Argo Float Pressure Offset Adjustment Recommendations. 1: IORGC/JAMSTEC, 2-15, Natsushima-cho, Yokosuka, , Japan

Size: px
Start display at page:

Download "Argo Float Pressure Offset Adjustment Recommendations. 1: IORGC/JAMSTEC, 2-15, Natsushima-cho, Yokosuka, , Japan"

Transcription

1 Argo Float Pressure Offset Adjustment Recommendations Taiyo Kobayashi 1, 2 and Gregory C. Johnson 3 1: IORGC/JAMSTEC, 2-15, Natsushima-cho, Yokosuka, , Japan taiyok@jamstec.go.jp 2: Now visiting at National Oceanography Centre, Southampton, Empress Dock, Southampton, SO14 3ZH, UK 3: NOAA/PMEL, 7600 Sand Point Way NE Seattle, WA, 98115, USA gregory.c.johnson@noaa.gov 6 March 2007 ABSTRACT We strongly suggest the adjustment of all known pressure drifts in Argo data. These adjustments will improve the consistency and accuracy of the hydrographic dataset obtained by Argo Program. Even small errors should be corrected because the potential impact of a small bias in Argo data pressures from uncorrected pressure sensor drifts could be quite significant for global ocean heat content anomaly estimates. In the worst case, a bias could introduce an artifact comparable in magnitude to ocean heat content changes estimated for the later half of the 20th century. Float pressure measurements at the sea surface are a good standard for data adjustment due to the relatively small variability of marine surface atmospheric pressure. Nevertheless, we must continue to investigate characteristics of pressure sensor biases to enhance Argo data accuracy. 1

2 1. The case for data consistency Float CTD sensors are subject to calibration drift after laboratory calibration. With a target of an average 4-year lifetime untended in the ocean, the potential for sensor calibration drift is significant. Argo DMQC work first focused on conductivity sensor drift, because it was thought that calibration drift of this sensor could be the largest. With a lot careful work on this topic, systems have been built, and are being refined, for assessing and correcting those drifts statistically. These systems generally exploit the relative stability of the T-S relationship. Little has been done to detect subtle (not obvious from visual inspection by an experienced researcher) temperature sensor calibration drift. The way forward on such detection, should it be needed, is not clear. Temperature sensors are thought to be sufficiently stable to meet Argo accuracy targets even with typical calibration drift over a 4-year lifetime. Recently DMQC attention has turned to pressure. All the specifics on the operations of and procedures used for different instrument (float/ctd combination) are to the best of our understanding, and we are not experts in how all of these floats work, so please regard the following summary with caution, and correct us if we are wrong. Argo uses several types of profile floats, among of which APEX, SOLO, and PROVOR are dominantly used now (as of Feb. 2007). Pressure errors are treated in different manners by different floats. SOLO floats with SBE-41CP CTDs now internally correct for pressure errors using the surface pressure as a calibration point at each profile by adjusting pressure to be zero at the surface and calculating salinity from the temperature, conductivity, and adjusted pressure. PROVOR floats with SBE-41CP CTDs do the same. The SOLO floats report each incremental adjustment from one profile to the next, although unfortunately with a precision (0.5 dbar for SIO SOLO and 0.1 dbar for WHOI SOLO) that makes detection of calibration drifts difficult or impossible because of round-off error. The PROVOR floats report the accumulated correction (to 1-dbar resolution), so larger (> 1 dbar) pressure calibration drifts can be diagnosed from PROVOR data. APEX floats with APF-8 controllers do not make any internal pressure corrections, and report surface pressures with 5 dbar added. Unfortunately any negative surface pressures measured by the floats are set to zero before the 5-dbar is added and the result is transmitted. In the discussions below, the 5 dbar offset added by the float before transmission has been subtracted again. APEX float with APF-9 controllers do not make any internal pressure corrections, but telemeter back the recorded surface pressure whether it is positive or negative. So what to do about pressure corrections about the APEX floats with either version of the controller? This question is complicated by the fact that APF-8 floats currently set negative surface pressure values to zero before transmission. If pressure sensor offset drifts are even on both sides of zero, correcting only the positive drifts could result in a biased dataset. Hopefully, in the future, the APF-8 firmware will be updated so that negative pressure drifts can be corrected. The firmware modification has been requested of the manufacturer, and they are bench testing it presently. The first thing to remember in considering the bias problem that the largest pressure drifts we know about in SBE-41 (and SBE-41CP?) CTDs are for those that were equipped with Paine and Ametek pressure sensors. In these early instruments, the drifts 2

3 were almost always toward positive errors in surface pressure, which are reported by all APEX floats, even those with APF-8 controllers. The mechanism for this problem is known for the Ametek sensors, in that there was supposed to be a reference volume for the sensors at absolute vacuum, but that volume quickly leaked and after leaking would drift towards the internal float pressure (only a partial vacuum), resulting in positive reported surface pressures. Of the 22 PMEL APEX floats equipped with APF-8 controllers and SBE-41 CTDs that used Ametek pressure transducers, all drifted very quickly (within 1-3 profiles of deployment) to reporting surface pressures from 2 to 5 dbar high of correct, and then more slowly to reporting surface pressures as much as from 3 to 6 dbar high of correct (Fig. 1). Thus it would appear that correcting only positive biases in Ametek-equipped floats would only improve the accuracy and bias in data from these floats. Figure 1. Reported sea surface pressure (SSP) vs. profile number from Argo Float , an APEX 260 with APF8 controller and an Ametek pressure sensor located in the Bering Sea. Note that even in the Bering Sea, the RMS variation about the long-term drift is a few tenths of a dbar. The JAMSTEC experience with data from floats equipped with Ametek sensors is similar to the PMEL experience: a rapid initial shift to anomalously high readings of 2-7 dbar for SSP, followed by a much slower drift towards higher values (Fig. 2). 3

4 Figure 2. Reported sea surface pressure (SSP) vs. profile number from JAMSTEC Argo Floats equipped with Ametek pressure sensors. JAMSTEC also deployed floats equipped with Paine pressure sensors. These sensors show large drifts towards anomalously positive SSP measurements. Their behavior is somewhat different from those of Ametek (Fig. 3). During the first 10 cycles after float deployment SSP values increase rapidly. Thereafter, they increase much more slowly, but eventually some SSP values approach 15 dbar during the lifetime of the float. JAMSTEC has no information about the causes (or mechanisms) of this sensor bias. Figure 3. Reported sea surface pressure (SSP) vs. profile number from JAMSTEC Argo Floats equipped with Paine pressure sensors. The other 191 PMEL APEX floats that reported data at the time of this analysis were all equipped with Druck pressure sensors. These floats had executed varying numbers of cycles, from 4 to 92, with a mean and median of 49 cycles. Of these 191 floats, 51 floats showed evidence of negative surface pressure drift. That is to say, they either always reported zero surface pressures, or after reporting a few slightly positive surface pressures, began and continued reporting zero surface pressure. Another 36 floats reported surface pressures consistent with being near zero (some slightly positive pressures throughout the record, interleaved with some zero pressures throughout the 4

5 record). The remaining 104 floats showed evidence of drift towards reporting positive surface pressures (Fig. 4). These positive pressure drifts were generally very slight, almost always < 1 dbar. If the negative drifts are of similar magnitude to the positive ones, then correcting even just the positive drifts would tend to increase the accuracy of individual profiles, and even reduce the overall bias, although only slightly. JAMSTEC floats equipped with Druck sensors behave similarly (Fig. 5). Figure 4. Reported surface pressure vs. profile number from Argo Float , an APEX 260 with APF8 controller and a Druck pressure sensor located in the southwest tropical Pacific Ocean. These sensors appear to have generally small (< 1 dbar) surface pressure drifts but they are often measurable. Float with pressures high of correct significantly outnumber floats with reported pressures low of correct, at least for PMEL Argo floats. In the tropics the RMS variability about the mean drift is about 0.1 dbar. 5

6 Figure 5. Reported sea surface pressure (SSP) vs. profile number from JAMSTEC Argo Floats equipped with Druck pressure sensors. As noted before, the SOLO datasets are not suitable for looking at surface pressure offsets because of accumulated truncation errors. PROVOR surface pressure offset data (telemetered with a resolution of 1 dbar) provided by Virginie Thierry are clearly skewed toward positive values (Fig. 6). Of 18,405 profiles from 329 floats, 11,600 read zero to within the resolution, 4,473 read surface pressures high of correct with a positive value of 2.64 dbar on average, and only 2332 read low of correct with a value of on average. Again, correcting the data, (even if only for the positive offsets were to be corrected), results in more accurate individual profiles and a data set with a slightly smaller overall bias as well. 6

7 Figure 6. Histogram of the Surface Pressure reported, binned at the 1-dbar resolution of the telemetered data. There are 11,600 out of 18,405 values at zero, but the remaining values are significantly skewed towards positive pressures. 2. Sea level pressure variations The "calibration standard" for the float pressure correction is the surface marine atmosphere, which is usually constant (and known) to within better than 1 dbar. Annual means in Sea Level Pressure (SLP) over the ocean range is from 9.8 to 10.2 dbar, a total range of 0.4 dbar (Fig. 7). 7

8 Figure 7. Mean Sea Level Pressure for 2005 from 6-hourly values of the NCEP/NCAR reanalysis (dbar). The global record low sea level pressure is 8.70 dbar (Typhoon Tip) and the record high is dbar (Mongolia on a very cold, -40 C day), so the global range of extreme values (for all recorded years) is about 2 dbar. However, the standard deviation of 4xdaily NCEP seal-level pressure values for the year 2005, (Fig. 8) is generally < 0.05 dbar over much of the globe, and > 0.15 over the ocean only in a few locations around 60 N and 60 S. Figure 8. Standard Deviation of Sea Level Pressure for 2005 from 6-hourly values of the NCEP/NCAR reanalysis (dbar). Over much of the ocean the difference of the maximum and minimum sea level pressure at each location for all of 2005 (Fig. 9) is < 0.2 dbar. Values of this quantity 8

9 exceed 0.8 dbar only in a few locations at high latitudes. Figure 9. Difference of the maximum and minimum values of sea level pressure for 2005 from 6-hourly values of the NCEP/NCAR reanalysis (dbar). Sea level pressure provides an excellent calibration point for Argo floats that report surface pressure, being generally stable to < 1 dbar. Both PROVOR and SOLO floats take advantage of this calibration point, and internally correct their profile pressures (and salinities) prior to telemetry. This stability is reflected in the short-term RMS variability of data from floats that telemeter surface pressure data at sufficiently fine resolution (e.g. the 0.1 dbar resolution for most APEX floats with APF8 controllers). In all the data sets examined here, an error at the 1-dbar level or less appears easily detectable, and carefully correcting profile pressure data using the reported surface pressure (even for instrument configurations where only positive drifts are telemetered) would result in a more accurate data set in terms of individual profiles and a less biased data set in terms of overall averages. These corrections can easily be accomplished for APEX floats that report surface pressures. Steps should be taken to ensure that in the future APEX floats correctly report negative surface pressures, rather than setting them to zero before telemetry. However, even for the current configuration of APEX, the benefits of profile pressure (and salinity) correction on the basis of surface pressure drifts at any level detectable (no just > 5 dbar) seem clear, and the "Make no adjustment for pressure offsets of magnitude < 5 dbar " recommendation from DMQC2 does not seem justified. 3. Pressure biases and ocean heat content estimation So far in this document the subject of pressure drift has been discussed from the viewpoint of data accuracy and consistency. However, even small (5 dbar) pressure biases can have a very significant impact on ocean heat (and freshwater) content estimates. Assessment of ocean heat content is one of the primary goals, if not the primary goal, of Argo Large changes of heat content (Figs ; 0-300m, 0-700m, and m) can be caused by a spurious 5-dbar pressure bias. The calculations presented here use the 9

10 WOA05 climatology, and the 5-dbar bias used here is the threshold for pressure drift adjustment recommended for the present at the Second Delayed-Mode Quality Control Workshop (DMQC2, held at WHOI in October 2006). DMQC2 recommended that pressure drift exceeding the threshold should be adjusted. This 5-dbar threshold may have been based on the target of pressure measurement accuracy for individual floats of the Argo Program. However, systematic biases present in the float data, their potential detrimental impacts on Argo science goals, and the fact that we have the means to correct them, call this 5-dbar threshold into question. If the pressure sensor of a float has a 5-dbar bias, the float reports the profiles with a warm surface layer that is falsely thick, and a thermocline that is falsely deep, both of which tend to increase the oceanic heat content in the most of the ocean. The heat content of water column (Figs , upper panel, annual average, per unit area, relative to 0 C) and the increase falsely generated by a 5-dbar bias (Figs , middle panels) can be compared. For those unfamiliar with heat content, corresponding changes of temperature averaged in the water-column are shown (Figs , lower panels). The false changes of water temperature averaged in 0-300m and 0-700m exceed 0.1 C in wide regions, especially in the tropics and subtropics. In the subarctic and subantarctic regions, the false warming is much smaller due to the weaker thermoclines in those regions. Even in the m averages, the false water-column warming exceeds 0.03 C over large regions. Changes in global oceanic heat content have recently been widely studied (e.g., Willis et al., 2004; Levitus et al., 2005; Lyman et al., 2006). These studies use historical datasets, and many of them include Argo data. As an example, ocean warming signals (changes of the total heat content and the averaged temperature for the recent 50 years) estimated by Levitus et al. (2005) are shown (Table 1; Note that the rightmost two columns are the estimations for m). These estimates are obtained by linear fits to annual values. False ocean warming caused by a 5-dbar pressure bias exceeds the estimated warming of the global ocean in the tropics and subtropics. In the subarctic and subantarctic regions, the false warming is about half of the observed warming signal for this 50-year period. A potential bias of this size can not be ignored in climate-change investigations. The actual warming signals estimated by Levitus et al. (2005) show large variations for each ocean, more warming occurs in the Atlantic and less in the Pacific. The warming signal observed in the Pacific is about 0.1 C for the upper 300m water column during this 50-years, which may make it very difficult to assess climate changes in the Pacific by the current Argo Project, in which there are many profiles with pressure drift. This calculation gives an upper limit on the size of the effect because not all pressure sensors are biased. However, considering the history of Argo Project, the situation appears quite serious. False warming and cooling signals could appear in certain areas and periods due to accretions of the following factors: 1. Among the major 3 types of Argo floats (APEX, PROVOR, and SOLO), only APEX still needs additional operation for pressure drift adjustments. However, it is likely that earlier versions of the PROVOR and SOLO floats both had problematic pressure sensors and did not effect this correction automatically. 2. Large pressure sensor drifts (more than 5 dbar) are found in Paine and Ametek 10

11 pressure sensors, which were used for Argo floats with equipped with SeaBird CTDs before For floats deployed during and after 2003, the pressure sensors for SeaBird CTDs were changed to those made by Druck, in which drift is usually within 1 dbar (Figs. 4-5). All floats equipped with Falmouth Scientific Instruments CTDs used Druck pressure sensors (W. B. Owens, personal communication, 2007). 3. In 2003, the Argo array was still largely a collection of regional arrays, not a global one, and there were many regions devoid of floats. In addition, many regions were occupied by floats of a single country or PI (Fig. 13). 4. At the present, the operation of pressure drift adjustments depends on each country/organization/pi. Thus, it is possible that many of the profiles obtained in certain regions and time periods are Argo float profiles with significant pressure drift and the false bias discussed above may be erroneously interpreted as observed signals. Table 1: Change in ocean heat content (10 22 J) and mean temperature ( C) as determined by the linear trend for the world ocean and individual basins. Estimates are from supplementary documentation of Levitus et al. (2005), available on an NODC website ( m 0-700m m ( ) ( ) ( ) to ( ) Heat Content Mean temp. Heat Content Mean temp. Heat Content Mean temp. (10 22 J) ( o C) (10 22 J) ( o C) (10 22 J) ( o C) World Ocean N. Hem S. Hem Atlantic N. Atl S. Atl Pacific N. Pac S. Pac Indian N. Ind S. Ind

12 Figure 10: Estimation of ocean heat content (0-300m). Top: Oceanic heat content of water column (unit is Giga (10 9 ) J/m 2, annual mean value relative to 0 C based on WOA05). Middle: False anomaly of heat content caused by a 5-dbar (positive) profile bias (unit is G J/m 2 ). Bottom: False change of averaged temperature ( C) of water column (0-300m) caused by this bias. 12

13 Figure 11: As is shown in Fig. 10 except for 0-700m. 13

14 Figure 12: As is shown in Fig. 10 except for m. 14

15 Figure 13: Distribution of Argo floats by country in April References Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, , Geophys. Res. Lett., 32, L02604, doi: /2004gl Lyman, J. M., J. K. Willis, and G. C. Johnson, 2006: Recent cooling of the upper ocean, Geophys. Res. Lett., 33, L18604, doi: /2006gl Oka, E., 2005: Long-term Sensor Drift Found in Recovered Argo Profiling Floats. J. Oceanogr., 61, Ueki, I., and T. Nagahama, 2005: Evaluation of property change of pressure sensor installed on TRITON buoys, JAMSTEC report of Research and Development, 1, Willis, J. K., D. Roemmich, and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales, J. Geophys. Res., 109, C12036, doi: /2003jc Appendix 1: Mechanics of pressure corrections, APEX floats that do not make it to the surface during some profile (call it N) for some reason (e.g. stuck in the mud or encountered a very light surface layer), will transmit an erroneous surface pressure for profile N+1. Use of the surface pressure telemetered during the transmission of profile N+1 to correct pressure and salinity from profile N eliminates these problematic data from the analysis. The reason for this is that the surface pressure for profile N+1 is actually measured at the end of profile N, and when the float doesn't make it to the surface for profile N, no data from profile N are available to be corrected with the erroneous surface pressure from profile N+1. Occasionally a float SSP may be wildly erroneous for various reasons. JAMSTEC has set a threshold of 20 dbar for SSP values; and values exceeding the threshold are not used in the pressure adjustment procedure. Similarly, PMEL uses differences between a raw 15

16 time-series of SSP and one passed through median filter to identify wild outliers in SSP. Appendix 2: Are pressure errors mainly offsets? At present, pressure drifts are adjusted in Argo by subtracting SSP value from all the pressure measurements of profile. This means the pressure sensor drift is assumed to be an offset that can be measured using SSP and then corrected. Is the evidence sufficient to support this assumption? JAMSTEC has recovered 7 Japanese Argo floats, with 6 of them operating normally at time of recovery. Pressure sensors from 3 of these floats were post-calibrated at a Mutsu Institute, JAMSTEC, laboratory seven months after float recoveries (Oka, 2005). All pressure sensors subject to post-calibration were from Ametek. The postcalibration for pressure sensors clarified that the pressure drifts were almost constant over a 0 to 2000dbar range, being slightly higher under high pressure (Fig. A1). This result largely supports the assumption that pressure drift occurs as an "offset". At JAMSTEC, many mooring buoys have been deployed in western tropical Pacific and the Indian Ocean during a period of 8 years. These mooring buoys (named TRITON buoys) are replaced every year, and all the sensors on the SBE37IM instruments, equipped with Druck pressure sensors (we have not determined that the sensors are the same model of Druck sensor used in the SBE41 CTD for Argo floats), are also post-calibrated at Mutsu Institute (summarized by Ueki and Nagahama, 2005). These post-calibrations are carried out just after each cruise within about 3 months after buoy recoveries. The statistics based on the calibration results for 99 of these instruments are very different from the findings of Oka (2005) for three floats. For the mooring pressure sensors, the pressure errors increase exponentially with higher pressure (Fig. A2), from which we can expect the bias of pressure sensor at 2000 dbar may exceed 20 dbar. These differences in pressure sensor error characteristics raise serious concerns regarding how best to correct for pressure drifts in Argo float data. Fig. A3 shows the calculation of false ocean warming caused by an exponential pressure bias expressed as follows: p pressure bias = 1.5 exp( ) In this case, the sensor has a pressure bias of 4 dbar at 1000 dbar and about 10 dbar at 2000 dbar. False warming is limited to up to 0.02 C in all cases: these effects may be ignored when considering features of the shallower water-column (e.g., 0-300m), but in m, the effect seems up to a half or a third of the actual ocean warming during this 50-years. Ueki and Nagahama (2005) also described the Druck pressure sensors of SBE37IM that have biases of about 2-4 dbar on the deck (under atmospheric pressure) after mooring recovery. The biases were found in the sensors moored for only 10 days and they seem increased after longer mooring deployments. This feature is different from our experience with Druck sensors on floats that exhibit almost no bias at the sea surface (Figs. 4-5). We have no idea whether the difference may be caused by the mode of sensor deployment, the possible use of different models of Druck pressure sensor, or some other difference. 16

17 In any event, we should accumulate knowledge about pressure sensor error characteristics, especially for the Druck sensors that are used on most of the recent Argo floats. Just recently, a JAMSTEC float with a Druck pressure sensor was beached and recovered in Hawaii. JAMSTEC will post-calibrate the pressure sensor as soon as possible to obtain more information on Druck pressure sensor errors. 17

18 Recovered on Jun. 06, 2003 Recovered on Jun. 14, 2003 Recovered on Aug. 06, 2003 Figure A1: Post-calibration results of pressure sensors (Ametek) from recovered floats (top) WMO (at 84 th cycle), (middle) (at 73 rd cycle), and (bottom) (at 90 th cycle) reported by Oka (2005). Stars at 0 dbar in each panel are SSP values measured just before float recovery. Dates of post-calibration for the pressure sensors are noted on each panel. Figure A2: Post-calibration results of Druck pressure sensor used in TRITON buoys (SBE37IM, from Ueki and Nagahama, 2005). Pressure sensors are moored at the depth of 300m or 750m for about 1 year generally. 18

19 Figure A3: False change of average temperature of water column for a pressure sensor bias with the form: 1.5*( exp(pressure/1000) -1 ), which generates about a 4dbar error at 1000dbar and a 10dbar error at 2000dbar. 19

Stability of Temperature and Conductivity Sensors of Argo Profiling Floats

Stability of Temperature and Conductivity Sensors of Argo Profiling Floats Journal of Oceanography, Vol. 6, pp. 5 to 58, Short Contribution Stability of Temperature and Conductivity Sensors of Argo Profiling Floats EITAROU OKA * and KENTARO ANDO Frontier Observational Research

More information

Sensor Stability. Summarized by Breck Owens David Murphy, Sea-Bird Electronics AST-14 Wellington March 18-21

Sensor Stability. Summarized by Breck Owens David Murphy, Sea-Bird Electronics AST-14 Wellington March 18-21 Sensor Stability Summarized by Breck Owens David Murphy, Sea-Bird Electronics AST-14 Wellington March 18-21 Physical Standards are the Foundation of Temperature Accuracy Standards grade platinum thermometer

More information

Deep SOLO. Nathalie Zilberman, Dean Roemmich, and SIO float lab. 1. Deep SOLO float characteristics. 2. Deep SOLO float Deployment

Deep SOLO. Nathalie Zilberman, Dean Roemmich, and SIO float lab. 1. Deep SOLO float characteristics. 2. Deep SOLO float Deployment Deep SOLO Nathalie Zilberman, Dean Roemmich, and SIO float lab 1. Deep SOLO float characteristics 2. Deep SOLO float Deployment 3. Deep SOLO temperature and salinity Deep SOLO Float deployment, R/V Tangaroa

More information

Accuracy and Stability of Sea-Bird s Argo CTD and Work Towards a Better CTD for Deep Argo. David Murphy Sea-Bird Electronics

Accuracy and Stability of Sea-Bird s Argo CTD and Work Towards a Better CTD for Deep Argo. David Murphy Sea-Bird Electronics Accuracy and Stability of Sea-Bird s Argo CTD and Work Towards a Better CTD for Deep Argo David Murphy Sea-Bird Electronics The Sea-Bird Team This work represents efforts of many people over many years:

More information

Development of the Deep Argo Program

Development of the Deep Argo Program Development of the Deep Argo Program Dean Roemmich, Nathalie Zilberman, Philip Sutton, Russ Davis, John Gilson, Kyle Grindley, Carol Janzen, Gregory Johnson, Taiyo Kobayashi, Nordeen Larson, Serge Le Reste,

More information

Argo quality control manual

Argo quality control manual Argo data management January 3 rd 2013 Argo quality control manual Version 2.8 1 Table of contents 1. INTRODUCTION 6 2. REAL-TIME QUALITY CONTROLS 7 2.1. ARGO REAL-TIME QUALITY CONTROL TEST PROCEDURES

More information

2017 Float and Sensor Workshop. Conveners: Brian King, Steve Riser, Susan Wijffels Local Host: Steve Riser, U. Washington

2017 Float and Sensor Workshop. Conveners: Brian King, Steve Riser, Susan Wijffels Local Host: Steve Riser, U. Washington 2017 Float and Sensor Workshop Conveners: Brian King, Steve Riser, Susan Wijffels Local Host: Steve Riser, U. Washington Objectives The goals of the workshop were to Increase the overall efficiency of

More information

ANDRO: An Argo-based deep displacement atlas

ANDRO: An Argo-based deep displacement atlas ANDRO: An Argo-based deep displacement atlas Michel Ollitrault 1 & Jean-Philippe Rannou 2 1 IFREMER Brest France michel.ollitrault@ifremer.fr 2 ALTRAN Ouest Brest France jean-philippe.rannou@altran.com

More information

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Jun ichi HIROSAWA Climate Prediction Division Japan Meteorological Agency SST anomaly in Nov. 1997 1 ( ) Outline

More information

Systematic Errors in the Hydrographic Data and Their Effect on Global Heat Content Calculations

Systematic Errors in the Hydrographic Data and Their Effect on Global Heat Content Calculations Systematic Errors in the Hydrographic Data and Their Effect on Global Heat Content Calculations Titelmasterformat durch Klicken bearbeiten Viktor Gouretski KlimaCampus, University of Hamburg Frascati,

More information

CORIOLIS, A FRENCH PROJECT FOR IN SITU OPERATIONAL OCEANOGRAPHY. S. Pouliquen, A. Billant, Y. Desaubies, G. Loaec, F. Gaillard, G.

CORIOLIS, A FRENCH PROJECT FOR IN SITU OPERATIONAL OCEANOGRAPHY. S. Pouliquen, A. Billant, Y. Desaubies, G. Loaec, F. Gaillard, G. CORIOLIS, A FRENCH PROJECT FOR IN SITU OPERATIONAL OCEANOGRAPHY S. Pouliquen, A. Billant, Y. Desaubies, G. Loaec, F. Gaillard, G. Maudire IFREMER, BP70, 29280 Plouzané, France Sylvie.Pouliquen@ifremer.fr

More information

QC for Hydrographic Data GEOSECS to GO-SHIP. Susan M. Becker Scripps Institution of Oceanography Oceanographic Data Facility

QC for Hydrographic Data GEOSECS to GO-SHIP. Susan M. Becker Scripps Institution of Oceanography Oceanographic Data Facility QC for Hydrographic Data GEOSECS to GO-SHIP Susan M. Becker Scripps Institution of Oceanography Oceanographic Data Facility Global Hydrographic Efforts Geo-chemical Ocean Sections (GEOSECS) World Ocean

More information

Drift Characteristics of Paroscientific pressure sensors

Drift Characteristics of Paroscientific pressure sensors Drift Characteristics of Paroscientific pressure sensors by Randolph Watts, Maureen Kennelly, Karen Tracey, and Kathleen Donohue (University of Rhode Island) PIES + current meter & CPIES arrays Paroscientific

More information

Evaluation of ACME coupled simulation Jack Reeves Eyre, Michael Brunke, and Xubin Zeng (PI) University of Arizona 4/19/3017

Evaluation of ACME coupled simulation Jack Reeves Eyre, Michael Brunke, and Xubin Zeng (PI) University of Arizona 4/19/3017 Evaluation of ACME coupled simulation Jack Reeves Eyre, Michael Brunke, and Xubin Zeng (PI) University of Arizona 4/19/3017 1. Introduction We look at surface variables in the tropical Pacific from a coupled

More information

Argo-O2 data Data Management Real-time and Delayed-mode QC Where we are/ Where we go

Argo-O2 data Data Management Real-time and Delayed-mode QC Where we are/ Where we go Argo-O2 data Data Management Real-time and Delayed-mode QC Where we are/ Where we go LPO: V. Thierry, T. Bouinot ALTRAN: J. P. Rannou GEOMAR: A. Kortzinger, H. Bittig MBARI: K. Johnson UW: S. Emerson,

More information

Observational approaches to oxygen depletion

Observational approaches to oxygen depletion Observational approaches to oxygen depletion Denis Gilbert Institut Maurice-Lamontagne Pêches et Océans Canada Mont-Joli, Québec Workshop on Ocean Biology Observatories Venezia, Italia, September 17, 2009

More information

Far Eastern Pacific Fresh Pool surface salinity variability observed by SMOS and Aquarius sensors over. the period

Far Eastern Pacific Fresh Pool surface salinity variability observed by SMOS and Aquarius sensors over. the period Far Eastern Pacific Fresh Pool surface salinity variability observed by SMOS and Aquarius sensors over Nicolas Reul 1, Gael Alory 2, Christophe Maes 3, Serena Illig 3 and Bertrand Chapron 1 1 IFREMER,

More information

MAPCO2 Buoy Metadata Report Project Title:

MAPCO2 Buoy Metadata Report Project Title: MAPCO2 Buoy Metadata Report Project Title: Autonomous Multi-parameter Measurements from a Drifting Buoy During the SO GasEx Experiment Funding Agency: NOAA Global Carbon Cycle program PI(s): Christopher

More information

Analysis of 2012 Indian Ocean Dipole Behavior

Analysis of 2012 Indian Ocean Dipole Behavior Analysis of 2012 Indian Ocean Dipole Behavior Mo Lan National University of Singapore Supervisor: Tomoki TOZUKA Department of Earth and Planetary Science, University of Tokyo Abstract The Indian Ocean

More information

TRIAXYS Acoustic Doppler Current Profiler Comparison Study

TRIAXYS Acoustic Doppler Current Profiler Comparison Study TRIAXYS Acoustic Doppler Current Profiler Comparison Study By Randolph Kashino, Axys Technologies Inc. Tony Ethier, Axys Technologies Inc. Reo Phillips, Axys Technologies Inc. February 2 Figure 1. Nortek

More information

The 2008 North Atlantic Bloom Experiment. Calibration Report #3

The 2008 North Atlantic Bloom Experiment. Calibration Report #3 The 2008 North Atlantic Bloom Experiment Calibration Report #3 Calibration of the Dissolved Oxygen Sensors on Float 48 and on The Knorr CTD with Winkler bottle samples Eric D Asaro Applied Physics Laboratory,

More information

A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange. P. Argyle, S. J. Watson CREST, Loughborough University, UK

A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange. P. Argyle, S. J. Watson CREST, Loughborough University, UK A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange P. Argyle, S. J. Watson CREST, Loughborough University, UK Introduction Offshore wind measurements are scarce and expensive,

More information

Argo Quality Control Manual For dissolved oxygen concentration

Argo Quality Control Manual For dissolved oxygen concentration Argo data management http://dx.doi.org/10.13155/46542 1 Argo Quality Control Manual For dissolved oxygen concentration Version 1.1 28 th September 2016 Argo data management quality control manual version

More information

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION Application Note Doc. G8108-001 Rev. A - 23-Jul-02 ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION For more information regarding Digiquartz products contact: Paroscientific,

More information

Temperature, salinity, density, and the oceanic pressure field

Temperature, salinity, density, and the oceanic pressure field Chapter 2 Temperature, salinity, density, and the oceanic pressure field The ratios of the many components which make up the salt in the ocean are remarkably constant, and salinity, the total salt content

More information

Impact of Typhoons on the Western Pacific: Temporal and horizontal variability of SST cooling Annual Report, 2011 James F. Price

Impact of Typhoons on the Western Pacific: Temporal and horizontal variability of SST cooling Annual Report, 2011 James F. Price DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific: Temporal and horizontal variability of SST cooling Annual Report,

More information

1.1 Argo cycle timing variables for the trajectory file

1.1 Argo cycle timing variables for the trajectory file 1.1 Argo cycle timing variables for the trajectory file Each Argo float cycle is composed of programmed events. Depending on float type, some of these events can be dated and associated CTD measurements

More information

SBE61 CTD calibration: results from the June 2014 Tangaroa Voyage

SBE61 CTD calibration: results from the June 2014 Tangaroa Voyage SBE61 CTD calibration: results from the June 2014 Tangaroa Voyage Phil Sutton, Matt Walkington NIWA Dave Murphy, Sea Bird Electronics Dean Roemmich, Nathalie Zilberman Scripps Institution of Oceanography

More information

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 INTRODUCTION Sontek/YSI has introduced new firmware and software for their RiverSurveyor product line. Firmware changes

More information

PERSPECTIVES FOR ACCURACY AND QUALITY ASSURANCE OF CTD & BIOGEOCHEMICAL DATA STREAMS FROM AUTONOMOUS PLATFORMS

PERSPECTIVES FOR ACCURACY AND QUALITY ASSURANCE OF CTD & BIOGEOCHEMICAL DATA STREAMS FROM AUTONOMOUS PLATFORMS PERSPECTIVES FOR ACCURACY AND QUALITY ASSURANCE OF CTD & BIOGEOCHEMICAL DATA STREAMS FROM AUTONOMOUS PLATFORMS Ian D. Walsh (1), Jochen Klinke (2), Kim Martini (3), David Murphy (4) (1) Sea-Bird Scientific,

More information

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO Jin-Yi Yu 1*, Hsun-Ying Kao 1, and Tong Lee 2 1. Department of Earth System Science, University of California, Irvine, Irvine,

More information

WEBB RESEARCH CORPORATION

WEBB RESEARCH CORPORATION Use spacebar or arrow keys to advance slide show WEBB RESEARCH CORPORATION Falmouth, MA APEX Profiler SLOCUM Glider Rev: 06/22/08 WEBB RESEARCH CORPORATION Specialists in neutrally buoyant drifters and

More information

Dynamic Positioning Control Augmentation for Jack-up Vessels

Dynamic Positioning Control Augmentation for Jack-up Vessels DYNAMIC POSITIONING CONFERENCE October 9-10, 2012 Design and Control Session Dynamic Positioning Control Augmentation for Jack-up Vessels By Bradley Deghuee L-3 Communications 1 Introduction Specialized

More information

WIND DATA REPORT. Bourne Water District

WIND DATA REPORT. Bourne Water District WIND DATA REPORT Bourne Water District July to September 2010 Prepared for Massachusetts Clean Energy Center 55 Summer Street, 9th Floor Boston, MA 02110 by Dylan Chase James F. Manwell Utama Abdulwahid

More information

Mean Sea Level Pressure and Wind Climatology over the North Indian Ocean: Quality control, Validation and Biases

Mean Sea Level Pressure and Wind Climatology over the North Indian Ocean: Quality control, Validation and Biases Mean Sea Level Pressure and Wind Climatology over the North Indian Ocean: Quality control, Validation and Biases M. Rajeevan and S.K.Dikshit India Meteorological Department Pune. India Introduction India

More information

Atmospheric Forcing and the Structure and Evolution of the Upper Ocean in the Bay of Bengal

Atmospheric Forcing and the Structure and Evolution of the Upper Ocean in the Bay of Bengal DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Atmospheric Forcing and the Structure and Evolution of the Upper Ocean in the Bay of Bengal J. Thomas Farrar and Robert

More information

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events Jin-Yi Yu 1*, Hsun-Ying Kao 2, Tong Lee 3, and Seon Tae Kim 1 1 Department of Earth System

More information

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter 5th Session of the East Asia winter Climate Outlook Forum (EASCOF-5), 8-10 November 2017, Tokyo, Japan Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high

More information

Argo National Data Management Report Italy (2016)

Argo National Data Management Report Italy (2016) Argo National Data Management Report Italy (2016) 1. Status Data acquired from floats: 335 floats were deployed in the Mediterranean and in Black Seas between 2001 and 2016 (the floats temporal distribution

More information

WildCat RF unit (0.5W), full 32-byte transmissions with built-in checksum

WildCat RF unit (0.5W), full 32-byte transmissions with built-in checksum Overview of SMRU series 9000 SRDL satellite tags Basic tag construction and function Housing: Standard sensors: Optional sensor: normal solid epoxy body rated to 500m, reinforced 2000m pressure (resolution

More information

CRUISE REPORT FOR UW BERING STRAIT MOORING PROJECT 2005 Rebecca Woodgate, University of

CRUISE REPORT FOR UW BERING STRAIT MOORING PROJECT 2005 Rebecca Woodgate, University of CRUISE REPORT FOR UW BERING STRAIT MOORING PROJECT 2005 Rebecca Woodgate, University of Washington,woodgate@apl.washington.edu CCGC Sir Wilfrid Laurier 2005-05 Kodiak, 8 th July 2005 Barrow, 22nd July

More information

Mooring Modifications for the Reduction of Losses to Vandalism

Mooring Modifications for the Reduction of Losses to Vandalism Mooring Modifications for the Reduction of Losses to Vandalism H. Paul Freitag Chris Meinig Andrew J. Shepherd Pacific Marine Environmental Laboratory Seattle, Washington, USA Linda D. Stratton JISAO/University

More information

COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB WAVERADAR REX AND A DATAWELL DIRECTIONAL WAVERIDER BUOY

COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB WAVERADAR REX AND A DATAWELL DIRECTIONAL WAVERIDER BUOY COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB WAVERADAR REX AND A DATAWELL DIRECTIONAL WAVERIDER BUOY Scott Noreika, Mark Beardsley, Lulu Lodder, Sarah Brown and David Duncalf rpsmetocean.com

More information

ANDRO: An Argo-based deep displacement atlas

ANDRO: An Argo-based deep displacement atlas ANDRO: An Argo-based deep displacement atlas By, Michel Ollitrault 1, Jean-Philippe Rannou 2 1 -IFREMER Centre de Brest, Plouzané, France 2 -ALTRAN Ouest, Brest, France Abstract During the first decade

More information

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP October 29, 2007 Outline Overview Recent

More information

WHOTS Mooring Subsurface Instrumentation

WHOTS Mooring Subsurface Instrumentation UH Contributions to WHOTS-13 Cruise Report by Fernando Santiago-Mandujano, Daniel McCoy, Jefrey Snyder, R. Walter Deppe, Kellen Rosburg, Glenn Carter, Katrina Berry, and Roger Lukas WHOTS Mooring Subsurface

More information

GLIDERS Aanderaa oxygen optode (models 3830 & 3835)

GLIDERS Aanderaa oxygen optode (models 3830 & 3835) Kiel Oxygen Projects GLIDERS Aanderaa oxygen optode (models 3830 & 3835) FLOATS Webb Slocum Glider NEMO, Optimare, Germany MOORINGS Provcarbon, Martec, France Provor CTS3 DO, Martec, France APEX Float,

More information

SENSOR SYNERGY OF ACTIVE AND PASSIVE MICROWAVE INSTRUMENTS FOR OBSERVATIONS OF MARINE SURFACE WINDS

SENSOR SYNERGY OF ACTIVE AND PASSIVE MICROWAVE INSTRUMENTS FOR OBSERVATIONS OF MARINE SURFACE WINDS SENSOR SYNERGY OF ACTIVE AND PASSIVE MICROWAVE INSTRUMENTS FOR OBSERVATIONS OF MARINE SURFACE WINDS N. Ebuchi Institute of Low Temperature Science, Hokkaido University, N19-W8, Kita-ku, Sapporo 060-0819,

More information

RSKtools for Matlab processing RBR data

RSKtools for Matlab processing RBR data Table of Contents Introduction... 1 RSKtools help... 1 Getting set up... 1 Remove atmospheric pressure from measured total pressure... 2 Correct for A2D zero-order hold... 2 Low-pass filtering... 3 Alignment

More information

Oxygen measurements: sensors accuracy and scientific needs

Oxygen measurements: sensors accuracy and scientific needs Oxygen measurements: sensors accuracy and scientific needs L. Coppola (CNRS-INSU), E.Diamond (CNRS-INSU), L.Delauney (IFREMER), D.Hydes (NOC), M.Haller (HZG), J.Karstensen (IFM-GEOMAR), D.Lefevre (CNRS-INSU),

More information

Argo Quality Control Manual For Biogeochemical Data

Argo Quality Control Manual For Biogeochemical Data Argo data management DOI: http://dx.doi.org/10.13155/40879 1 Argo Quality Control Manual For Biogeochemical Data Version 1.0 1 st March 2016 Argo Quality Control Manual For Biogeochemical Data Authors:

More information

Are Hurricanes Becoming More Furious Under Global Warming?

Are Hurricanes Becoming More Furious Under Global Warming? Are Hurricanes Becoming More Furious Under Global Warming? Z H A N L I U N I V E R S I T Y O F U T A H A T M O S P H E R I C S C I E N C E S D E P A R T M E N T T U E S D A Y, M A R C H 1 6, 2 0 1 0 OUTLINE

More information

CHANGE OF THE BRIGHTNESS TEMPERATURE IN THE MICROWAVE REGION DUE TO THE RELATIVE WIND DIRECTION

CHANGE OF THE BRIGHTNESS TEMPERATURE IN THE MICROWAVE REGION DUE TO THE RELATIVE WIND DIRECTION JP4.12 CHANGE OF THE BRIGHTNESS TEMPERATURE IN THE MICROWAVE REGION DUE TO THE RELATIVE WIND DIRECTION Masanori Konda* Department of Geophysics, Graduate School of Science, Kyoto University, Japan Akira

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 8 March 2010 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration Paper 2.2 Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration Mr William Freund, Daniel Measurement and Control Mr Klaus Zanker, Daniel Measurement and Control Mr Dale Goodson,

More information

.y..o ~ - \ o ~ ~~~I bl:..ill & ~j.a,_,.,ui J-1 ~4 b~

.y..o ~ - \ o ~ ~~~I bl:..ill & ~j.a,_,.,ui J-1 ~4 b~ Qatar Univ. Sci. J. (1993), 13(2.): 353-357 SEASONAL VARIATIONS OF ACOUSTIC PROPERTIES IN ROPME SEA AREA By A. A. H. EL-GINDY* *Department of Marine Sciences, Faculty of Science, University of Qatar, Doha,

More information

Climate projections and predictions: Challenges and possible solutions

Climate projections and predictions: Challenges and possible solutions United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea Eighteenth meeting Climate projections and predictions: Challenges and possible solutions Fangli Qiao First Institute

More information

Denise L Seman City of Youngstown

Denise L Seman City of Youngstown Denise L Seman City of Youngstown The control chart is one of the most important tools of quality control for laboratory data. A control chart is a specific kind of run chart that allows unusual change

More information

NINTH MEETING DOCUMENT SAC-09-16

NINTH MEETING DOCUMENT SAC-09-16 INTER-AMERICAN TROPICAL TUNA COMMISSION SCIENTIFIC ADVISORY COMMITTEE NINTH MEETING La Jolla, California (USA) 14-18 May 2018 DOCUMENT SAC-09-16 STOCK STATUS INDICATORS FOR BIGEYE TUNA Mark N. Maunder,

More information

FIU Digital Commons. Florida International University. Henry O. Briceño Florida International University,

FIU Digital Commons. Florida International University. Henry O. Briceño Florida International University, Florida International University FIU Digital Commons SERC Research Reports Southeast Environmental Research Center 2015 Water Quality Monitoring Project for Demonstration of Canal Remediation Methods Florida

More information

E-AIMS. R&D on float technology Synthesis D2.6.1

E-AIMS. R&D on float technology Synthesis D2.6.1 Research Project co-funded by the European Commission Research Directorate-General 7 th Framework Programme Project No. 284391 E-AIMS Euro-Argo Improvements for the GMES Marine Service R&D on float technology

More information

SECTION 2 HYDROLOGY AND FLOW REGIMES

SECTION 2 HYDROLOGY AND FLOW REGIMES SECTION 2 HYDROLOGY AND FLOW REGIMES In this section historical streamflow data from permanent USGS gaging stations will be presented and discussed to document long-term flow regime trends within the Cache-Bayou

More information

State Estimation of the California Current System Using 4DVar Ocean Data Assimilation

State Estimation of the California Current System Using 4DVar Ocean Data Assimilation State Estimation of the California Current System Using 4DVar Ocean Data Assimilation Hajoon Song, Arthur J. Miller and Bruce Cornuelle Scripps Institution of Oceanography, UCSD International Workshop

More information

Overview. 2 Module 13: Advanced Data Processing

Overview. 2 Module 13: Advanced Data Processing 2 Module 13: Advanced Data Processing Overview This section of the course covers advanced data processing when profiling. We will discuss the removal of the fairly gross effects of ship heave and talk

More information

The development of high resolution global ocean surface wave-tidecirculation

The development of high resolution global ocean surface wave-tidecirculation PICES Annual Meeting in Qingdao The development of high resolution global ocean surface wave-tidecirculation coupled model Fangli Qiao, Qi Shu and Bin Xiao First Institute of Oceanography, SOA, China Oct

More information

Climate Change Impacts on Sea Surface Temperature in the Eastern Mediterranean, Levantine Basin

Climate Change Impacts on Sea Surface Temperature in the Eastern Mediterranean, Levantine Basin Climate Change Impacts on Sea Surface Temperature in the Eastern Mediterranean, Levantine Basin Yianna Samuel-Rhoads *, George Zodiatis, Daniel Hayes, Gregory Konnaris, Georgios Georgiou, Marios Nikolaides

More information

The Next Generation Easy-to-Deploy (ETD) Tsunami Assessment Buoy

The Next Generation Easy-to-Deploy (ETD) Tsunami Assessment Buoy The Next Generation Easy-to-Deploy (ETD) Tsunami Assessment Buoy R.A. Lawson and D. Graham Science Applications International Corporation 4025 Hancock Street San Diego, CA 92110 USA S. Stalin, C. Meinig,

More information

Data Sheet T 8389 EN. Series 3730 and 3731 Types , , , and. EXPERTplus Valve Diagnostic

Data Sheet T 8389 EN. Series 3730 and 3731 Types , , , and. EXPERTplus Valve Diagnostic Data Sheet T 8389 EN Series 3730 and 3731 Types 3730-2, 3730-3, 3730-4, 3730-5 and Type 3731-3 Electropneumatic Positioners EXPERTplus Valve Diagnostic Application Positioner firmware to detect potential

More information

Procedures for correcting in situ CTD data and results obtained during the NEAR-GOOS Cross-Basin Climate Monitoring Section project

Procedures for correcting in situ CTD data and results obtained during the NEAR-GOOS Cross-Basin Climate Monitoring Section project Procedures for correcting in situ CTD data and results obtained during the NEAR-GOOS Cross-Basin Climate Monitoring Section project Dmitry Kaplunenko 1, Aleksander Lazaryuk 1, 2, Vyacheslav Lobanov 1,

More information

Model activities at FIO: The essential mixing effects of the nonbreaking surface wave on general circulation and climate models

Model activities at FIO: The essential mixing effects of the nonbreaking surface wave on general circulation and climate models Model activities at FIO: The essential mixing effects of the nonbreaking surface wave on general circulation and climate models Fangli Qiao First Institute of Oceanography, SOA, China May 22, 2015 Qingdao

More information

The history of climate data

The history of climate data How we observe & simulate climate? TOA TOA incoming outgoing radia>on DJF DJF Surface air temperature DJF Surface pressure DJF Wind speed and direc>on DJF ITCZ/convergence divergence The history of climate

More information

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE By William S. Kessler and Richard Kleeman Journal of Climate Vol.13, 1999 SWAP, May 2009, Split, Croatia Maristella Berta What does give

More information

The Coriolis force, geostrophy, Rossby waves and the westward intensification

The Coriolis force, geostrophy, Rossby waves and the westward intensification Chapter 3 The Coriolis force, geostrophy, Rossby waves and the westward intensification The oceanic circulation is the result of a certain balance of forces. Geophysical Fluid Dynamics shows that a very

More information

7.4 Temperature, Salinity and Currents in Jamaica Bay

7.4 Temperature, Salinity and Currents in Jamaica Bay 7.4 Temperature, Salinity and Currents in Jamaica Bay Arnold Gordon, Bruce Huber and Robert Houghton 7.4.1 INTRODUCTION Jamaica Bay stratification is weakly indicative of a shallow, tidally active environment,

More information

Module 9. Advanced Data Processing

Module 9. Advanced Data Processing Module 9 Advanced Data Processing 2 Module 9: Advanced Data processing Overview Advanced Data Processing or Why Doesn t My Data Look Like the Examples in Class? Sensor alignment, matching measurements

More information

OCN 201 Lab Fall 2009 OCN 201. Lab 9 - El Niño

OCN 201 Lab Fall 2009 OCN 201. Lab 9 - El Niño OCN 201 Lab Fall 2009 OCN 201 Lab 9 - El Niño El Niño is probably one of the most widely publicized oceanic phenomena. If there s one single reason for that it s probably the fact that El Niño s presence

More information

Yasuhisa ISHIHARA Marine Technology Center JAMSTEC

Yasuhisa ISHIHARA Marine Technology Center JAMSTEC Tsunami Warning Buoy System and an Acoustic Telemetry System for High Current Area Yasuhisa ISHIHARA Marine Technology Center JAMSTEC Contents 1. Large depth Surface Buoy Mooring TRITONBuoyand GlobalTropical

More information

SCIENTIFIC COMMITTEE SEVENTH REGULAR SESSION August 2011 Pohnpei, Federated States of Micronesia

SCIENTIFIC COMMITTEE SEVENTH REGULAR SESSION August 2011 Pohnpei, Federated States of Micronesia SCIENTIFIC COMMITTEE SEVENTH REGULAR SESSION 9-17 August 2011 Pohnpei, Federated States of Micronesia CPUE of skipjack for the Japanese offshore pole and line using GPS and catch data WCPFC-SC7-2011/SA-WP-09

More information

Floats in Polar Oceans. Olaf Boebel and Eberhard Fahrbach, AWI-Bremerhaven, Germany

Floats in Polar Oceans. Olaf Boebel and Eberhard Fahrbach, AWI-Bremerhaven, Germany Floats in Polar Oceans Olaf Boebel and Eberhard Fahrbach, AWI-Bremerhaven, Germany Floats in Polar Oceans: Strategy Development of a system for bipolar use in the Antarctic because of easier conditions:

More information

Systematic Validation of Conductivity and Temperature from Ocean moored buoy data in the northern Indian Ocean with in situ ship based measurements

Systematic Validation of Conductivity and Temperature from Ocean moored buoy data in the northern Indian Ocean with in situ ship based measurements Indian Journal of Geo-Marine Sciences Vol. 45(2), February 2016, pp. 224-229 Systematic Validation of Conductivity and Temperature from Ocean moored buoy data in the northern Indian Ocean with in situ

More information

A Wind Profiling Platform for Offshore Wind Measurements and Assessment. Presenter: Mark Blaseckie AXYS Technologies Inc.

A Wind Profiling Platform for Offshore Wind Measurements and Assessment. Presenter: Mark Blaseckie AXYS Technologies Inc. A Wind Profiling Platform for Offshore Wind Measurements and Assessment Presenter: Mark Blaseckie AXYS Technologies Inc. Any Sensor, Any Telemetry, Any Environment Founded in 1974 Part of the AXYS Group

More information

The role of large-scale modes of climate variability on the Cape Point wave record

The role of large-scale modes of climate variability on the Cape Point wave record GODAE OceanView 5th COSS-TT meeting, Cape Town 2017 The role of large-scale modes of climate variability on the Cape Point wave record Jennifer Veitch1, Andrew Birkett2, Juliet Hermes1, Christo Rautenbach,

More information

Sea-Bird Scientific Carol Janzen, Ph.D. Oceanography David Murphy, M.S.E.E. Dan Quittman, M.S.E.E.

Sea-Bird Scientific Carol Janzen, Ph.D. Oceanography David Murphy, M.S.E.E. Dan Quittman, M.S.E.E. Sea-Bird Scientific Carol Janzen, Ph.D. Oceanography David Murphy, M.S.E.E. Dan Quittman, M.S.E.E. Sea-Bird Scientific Sensor Offering Fundamental feature of each kind of sensing technology Pumping sensors

More information

Increasing intensity of El Niño in the central equatorial Pacific

Increasing intensity of El Niño in the central equatorial Pacific Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044007, 2010 Increasing intensity of El Niño in the central equatorial Pacific Tong Lee 1 and Michael J. McPhaden 2

More information

Series 3730 and Series 3731 EXPERTplus Valve Diagnostics with Partial Stroke Test (PST)

Series 3730 and Series 3731 EXPERTplus Valve Diagnostics with Partial Stroke Test (PST) Series 3730 and Series 3731 EXPERTplus Valve Diagnostics with Partial Stroke Test (PST) Application Positioner firmware for early detection of control valve faults giving maintenance recommendations. Valid

More information

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA Updates to OSCAR and challenges with capturing the wind-driven currents. Wind-Driven Surface Currents Kathleen Dohan Earth and Space Research, Seattle, WA ENSO OSCAR Surface currents from satellite fields

More information

COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB WAVERADAR REX AND A DATAWELL DIRECTIONAL WAVERIDER BUOY

COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB WAVERADAR REX AND A DATAWELL DIRECTIONAL WAVERIDER BUOY 31 Bishop Street, Jolimont Western Australia 6014 T +61 8 9387 7955 F +61 8 9387 6686 E info@rpsmetocean.com W rpsmetocean.com & rpsgroup.com.au COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB

More information

Influence of atmospheric circulation on the Namibian upwelling system and the oxygen minimum zone

Influence of atmospheric circulation on the Namibian upwelling system and the oxygen minimum zone International Liege colloquium Influence of atmospheric circulation on the Namibian upwelling system and the oxygen minimum zone Nele Tim, Eduardo Zorita, Birgit Hünicke 09.05.2014 / University of Liège

More information

Long-Term Performance of an AWAC Wave Gage, Chesapeake Bay, VA

Long-Term Performance of an AWAC Wave Gage, Chesapeake Bay, VA Long-Term Performance of an AWAC Wave Gage, Chesapeake Bay, VA P. T. Puckette G. B. Gray Evans-Hamilton, Inc. 3319 Maybank Highway Johns Is, SC 29455 USA Abstract- Evans-Hamilton, Inc. deployed a Nortek

More information

An ITCZ-like convergence zone over the Indian Ocean in boreal late autumn

An ITCZ-like convergence zone over the Indian Ocean in boreal late autumn Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L10811, doi:10.1029/2006gl028341, 2007 An ITCZ-like convergence zone over the Indian Ocean in boreal late autumn N. Sato, 1 K. Yoneyama,

More information

General Oceanography Geology 105 Expedition #19 The Ocean and Climate

General Oceanography Geology 105 Expedition #19 The Ocean and Climate General Oceanography Geology 105 Expedition #19 The Ocean and Climate Name Not attempting to answer questions on expeditions will result in point deductions on course workbook (two or more blank answers

More information

CORESTA RECOMMENDED METHOD N 6

CORESTA RECOMMENDED METHOD N 6 CORESTA RECOMMENDED METHOD N 6 DETERMINATION OF VENTILATION DEFINITIONS AND MEASUREMENT PRINCIPLES (2015 Revision September 2016) 1. SCOPE This CORESTA Recommended Method specifies a method for the determination

More information

Leak Checking Large Vacuum Chambers

Leak Checking Large Vacuum Chambers Leak Checking Large Vacuum Chambers Technical Overview Vacuum Technologies Introduction Understanding the pump-down characteristics of a large vacuum vessel is critical for determining whether the vacuum

More information

High Frequency Acoustical Propagation and Scattering in Coastal Waters

High Frequency Acoustical Propagation and Scattering in Coastal Waters High Frequency Acoustical Propagation and Scattering in Coastal Waters David M. Farmer Graduate School of Oceanography (educational) University of Rhode Island Narragansett, RI 02882 Phone: (401) 874-6222

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 4 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

A New Fall-Rate Equation for T-5 Expendable Bathythermograph (XBT) by TSK

A New Fall-Rate Equation for T-5 Expendable Bathythermograph (XBT) by TSK Journal of Oceanography, Vol. 61, pp. 115 to 121, 2005 A New Fall-Rate Equation for T-5 Expendable Bathythermograph (XBT) by TSK SHOICHI KIZU 1 *, HIROYUKI YORITAKA 2 and KIMIO HANAWA 1 1 Department of

More information

Climate briefing. Wellington region, February Alex Pezza and Mike Thompson Environmental Science Department

Climate briefing. Wellington region, February Alex Pezza and Mike Thompson Environmental Science Department Climate briefing Wellington region, February 2016 Alex Pezza and Mike Thompson Environmental Science Department For more information, contact the Greater Wellington Regional Council: Wellington PO Box

More information

Surface Tracking Feature

Surface Tracking Feature TELEDYNE RD INSTRUM ENTS A Teledyne Technologies Company Application Note FSA-022 (June 2008) Surface Tracking Feature 1 Introduction The following Application Note serves as a guide of how to use the

More information

EXPERIMENTAL RESULTS OF GUIDED WAVE TRAVEL TIME TOMOGRAPHY

EXPERIMENTAL RESULTS OF GUIDED WAVE TRAVEL TIME TOMOGRAPHY 18 th World Conference on Non destructive Testing, 16-20 April 2012, Durban, South Africa EXPERIMENTAL RESULTS OF GUIDED WAVE TRAVEL TIME TOMOGRAPHY Arno VOLKER 1 and Hendrik VOS 1 TNO, Stieltjesweg 1,

More information

Troubleshooting Basics: Profiling CTDs

Troubleshooting Basics: Profiling CTDs Technical Note Troubleshooting Basics: Profiling CTDs Methods for Diagnosing Erratic and Unreasonable Data Greg Ikeda, October 2018 Introduction Any CTD or sensor may eventually exhibit data spikes and

More information