Unit Activity Answer Sheet

Size: px
Start display at page:

Download "Unit Activity Answer Sheet"

Transcription

1 Geoetry Unit Activity Answer Sheet Unit: Extending to Three Diensions This Unit Activity will help you eet these educational goals: Matheatical Practices You will use atheatics to odel real-world situations. Inquiry You will conduct online research. STEM You will apply atheatical and technology tools and knowledge to grow in your understanding of atheatics as a creative huan activity. Directions and Analysis Task : Finding Density All objects have ass. Mass is the aount of aterial in an object. Earlier in this unit, you studied the volue of objects. When you cobine these two concepts, you get a useful easureent called density. The density of an object is its ass per unit of volue. Iagine two objects in which the larger one actually weighs less than the saller one. This difference in weight is attributed to density. Consider a candle that has a volue of 96 cubic inches and a weight of 44.6 ounces. What is the density of the candle? The density is defined as its ass per unit volue, so siply divide the ass of the candle by its volue: ass 44.6 ounces density = 0.46 ounces/cubic inch. volue 96 cubic inches In this case, you are finding the average density of the candle. In ost cases, you will be finding the average density of objects because ost objects do not have a unifor density. For instance, the portion of the candle where the wick is ight have a different density than the rest of the candle. Now that you know about density, let s work on soe applications. Harold is a woodworker and is interested in finding the density of two different types of wood. He bought a pine log that has a 5-inch radius and is 30 inches long. The weight of the log is approxiately pounds. He also has an oak board that is 5.5 inches wide,.5 inches thick, and 3 feet long. The board weighs approxiately 8.05 pounds. a. Which shapes can you use to odel the log and the board? I can odel the pine log using a right cylinder (radius = 5 inches and height = 30 inches). The odel for the oak board can be a rectangular pris (width = 5.5 inches, height =.5 inches, and length = 3 feet = 36 inches). 203 EDMENTUM, INC.

2 b. What is the density of the pine log? Show your work. I already know the weight of the pine log, so to find the density I need to find the volue. Because the log can be odeled by a cylinder: volue of log = volue of cylinder = r 2 h = (5 inches) 2 30 inches 2,356.2 cubic inches. Substituting into the density forula: ass pounds density = volue 2,356.2 cubic inches 0.08 pounds/cubic inch. c. What is the density of the oak board? Show your work. I already know the weight of the oak board, so to find the density I need to find the volue. Because the board can be odeled by a rectangular pris: volue of the board = volue of a rectangular pris = = 36 inches 5.5 inches.5 inches = 297 cubic inches. l w h Substituting into the density forula: ass density = volue 8.05 pounds pounds/cubic inch. 297cubicinches d. If you had a block of each type of wood with the sae diensions, how would their weights copare? Explain. If the blocks of wood had the sae diensions, they would have equal volues. However, because the density of oak is greater than the density of pine, the oak block would weigh ore than the pine block. Based on the densities found, the weight of the oak block would be.5 ties the weight of the pine block. e. Water has a density of about pounds/cubic inch. You ight know that wood floats on water. What can you conclude about the densities of objects that float and the densities of objects that do not? Review your results fro parts b and c before deciding. The densities of both types of wood are less than the density of water. Any object whose density is less than the density of water will float in water, and any object whose density is greater than the density of water will sink in water. Task 2: The Story of Archiedes About 2,200 years ago, one of the ost faous atheaticians in history ade a ajor discovery. The atheatician was Archiedes, who was presented with a proble by King Hiero II of Syracuse in Sicily. 2

3 The king had given a bar of gold to a jeweler and ordered hi to ake it into a crown. After receiving the crown, the king suspected that the jeweler had replaced soe of the gold with an equal weight of a cheaper etal like silver and kept the reainder of the gold for hiself. The king had no way to deterine whether this was true, so he gave the crown to Archiedes and asked hi to devise a way to find out. At the tie, Archiedes knew that gold was ore dense than silver. So, if the volue of the crown was greater than the volue of a bar of gold, they would have proof that the jeweler had stolen soe of the gold. However, Archiedes had no way to find the volue of an irregular shape like a crown. Archiedes struggled with this proble for a long tie. One day, he went to take a bath. As he lowered hiself into the bath, he noticed that the water level rose. As he continued to lower hiself into the water, the water level continued to rise. He was so excited at his discovery that he juped out of the bath and, before he could reeber to put his pants on, went running through the streets yelling Eureka! Eureka! which in Greek eans I ve found it! I ve found it! He now had a way to easure the volue of the irregularly shaped crown. In Archiedes s case, the jeweler had indeed stolen gold fro the king. This did not end well for the jeweler. a. A key coponent to this story is that the jeweler deceptively replaced an equal weight (or equal ass) of gold with silver. How does this action result in increasing the volue of the crown? Explain using one or ore equations. Volue (V), density (ρ), and ass () are related through the equation Rearranging the equation gives V.. V The jeweler held constant by substituting an equal weight of silver, but did not consider how the density difference of the etals would change the volue. If density decreases, as in the case of replacing gold with silver, the volue ust increase. The crown would grow in volue in this way based on the jeweler s deceptive actions. b. What did Archiedes discover in the bath? Why was he so excited? Describe the discovery using geoetric ters. What do you predict Archiedes did next with his new discoveries? Explain. Archiedes discovered that the volue of water displaced by an object, in this case his body, is equal to the volue of the object. He was excited because he now had a way to easure the volue of an irregularly shaped object. Archiedes used water displaceent to find the volue of the crown. Subsequently, he was able to prove the crown was not ade purely of gold through the relationship. V 3

4 Task 3: Displaceent and Buoyancy Buoyancy is the ability to float in a liquid such as water. Archiedes s experience with water displaceent in the bath gave rise to Archiedes s Principle, which states that the upward buoyant force, or push, exerted on a body iersed in a fluid is equal to the weight of the fluid the body displaces. In technical ters, buoyancy is the upward force exerted by a fluid on a body when the body is iersed in the fluid. a. Making use of Archiedes s Principle, displaceent, and buoyancy, explain why soe objects float on water, but others do not. Use the diagra to help you decide. If the density of an object is less than that of water, the weight of water that the object displaces (if fully iersed) is greater than the weight of the object. So, if such an object is fully iersed in water, the upward buoyant force on it is greater than the downward force of its weight. The overall effect is an upward push on the object. The object rises and finally floats with a part of it iersed. If the density of an object is greater than that of water, the weight of water that the object displaces is less than the weight of the object. So, the buoyant force on the object is not enough to balance its weight. The object sinks under the net downward force on it. b. The Titanic is one of the ost faous passenger ships in history. Search the Internet to deterine how uch the Titanic weighed in etric tons. The Titanic weighed approxiately 46,000 etric tons when it was not loaded. c. The hull of a ship should be the only portion of a ship that is below the water. Therefore, at a iniu, how any tons of sea water should the hull of the Titanic displace while it s in water? At a iniu, the hull would need to displace 46,000 etric tons of sea water. 4

5 d. Search the Internet to find the density of surface sea water in kilogras/cubic eter. Answers will vary depending on the source. The density of sea water at the surface is approxiately,027 kilogras/cubic eter. e. Convert the density of surface sea water to etric tons/cubic eter. Use the Internet to look for the proper conversion factor, if needed. kg etric tons etric tons, kg The density of surface sea water is about.027 etric tons/cubic eter. f. Based on your calculations so far, how any cubic eters of water did the hull of the Titanic have to displace to stay afloat? The volue of 46,000 etric tons of sea water is given by: ass volue = density 46,000 etric tons.027 etric tons / cubic eter 44,790 cubic eters. Task 4: Density and Population The concentration of people or other species in a given area is called the population density. When dealing with population density, we use area instead of volue because it is a better easure of living space. For instance, the population density in a given city would be found by dividing the population of the city by the nuber of square iles that the city takes up. a. Use the Internet to find the population of Ohio. Then use this site to estiate the area of Ohio in square iles. What is your estiate? Use this area to estiate the population density of Ohio. According to the latest census, the population of Ohio is about,544,95 people. Estiates of the area will vary, but one possible estiate is 40,440 square iles. For this estiate, the population density is calculated as: population population density = area,544,95people 40,440 square iles people per square ile. 5

6 b. Use the Internet to find the actual area of Ohio. Then find the actual population density of Ohio. How does this copare with your estiate? Why was your initial estiate greater or less than the actual population density? The actual area of Ohio is 44,820 square iles. Therefore, the actual population density is: population population density = area,544,95people 44,820 square iles people per square ile. The initial estiate was greater than the actual population density because the area used in the estiation was saller. c. How do you think the population density of Cleveland, a ajor city in Ohio, copares with the population density of the state? Explain your answer. I would expect the population density in a ajor city to be greater than the population density of the whole state. In the rural parts of state, there will be places where people are uch ore spread out, whereas in the city there are lots of people confined to the liited area of the city. Resources Docuent any references you used for this project below. At iniu, include a title and URL for any Internet resource: 6

7 Evaluation This project will be evaluated on a rubric that is based on the copleteness, clarity, and thinking you exhibit in the Directions and Analysis section above. Total Points: 0 Task : Finding Density a. Identify geoetric odels for a log and a board. b. Find the density of the log. c. Find the density of the board. d. Copare two types of wood of equal volue. e. Conclude why wood floats on water. Task points: 3.5 Task 2: The Story of Archiedes a. Deterine how the ipurity of the crown increased its volue. b. Explain Archiedes discovery in the bath. Task points:.5 Task 3: Displaceent and Buoyancy a. Use displaceent and buoyancy to explain why objects float. b c. Deterine the weight of the Titanic and how uch water it displaced. d e. Convert the density of sea water to different units. f. Figure the volue of sea water the Titanic ight have displaced to stay afloat. Task points: 3 Task 4: Density and Population a. Calculate the population density of Ohio. b. Use actual area to find the population density of Ohio. c. Copare the population density of Cleveland with that of Ohio. Task points: 2 7

10.4 Buoyancy is a force

10.4 Buoyancy is a force Chapter 10.4 Learning Goals Define buoyancy. Explain the relationship between density and buoyancy. Discuss applications of Archimedes principle. 10.4 Buoyancy is a force Buoyancy is a measure of the upward

More information

Density and Buoyancy Notes

Density and Buoyancy Notes Density and Buoyancy Notes Measuring Mass and Volume 3.1 Density A balance can be used to measure the mass of an object. If the object is a liquid, pour it into a graduated cylinder to measure the volume.

More information

Properties of Fluids. How do ships float?

Properties of Fluids. How do ships float? How do ships float? Despite their weight ships are able to float. This is because a greater force pushing up on the ship opposes the weight or force of the ship pushing down. How do ships float? This supporting

More information

The density of a substance is the same for all samples of that substance.

The density of a substance is the same for all samples of that substance. 8.8.a Density and Buoyancy Students know density is mass per unit volume. P71 Wood Steel The density of a substance is the same for all samples of that substance. 1. The two blocks shown have the same

More information

17.2 and 17.3 Classifying Matter Liquids. Liquids

17.2 and 17.3 Classifying Matter Liquids. Liquids 17.2 and 17.3 Classifying Matter Liquids Read p.295-301 in book Liquids Liquids have an indefinite shape, but a definite volume. the same shape as their container. particles that are close together, but

More information

Basics of Flow measurement using Hot-film anemometer

Basics of Flow measurement using Hot-film anemometer Basics of Flow easureent using Hot-fil aneoeter Version 1.0 1/9 Inhaltsverzeichnis: 1. Definitions 1.1. Air Velocity 1.2. Aount (of Gas) 1.. Flow 1..1. Mass flow rate 1..2. Voluetric flow rate 1... Standard

More information

Name Class Date. (pp ) Write the letter of the correct answer in the space provided.

Name Class Date. (pp ) Write the letter of the correct answer in the space provided. Skills Worksheet Directed Reading A Section: Buoyancy and Density (pp. 412 419) 1. What is the upward force that fluids exert on all matter called? a. pascal force b. atmospheric pressure c. buoyant force

More information

Notes Chapter 3. Buoyancy

Notes Chapter 3. Buoyancy Notes Chapter 3 Buoyancy Pressure in a Fluid 3.2 Pressure and the Buoyant Forces Liquids and gases are fluids materials that can flow and have no definite shape. Objects in a fluid experience a buoyant

More information

Why do things float? Climate and Global Change. Introduction

Why do things float? Climate and Global Change. Introduction Why do things float? Introduction Archimedes of Syracuse (ca. 287-212 B.C.), a physical scientist, is credited with understanding two basic principles: When describing the mechanical advantage gained by

More information

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7.

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7. Phys101 Lectures 24-25 luids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 10-1,2,3,4,5,6,7. Page 1 10-1 Phases of Matter The three common phases of matter are solid,

More information

Chapter Five: Density and Buoyancy

Chapter Five: Density and Buoyancy Chapter Five: Density and Buoyancy 5.1 Density 5.2 Buoyancy 5.3 Heat Affects Density and Buoyancy 5.1 Mass and Weight Mass is the amount of matter in an object. Weight is a measure of the pulling force

More information

Nadia Naghi. Hung Do. Minh Lu. George Manoli PHYS Lab 12: Archimede s Principle. July 2, 2014

Nadia Naghi. Hung Do. Minh Lu. George Manoli PHYS Lab 12: Archimede s Principle. July 2, 2014 1 Nadia Naghi Hung Do Minh Lu George Manoli PHYS 2125 Lab 12: Archimede s Principle July 2, 2014 2 ABSTRACT: This experiment studies the principle of density by applying Archimedes principle and calculating

More information

Additional Information

Additional Information Buoyancy Additional Information Any object, fully or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes of Syracuse Archimedes principle

More information

PRESSURE AND BUOYANCY

PRESSURE AND BUOYANCY PRESSURE AND BUOYANCY CONCEPT SUMMARY So far The pressure applied to a confined liquid is transmitted to every point in the liquid (Pascal's Principle). At any given point in a liquid the pressure is the

More information

Student Exploration: Archimedes Principle

Student Exploration: Archimedes Principle Name: Date: Student Exploration: Archimedes Principle Vocabulary: Archimedes principle, buoyant force, density, displace, mass, volume, weight Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Lecture 29 (Walker: ) Fluids II April 13, 2009

Lecture 29 (Walker: ) Fluids II April 13, 2009 Physics 111 Lecture 29 (Walker: 15.3-4) Fluids II April 13, 2009 Lecture 29 1/32 Pressure in Fluids Pressure is the same in every direction in a fluid at a given depth; if it were not, the fluid would

More information

C6Hi (g) 6 H2O + 6 C02(g) + energy

C6Hi (g) 6 H2O + 6 C02(g) + energy Experient Cell Respiration 110 Cell respiration refers to the process of converting the cheical energy of organic olecules into a for iediately usable by organiss. Glucose ay be oxidized copletely if sufficient

More information

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

More information

In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.

In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19. In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

More information

The Science of Boat Design

The Science of Boat Design 1.3 Read The Science of Boat Design matter: anything that has mass and takes up space. density: the amount of matter in a given amount of space. buoyant force: the upward push that keeps objects floating

More information

Section 3: Fluids. States of Matter Section 3. Preview Key Ideas Bellringer Pressure

Section 3: Fluids. States of Matter Section 3. Preview Key Ideas Bellringer Pressure Section 3: Fluids Preview Key Ideas Bellringer Pressure Buoyant Force Comparing Weight and Buoyant Force Pascal s Principle Math Skills Fluids in Motion Key Ideas How do fluids exert pressure? What force

More information

2015 EdExcel A Level Physics Topic 4. Density and upthrust

2015 EdExcel A Level Physics Topic 4. Density and upthrust 2015 EdExcel A Level Physics Topic 4 Density and upthrust What is Density? Density is Mass per unit volume How closely packed the matter ( stuff ) is within an object Density = Mass Volume ρ = m V More

More information

Science 8 Chapter 9 Section 1

Science 8 Chapter 9 Section 1 Science 8 Chapter 9 Section 1 Forces and Buoyancy (pp. 334-347) Forces Force: anything that causes a change in the motion of an object; a push or pull on an object balanced forces: the condition in which

More information

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid?

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid? CHAPTER 3 SECTION 3 States of Matter Fluids KEY IDEAS As you read this section, keep these questions in mind: How do fluids exert pressure? What causes objects to float? What happens when pressure in a

More information

Simulating Microgravity with Buoyancy A Space School Lesson Plan

Simulating Microgravity with Buoyancy A Space School Lesson Plan ASTRONAUT TRAINING...UNDERWATER Simulating Microgravity with Buoyancy A Space School Lesson Plan by Bill Andrake, Swampscott Middle School Swampscott, Massachusetts Science Lesson: Buoyancy - Based on

More information

Projectile Motion Lab (2019)

Projectile Motion Lab (2019) Nae: Date: Partner(s): Period: Projectile Motion Lab (2019) Object: Measure the velocity of a ball using two Photogates and coputer software for tiing. Apply concepts fro two-diensional kineatics to predict

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

Density. Chapters 12-14: Phases of Matter. Example: Density. Conceptual Check. Springs 2/27/12. Mass Density vs. Weight Density

Density. Chapters 12-14: Phases of Matter. Example: Density. Conceptual Check. Springs 2/27/12. Mass Density vs. Weight Density Chapters 12-14: Phases of Matter Density Sequence of increasing molecule motion (and kinetic energy) Solid Liquid Gas The densities of most liquids and solids vary slightly with changes in temperature

More information

Example A: A 400-N force is applied to a tabletop over a square area with side-length L = 20-cm.

Example A: A 400-N force is applied to a tabletop over a square area with side-length L = 20-cm. Physics 17 Part H Fluids and Pressure Uni-Directional Pressure The pressure that is applied over an area is the force applied, divided by the area. A 400-N force is applied to a tabletop over a square

More information

S L G. Chapter 12: The Behavior of Gases. I. First Concepts a. The 3 states of matter most important to us: solids, liquids, and gases.

S L G. Chapter 12: The Behavior of Gases. I. First Concepts a. The 3 states of matter most important to us: solids, liquids, and gases. Chapter : he ehaior of Gases I. First Concepts a. he 3 states of atter ost iportant to us: solids, liquids, and gases. S L G b. Real Gases and Ideal Gases i. Real gases exist, ideal gases do not ii. Under

More information

Review: Fluids. container into which it has been poured. changes gases are compressible. pressure changes

Review: Fluids. container into which it has been poured. changes gases are compressible. pressure changes Forces in Fluids Review: Fluids o A fluid is a substance that is able to flow and assume the form of the container into which it has been poured o A compressible fluid is one that can change its volume

More information

Force Pressure = Area

Force Pressure = Area Topics Pressure Liquids Buoyancy Archimedes Principle Flotation Pascal;s Principle Surface Tension Capillarity Pressure Force Pressure = Area Which has the greatest pressure? Units: N/m 2 -- named the

More information

North Carolina State University PY131 Lab Manual

North Carolina State University PY131 Lab Manual INTRODUCTION In the 3 rd century BC, Archimedes was asked by a king to figure out the purity of the gold in the king s crown. While Archimedes knew he could find the weight of the crown using a balance,

More information

What are some properties of fluids? Why does a lake freeze from the top downward?

What are some properties of fluids? Why does a lake freeze from the top downward? Fluid Mechanics > A fluid is any substance that capable of flowing, which includes liquids, gases and powdered solids. Therefore fluids have some similar mechanical properties. ex; Both can not support

More information

Buoyancy and Density. Buoyant Force and Fluid Pressure. Key Concept Buoyant force and density affect whether an object will float or sink in a fluid.

Buoyancy and Density. Buoyant Force and Fluid Pressure. Key Concept Buoyant force and density affect whether an object will float or sink in a fluid. 2 Buoyancy and Density Key Concept Buoyant force and density affect whether an object will float or sink in a fluid. What You Will Learn All fluids exert an upward buoyant force on objects in the fluid.

More information

Shark Biology Buoyancy by Bill Andrake

Shark Biology Buoyancy by Bill Andrake Shark Biology Buoyancy by Bill Andrake Science Lesson: Buoyancy - Based on Webisode 45 - Shark Biology Grade Level: 6-8 Time: Four (45-50 minute) class periods Introduction Jonathan narrates an educational

More information

From and

From  and From http://www.school-for-champions.com/science/fluidpressure.htm and http://www.school-forchampions.com/science/fluidfloating.htm by Ron Kurtus, School for Champions Pressure in Fluids by Ron Kurtus

More information

Science 8 B Topic 4-6 Flow Rate and Viscosity fluids resistance to flow viscosity viscous higher viscosity it has liquids and gases

Science 8 B Topic 4-6 Flow Rate and Viscosity fluids resistance to flow viscosity viscous higher viscosity it has liquids and gases Science 8 B Topic 4-6 Flow Rate and Viscosity - A fluids resistance to flow (its thickness or thinness) is called viscosity - A thicker a liquid is, the more viscous it is and the higher viscosity it has

More information

L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather

L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather The deeper you go the higher the pressure P Top A hypothetical volume of water inside

More information

FLUID STATICS II: BUOYANCY 1

FLUID STATICS II: BUOYANCY 1 FLUID STATICS II: BUOYANCY 1 Learning Goals After completing this studio, you should be able to Determine the forces acting on an object immersed in a fluid and their origin, based on the physical properties

More information

Card 1 Chapter 17. Card 2. Chapter 17

Card 1 Chapter 17. Card 2. Chapter 17 Card 1 Card 2 Liquid A - 1.4 g/ml; Liquid B -.82 g/ml; Liquid C - 1.0 g/ml; one liquid you know. What is it? Also how will they stack? Where will a 1.6 g/ml object end up? Find the density of a 5 milliliter,

More information

LECTURE 16: Buoyancy. Select LEARNING OBJECTIVES:

LECTURE 16: Buoyancy. Select LEARNING OBJECTIVES: Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 16: Buoyancy Understand that the buoyant force is a result of a pressure gradient within a fluid. Demonstrate the ability to analyze a scenario involving

More information

Fluids always move from high pressure to low pressure. Air molecules pulled by gravity = atmospheric pressure

Fluids always move from high pressure to low pressure. Air molecules pulled by gravity = atmospheric pressure 9.1 Fluids Under Pressure Fluids always move from high pressure to low pressure w Fluids under pressure and compressed gases are used for a variety of everyday tasks Air molecules pulled by gravity = atmospheric

More information

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7.

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7. Phys101 Lectures 21-22 Fluids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 10-1,2,3,4,5,6,7. Page 1 10-1 Phases of Matter The three common phases of matter are solid,

More information

Recommendations on Two Acceleration Measurements with Low Strain Integrity Test

Recommendations on Two Acceleration Measurements with Low Strain Integrity Test Recoendations on Two Acceleration Measureents with Low Strain Integrity Test Liqun Liang, PhD., P.E., 1 Scott Webster, P.E., 2 and Marty Bixler, P.E. 3 1 Pile Dynaics Inc., 3725 Aurora Rd, Cleveland, Ohio

More information

Hydrostatics. Physics 1425 Lecture 25. Michael Fowler, UVa

Hydrostatics. Physics 1425 Lecture 25. Michael Fowler, UVa Hydrostatics Physics 1425 Lecture 25 Michael Fowler, UVa Basic Concepts Density Pressure: Pascal s Principle The Crown and the Bathtub Around 250 BC, the king of Syracuse commissioned a new crown,and gave

More information

2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?

2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force? CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How

More information

HW #10 posted, due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)

HW #10 posted, due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade) HW #10 posted, due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade) Last Lecture Class: States/Phases of Matter, Deformation of Solids, Density, Pressure Today: Pressure vs. Depth,

More information

Density and Specific Gravity

Density and Specific Gravity Fluids Phases of Matter Matter is anything that has mass and takes up space (volume). The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a

More information

DENSITY AND BUOYANCY

DENSITY AND BUOYANCY DENSITY AND BUOYANCY DENSITY - RECAP What is DENSITY? The amount of MASS contained in a given VOLUME Density describes how closely packed together the particles are in a substance Density Experiment SINK

More information

Name: Answer Key Date: Regents Physics. Waves

Name: Answer Key Date: Regents Physics. Waves Nae: Answer Key Date: Regents Physics Test # 13 Review Waves 1. Use GUESS ethod and indicate all vector directions. 2. Ters to know: echanical wave, transverse wave, longitudinal wave, surace wave, electroagnetic

More information

Chapter 15 Fluid. Density

Chapter 15 Fluid. Density Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid

More information

MODELLING THE EFFECTS OF PEDESTRIANS ON INTERSECTION CAPACITY AND DELAY WITH ACTUATED SIGNAL CONTROL

MODELLING THE EFFECTS OF PEDESTRIANS ON INTERSECTION CAPACITY AND DELAY WITH ACTUATED SIGNAL CONTROL MODELLING THE EFFECTS OF PEDESTRIANS ON INTERSECTION CAPACITY AND DELAY WITH ACTUATED SIGNAL CONTROL ABSTRACT Zong Tian, Ph.D., P.E. Feng Xu, Graduate Assistant Departent of Civil and Environental Engineering

More information

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

More information

Vacuum P=0. h=76 cm A B C. Barometer

Vacuum P=0. h=76 cm A B C. Barometer Recap: Pressure Pressure = Force per unit area (P = F /A; units: Pascals) Density of object = mass / volume (ρ = m /V; units: kg / m 3 ) Pascal s Law:Pressure is transmitted equally in all directions throughout

More information

Buoyancy. Buoyancy & Archimedes Principle. Calculate the buoyant force on an object. Labs, Activities & Demonstrations:

Buoyancy. Buoyancy & Archimedes Principle. Calculate the buoyant force on an object. Labs, Activities & Demonstrations: A Iportant uoyancy Page: 151 Unit: Pressure & lui Mechanics Unit: Pressure & lui Mechanics NGSS Stanars: N/A uoyancy MA Curriculu raeworks (2006): N/A AP Physics 2 Learning Objectives: 1.E.1.1, 1.E.1.2,.4.C.1,.4.C.2

More information

Pressure and buoyancy in fluids

Pressure and buoyancy in fluids Pressure and buoyancy in fluids FCQ s for lecture and tutorials will be next week. Buoyancy force today Fluid dynamics on Monday (alon with the loudest demonstration of the semester). Review on Wednesday

More information

Density and Archimedes Principle 11-cor

Density and Archimedes Principle 11-cor Density and Archimedes Principle 11-cor Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers,

More information

The Handtmann Armaturenfabrik. Safety without compromise. Safety valves for liquids, gases, and steam

The Handtmann Armaturenfabrik. Safety without compromise. Safety valves for liquids, gases, and steam The Handtann Araturenfabrik Safety without coproise for liquids, gases, and stea f Safety Valves FoodSafe Tradition Meets Innovation fro Handtann are first choice for hygienically sensitive product areas

More information

PHYS:1200 LECTURE 13 FLUIDS (2)

PHYS:1200 LECTURE 13 FLUIDS (2) 1 PHYS:1200 LECTURE 13 FLUIDS (2) Lecture 13 deals with the properties of fluids at rest or fluid statics. We will be discussing mostly liquids and will introduce two important principles of fluid statics:

More information

Wave Force on Coastal Dike due to Tsunami

Wave Force on Coastal Dike due to Tsunami Wave Force on Coastal Dike due to Tsunai by Fuinori Kato 1, Shigeki Inagaki 2 and Masaya Fukuhaa 3 ABSTRACT This paper presents results of large-scale experients on wave force due to tsunai. A odel of

More information

PRESSURE Student: Group:

PRESSURE Student: Group: PRESSURE 5 kg 5 kg Student: Group: ACTIVITIES I: Pressure EXERCISE 1: Discuss with your partner: does this sentence have a scientific meaning? Stick your sentence here Answer: EXERCISE 2: Complete the

More information

Commercial Diving 9 month program at Holland College

Commercial Diving 9 month program at Holland College Chapter 9: p.332 2 careers possibilities come up in this chapter Commercial Diving 9 month program at Holland College Reading the intro on p 332 will tell you other one Density and Volume story...yes,

More information

Float a Big Stick. To investigate how objects float by analyzing forces acting on a floating stick

Float a Big Stick. To investigate how objects float by analyzing forces acting on a floating stick Chapter 19: Liquids Flotation 53 Float a Big Stick Purpose To investigate how objects float by analyzing forces acting on a floating stick Required Equipment/Supplies Experiment vernier calipers 250-mL

More information

Chapter 9. Forces and Fluids

Chapter 9. Forces and Fluids Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces

More information

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum? AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a water-filled container. The

More information

PHYSICS 206a HOMEWORK #12 SOLUTIONS

PHYSICS 206a HOMEWORK #12 SOLUTIONS PHYSICS 06a HOMEWORK #1 SOLUTIONS M =10 cm P=10 5 Pa 1. sample of gas has a pressure of 10 5 Pascals. (By the way: The atmospheric pressure at sea level is 101,5 Pascals.) If this gas is held in a cylinder

More information

A parametric study of an offshore concrete pile under combined loading conditions using finite element method

A parametric study of an offshore concrete pile under combined loading conditions using finite element method 32 A paraetric stud of an offshore concrete pile under cobined loading conditions using finite eleent ethod J.A. Eicher, H. Guan 1 and D. S. Jeng School of Engineering, Griffith Universit Gold Coast Capus,

More information

5.0 Neutral Buoyancy Test

5.0 Neutral Buoyancy Test 5.0 Neutral Buoyancy Test Montgolfier balloons use solar energy to heat the air inside the balloon. The balloon used for this project is made out of a lightweight, black material that absorbs the solar

More information

Boy, Oh Buoyancy. Does it Float? Does it Sink?

Boy, Oh Buoyancy. Does it Float? Does it Sink? Boy, Oh Buoyancy Does it Float? Does it Sink? What is density? A measure of how much material is packed into a unit volume of the material The fewer particles packed into a given volume, the less dense

More information

CARTESIAN DIVER (1 Hour)

CARTESIAN DIVER (1 Hour) (1 Hour) Addresses NGSS Level of Difficulty: 2 Grade Range: K-2 OVERVIEW In this activity, students will build a Cartesian diver and discover how compression and changes in density cause the diver to mysteriously

More information

AN OPTIMIZATION MODEL AND ALGORITHM OF STUDENTS' PHYSICAL FITNESS TEST SEQUENCE

AN OPTIMIZATION MODEL AND ALGORITHM OF STUDENTS' PHYSICAL FITNESS TEST SEQUENCE 28 th February 203. Vol. 48 3 2005-203 JATIT & LLS. All rights reserved. ISSN: 992-8645 www.jatit.org E-ISSN: 87-395 AN OPTIMIZATION MODEL AND ALGORITHM OF STUDENTS' PHYSICAL FITNESS TEST SEQUENCE JINSONG

More information

Unit 1 Lesson 5 Fluids and Pressure. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 1 Lesson 5 Fluids and Pressure. Copyright Houghton Mifflin Harcourt Publishing Company Feel the Pressure! What are fluids? A fluid is any material that can flow and that takes the shape of its container. A fluid can flow because its particles easily move past each other. Liquids and gases,

More information

Second Midterm Exam. Physics General Physics Lecture 20 - Fluids 11/9/2016. Fall 2016 Semester Prof. Matthew Jones

Second Midterm Exam. Physics General Physics Lecture 20 - Fluids 11/9/2016. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 20 - Fluids Fall 2016 Semester Prof. Matthew Jones 1 Second Midterm Exam Wednesday, November 16 th, 8:00-9:30 pm Location: Elliot Hall of Music -ELLT 116. Covering

More information

Pressure is defined as force per unit area. Any fluid can exert a force

Pressure is defined as force per unit area. Any fluid can exert a force Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary

More information

PHY131H1S - Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little pre-class reading quiz

PHY131H1S - Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little pre-class reading quiz PHY131H1S - Class 23 Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle Archimedes (287-212 BC) was asked to check the amount of silver alloy in the king s crown. The answer

More information

Hydrostatics Physics Lab XI

Hydrostatics Physics Lab XI Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in

More information

AP Lab 11.3 Archimedes Principle

AP Lab 11.3 Archimedes Principle ame School Date AP Lab 11.3 Archimedes Principle Explore the Apparatus We ll use the Buoyancy Apparatus in this lab activity. Before starting this activity check to see if there is an introductory video

More information

Fish Farm Consent Modelling. Poll na Gille

Fish Farm Consent Modelling. Poll na Gille Poll na Gille February 2014 Report Written by Environental Manager Marine Harvest Scotland Fars Office Blar Mhor Industrial Estate Fort Willia, PH33 7PT Tel: + 44(0)1397 70 1550 Fax: + 44(0)1397 70 1174

More information

An improvement in calculation method for apparel assembly line balancing

An improvement in calculation method for apparel assembly line balancing Indian Journal of Fibre & Textile Research Vol.38, Septeber 2013, pp 259-264 An iproveent in calculation ethod for apparel assebly line balancing F Khosravi 1, a, A H Sadeghi 1 & F Jolai 2 1 Textile Departent,

More information

FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics

FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics Civil Engineering Program, San Ignacio de Loyola University Objective Calculate the forces exerted by a fluid at rest on plane or

More information

Dec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned?

Dec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned? Over the last two periods we discussed/observed the concept of density. What have we learned? is a ratio of mass to volume describes how much matter is packed into a space is a property of both solids

More information

Race car damping 2. Fig-1 quarter car model.

Race car damping 2. Fig-1 quarter car model. Race car daping A nuber of issues ago I wrote an article on exploring approaches to specify a race car daper. This article is the second in that series and we shall be following on fro where we left off.

More information

Fluids, Pressure and buoyancy

Fluids, Pressure and buoyancy Fluids, Pressure and buoyancy Announcements: CAPA due Friday at 10pm. Comment on the hint in Problem 5. CAPA solutions from previous sets can be found by logging onto CAPA and selecting View Previous Set

More information

501 Interchange Design Interchange Design Considerations... 10

501 Interchange Design Interchange Design Considerations... 10 5 Interchange Design Table of Contents 51 Interchange Design... 1 51.1 General...1 51.2 Interchange Type...1 51.2.1 Diaond Interchanges... 1 51.2.1.1 Tight Urban Diaond Interchange (TUDI)... 1 51.2.1.2

More information

Activity 4 Buoyancy in a Liquid /Archimedes' Principle F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL

Activity 4 Buoyancy in a Liquid /Archimedes' Principle F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL Activity 4 Buoyancy in a Liquid /Archimedes' Principle F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL Name MULTIPLE CHOICE. Choose the one alternative that

More information

Variation of Pressure with Depth in a Fluid *

Variation of Pressure with Depth in a Fluid * OpenStax-CNX module: m42192 1 Variation of Pressure with Depth in a Fluid * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Dene

More information

Unit A: Mix and Flow of Matter

Unit A: Mix and Flow of Matter Unit A: Mix and Flow of Matter Science 8 1 Section 3.0 THE PROPERTIES OF GASES AND LIQUIDS CAN BE EXPLAINED BY THE PARTICLE MODEL OF MATTER. 2 1 Viscosity and the Effects of Temperature Topic 3.1 3 Viscosity

More information

Specific gravity: Everything you ever wanted to know about volume, pressure and more

Specific gravity: Everything you ever wanted to know about volume, pressure and more Specific gravity: Everything you ever wanted to know about volume, pressure and more Specific Gravity Part I: What is specific gravity? Grandpa, I kind of understand what gravity is, but what is specific

More information

CARPET BOWLING m

CARPET BOWLING m Rules of the Gaes Carpet Bowling CARPET BOWLING 1. These rules, as published by R.W. Hensall & Sons Ltd. of Victoria, Australia, shall be considered the official rules for the Alberta 55 Plus Gaes and

More information

PHYSICS - CLUTCH CH 17: FLUID MECHANICS.

PHYSICS - CLUTCH CH 17: FLUID MECHANICS. !! www.clutchprep.com INTRO TO DENSITY LIQUIDS and GASES are types of. So we use the term to refer generally to both Liquids AND Gases. The DENSITY of a material is a measure of how tight the molecules

More information

Brian P. Casaday and J. C. Vanderhoff Brigham Young University, Provo, Utah

Brian P. Casaday and J. C. Vanderhoff Brigham Young University, Provo, Utah P. SIMLATIOS OF ITERAL WAVES APPROACHIG A CRITICAL LEVEL Brian P. Casaday and J. C. Vanderhoff Brigha Young niversity, Provo, tah. BACKGROD Internal gravity waves exist abundantly in our world in stably-stratified

More information

Chapter 9 Fluids CHAPTER CONTENTS

Chapter 9 Fluids CHAPTER CONTENTS Flowing fluids, such as the water flowing in the photograph at Coors Falls in Colorado, can make interesting patterns In this chapter, we will investigate the basic physics behind such flow Photo credit:

More information

Unit 7. Pressure in fluids

Unit 7. Pressure in fluids -- Unit 7. Pressure in fluids Index 1.- Pressure...2 2.- Fluids...2 3.- Pressure in fluids...3 4.- Pascal's principle...5 5.- Archimedes principle...6 6.- Atmospheric pressure...7 6.1.- Torricelli and

More information

PRESSURE. 7. Fluids 2

PRESSURE. 7. Fluids 2 DENSITY Fluids can flow, change shape, split into smaller portions and combine into a larger system One of the best ways to quantify a fluid is in terms of its density The density, ρ, of a material (or

More information

Chapter 9 Fluids and Buoyant Force

Chapter 9 Fluids and Buoyant Force Chapter 9 Fluids and Buoyant Force In Physics, liquids and gases are collectively called fluids. 3/0/018 8:56 AM 1 Fluids and Buoyant Force Formula for Mass Density density mass volume m V water 1000 kg

More information

Fluids. James H Dann, Ph.D. Say Thanks to the Authors Click (No sign in required)

Fluids. James H Dann, Ph.D. Say Thanks to the Authors Click   (No sign in required) Fluids James H Dann, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit

More information

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy

More information

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY

More information

SEMI-SUBMERSIBLE YACHT CONCEPT RETHINKING BEHAVIOUR AT ANCHOR AND GENESIS OF THE COMFORT DRAFT

SEMI-SUBMERSIBLE YACHT CONCEPT RETHINKING BEHAVIOUR AT ANCHOR AND GENESIS OF THE COMFORT DRAFT 24th International HISWA Syposiu on Yacht Design and Yacht Construction 14 and 15 Noveber 2016, Asterda, The Netherlands, Asterda RAI Convention Centre SEMI-SUBMERSIBLE YACHT CONCEPT RETHINKING BEHAVIOUR

More information