRESSURE Pressure (P) is defined as the average force (F) exerted normally per unit area (A), i.e. P = F/A. it is a scalar quantity and its SI unit is Nm - 2 or

THERMALLING TECHNIQUES. Preface

DRAFT THERMALLING TECHNIQUES Preface The following thermalling techniques document is provided to assist Instructors, Coaches and Students as a training aid in the development of good soaring skills. Instructors

Pressure Control. where: p is the pressure F is the normal component of the force A is the area

Pressure Control First of all, what is pressure, the property we want to control? From Wikipedia, the free encyclopedia. Pressure is the application of force to a surface, and the concentration of that

THE WAY THE VENTURI AND ORIFICES WORK

Manual M000 rev0 03/00 THE WAY THE VENTURI AND ORIFICES WORK CHAPTER All industrial combustion systems are made up of 3 main parts: ) The mixer which mixes fuel gas with combustion air in the correct ratio

CHAPTER 9 Fluids. Units

CHAPTER 9 Fluids Units Fluids in Motion; Flow Rate and the Equation of Continuity Bernoulli s Equation Applications of Bernoulli s Principle Viscosity Flow in Tubes: Poiseuille s Equation, Blood Flow Surface

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

Chapter 12. Properties of Gases

Properties of Gases Each state of matter has its own properties. Gases have unique properties because the distance between the particles of a gas is much greater than the distance between the particles

Chapter 15 Fluids. Copyright 2010 Pearson Education, Inc.

Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle Fluid Flow and Continuity

I.CHEM.E. SYMPOSIUM SERIES NO. 97 BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES

BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES M. R. Marshall* and P. L. Stewart-Darling* A simple mathematical model for the buoyancy driven ventilation of an enclosed space, using a two-pipe

Gases. Chapter 5: Gas Laws Demonstration. September 10, Chapter 5 Gasses.notebook. Dec 18 10:23 AM. Jan 1 4:11 PM. Crushing 55 gallon drum

Chapter 5: Gases Dec 18 10:23 AM Gas Laws Demonstration Crushing 55 gallon drum Egg in a bottle Student in a bag Boiling Water Charles gas Law Water in a flask Ballon in a bottle Jan 1 4:11 PM 1 5.1 Pressure

Selecting and Connecting Breathing Systems

Selecting and Connecting Breathing Year Group: BVSc3 + Document number: CSL_A03 Equipment for this station: Equipment list: Pen Paper Calculator T-piece (in CSL a strip of white tape is around this system)

ConcepTest PowerPoints

ConcepTest PowerPoints Chapter 10 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

Friction occurs when surfaces slide against each other.

Chapter 12, Section 2 Key Concept: Friction is a force that opposes motion. BEFORE, you learned Gravity is the attractive force masses exert on each other Gravity increases with greater mass and decreases

17.2 and 17.3 Classifying Matter Liquids. Liquids

17.2 and 17.3 Classifying Matter Liquids Read p.295-301 in book Liquids Liquids have an indefinite shape, but a definite volume. the same shape as their container. particles that are close together, but

temperature and pressure unchanging

Gas Laws Review I. Variables Used to Describe a Gas A. Pressure (P) kpa, atm, mmhg (torr) -Pressure=force exerted per unit area (force/area) -Generated by collisions within container walls (more collisions=more

13.1!"#\$#%"&'%()\$*+%,+-.\$+/*\$#

343%%%%%%%%%5)"./\$+%67%%%%%!"#\$# 13.1!"#\$#%"&'%()\$*+%,+-.\$+/*\$#!"#\$%&'(\$)*!"#\$%&'(\$)+ If you want to understand how gases behave such as why fresh air rushes into your lungs when certain chest muscles

Name Chemistry Pre-AP

Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

8d. Aquatic & Aerial Locomotion. Zoology 430: Animal Physiology

8d. Aquatic & Aerial Locomotion 1 Newton s Laws of Motion First Law of Motion The law of inertia: a body retains its state of rest or motion unless acted on by an external force. Second Law of Motion F