1. Determining Solution Concentration

Size: px
Start display at page:

Download "1. Determining Solution Concentration"

Transcription

1 In this exercise you will determine the concentration of salt solutions by measuring samples with known concentration and making a calibration curve. You will review units of concentration, and how to make a graph in Excel. You will also learn how to use a calibration curve to determine a physical property of an unknown. Prelaboratory Assignment Read this lab guide and Section 4.4 in your textbook. Then, complete the prelab assignment in Chem21. The prelab assignment is due at the beginning of lab on the day your lab meets. 1.1 Keeping a Laboratory Notebook In CHEM 139, you were taught to keep a laboratory notebook. You will continue with this practice throughout this course. As a reminder, the notebook is designed to be a permanent record. Therefore, it should have the following characteristics: 1. It should be a permanently-bound book (not spiral bound) so that original pages cannot be removed. 2. Pages should be numbered consecutively. 3. No pages should be skipped, even if you start a new project in the middle of doing another one. (Simply put Goto page... at the end of an entry if that work is continued somewhere else in the notebook.) 4. It should have a table of contents at the beginning. 5. All entries should be made in ink. 6. All work should be dated. 7. Any mistakes should simply have a line drawn through them so that they are still readable. Entries should never be obliterated so that they can t be read. 1

2 The general format of the lab notebook entries should be as follows: 1. Write your name and contact information (phone and/or address) somewhere on the cover of your notebook. Also, as you go, you should write your name and your lab partner s name on each page of your notebook. 2. Label the first page as the Table of Contents. As you make entries in the notebook, you should continually update the table of contents. (Use the cardboard insert to prevent your marks from transferring to the other carbon copies within the notebook.) 3. Skip the first few pages of the notebook (to leave space for the table of contents) and record the title of the experiment, and the date at the top of the page. (The title of this experiment is Determining Solution Concentration. Remember to use pen so you have a permanent record! 4. Create a section beneath the title called Objective. (This section is also sometimes labeled as the goal or introduction.) In this section, describe what you think the objective of the experiment is. This section should only be about 2 sentences long. (Hint: Look at the first paragraph of the lab guide for clues on what to write.) 5. Create a section entitled Procedure. You will write the procedure as a numbered or bulleted list of steps. 6. Finally, create a section entitled Observations. In this section, you should take notes throughout your experiment on (1) what you did and (2) what you saw or measured. (Both parts are critical!) All observations should be written in complete sentences and numerical values should be in a table whenever possible. When in doubt, write something down. It s always better to write too much information than too little! This guide to keeping a lab notebook is posted at the top of your Chem21 homepage, and you should refer back to it frequently for guidance on proper note-taking techniques. 1.2 Introduction A calibration curve is a plot of some physical parameter of a substance (color intensity, density, etc.) as a function of that substance s concentration. In this exercise, we will make several sodium chloride solutions with different concentrations and measure their densities. Then we will plot density vs. concentration to make a calibration curve. Once a mathematical expression has been fit to the data, we will use it to determine the concentration of an unknown sample of which the density has been measured. You will be graded on the accuracy of your results, so use care when making and recording measurements. 2

3 Figure 1.1: Sketch of a volumetric flask. The unit used for concentration in this experiment is molarity. molarity = moles of solute volume of solution in liters Solutions will be made using volumetric flasks (see Figure 1.1). The solute (NaCl in this case) with a known mass is added to the flask first, and then enough water is added to ensure the solid dissolves completely. Then, additional water is added using a pipet or dropper to bring the meniscus of the solution to the line marked on the neck of the flask. Finally, the solution is mixed completely by inverting the stoppered flask several times. (1.1) 1.3 Making Solutions To make the sodium chloride (NaCl) solutions for this lab, you will make a stock solution for the highest concentration first, then perform dilutions to create the less concentrated solutions. Stock Solutions Make the 3 M stock solution as described below and record your data in your notebook. Show all your work for calculations in your notebook as well. In your notebook, make a heading that says theoretical mass of NaCl. Beneath the heading calculate how many grams of NaCl you would need to use to make 100 ml of a 3 M NaCl solution. (This problem is identical to what you did in the prelab assignment.) Place a weigh boat on the balance and press the TARE or ZERO button. The balance should now read g. Remove the boat from the balance, carefully pour some of the NaCl into the boat and place it back on the balance. The amount does not have to be exactly equal to the calculated amount, but try not to go over the calculated amount as you may have trouble getting all your salt to dissolve. If you ve 3

4 added too much, you can dispose of some excess in the trash can NOT back into the original container. If you don t have enough, remove the boat, add some more salt and check the weight again. Record the ACTUAL mass (whatever that turns out to be) in your notebook and label it the actual mass of NaCl. Be sure to record all the decimal places from the balance (even if the last number is a zero). Transfer the salt to the 100 ml volumetric flask by slightly bending the boat into a funnel shape. It s a good idea put another weigh boat or clean piece of paper under the flask to catch any spills. These can then be added to the flask as well. Obtain a wash bottle with deionized (DI) water, and add some water to the flask. Swirl the solution in the flask until all the salt has dissolved. (The solution may remain slightly cloudy due to an insoluble additive used in edible commercial salt to prevent caking.) Once dissolved, use a plastic pipet to add water so that the bottom of the meniscus is at the mark on the neck of the flask. This volume is EXACTLY ml and it should be recorded in your notebook as the volume of solution. Label a clean, dry 200 ml beaker Soln 1 and transfer your new solution to this beaker. Set this solution aside for later. In your notebook, calculate the ACTUAL concentration of your solution using the actual mass of NaCl and the volume of the solution. Label this the Soln 1 concentration. Note that this concentration may be slightly different than 3 M. Just be sure to use this value (not 3 M) as C 1 for all future calculations. Dilutions Solutions of lower concentration will be made by diluting portions of the higher concentration stock solutions. To calculate the amount of stock solution you need to use, you will use the formula C 1 V 1 = C 2 V 2 (1.2) where C stands for concentration and V is the volume of the solution. The indices (subscripts) 1 and 2 stand for the higher and lower concentration solutions, respectively. Say, for example, you have a 3 M stock solution and you want to make 25 ml of a 2.5 M solution. To find out how much of the 3 M stock solution to use, set up your equation like this: (3 M)(V 1 ) = (2.5 M)(25 ml) (1.3) The left-hand-side of the equation refers to the stock solution, and the right-hand-side refers to the new, lower concentration solution. Solving for V 1 gives ml, meaning you should take ml of the stock solution and dilute it to 25 ml. Obviously, ml will be difficult to measure exactly using a graduated cylinder, so you can safely round this result. You will recalculate the actual concentration anyway. Prepare a data table in your lab notebook that looks like Table 1.1 (next page). Then, follow the instructions below to make solutions with approximate concentrations of 2.5 M, 4

5 2 M, 1.5 M and 1 M. Label and record any calculations you perform in your notebook below the table, and complete the table as you go. Table 1.1: Sample table for the lab notebook. Abbreviations are as follows: Calc. = Calculated, Act. = Actual, and Theor. = Theoretical. Soln. # Calc. V 1 (ml) Act. V 1 (ml) V 2 (ml) Theor. C 2 (M) Act. C 2 (M) ml ml ml ml 1 In your notebook, use Equation 1.2 to calculate the volume of Soln 1 you will need to make 25 ml of a 2.5 M NaCl solution. This is Calc. V 1. (Remember to use the actual concentration of your stock solution for C 1 in your calculation.) Add the calculated volume of Soln 1 to a 100 ml graduated cylinder. You shouldn t worry about being exact; just record the actual volume in your data table under Act. V 1. Transfer the solution from the graduated cylinder into a 25 ml volumetric flask. Add some deionized water to the flask, swirl to mix, then add more water (using a pipet) until the solution is at the mark on the neck of the flask. Add a stopper, and invert the flask several times to ensure complete mixing. Then, transfer the solution to a beaker labeled Soln 2. Rinse the graduated cylinder and dry it. Rinse the flask thoroughly with DI water. (There is no need to dry the flask since you will be adding more water when you make the next solution.) Calculate the ACTUAL concentration of your new solution (C 2 ) using Equation 1.2 and the Act. V 1, V 2 and C 1. Record this actual concentration in your data table under Act. C 2. Repeat the above steps to make three more 25 ml solutions with the following concentrations: 2 M (Soln 3), 1.5 M (Soln 4) and 1 M (Soln 5). For every solution, use Soln 1 as your stock solution, and don t throw your solutions away! 1.4 Density Density (D) is defined as the mass (m) of a substance divided by its volume (V ): D = m V (1.4) 5

6 Determine the density of your five solutions and two unknowns as described below, and record your data in your lab notebook. (Make a table on your own this time!) Show your work for any calculations. At the balance, tare a 10 ml graduated cylinder. Remove the cylinder from the balance. Use a plastic transfer pipet to transfer approximately 8 ml of Soln 1 to the cylinder. Return the cylinder to the balance. Record the actual mass and actual volume of the solution in your data table. Calculate the actual density of the solution and enter it in your table. Pour the solution from the graduated cylinder into the sink. Then, rinse and dry the graduated cylinder. Repeat this process for your four remaining solutions and two unknown samples from the front of the lab. Once you have all your data, you can begin cleaning up. 1.5 Hazardous Waste and Clean-up Hazardous Waste There is no hazardous waste generated in this lab. You can pour the salt water you used down the drain Clean-up Remove all label tape from your glassware. Rinse and dry your glassware and return it to your station. Then, wipe down your benchtop with a wet paper towel and dry it. Have your instructor check your station before your leave. BEFORE YOU LEAVE LAB: Tear out the carbon-copy pages of your notebook. Make sure your name, your partner s name and your section number are on each page. Staple these pages together and turn them in to your instructor Lab Assignment Enter all of your data, calculations and answers to questions in the Lab 1 Assignment in Chem21. You will need to refer to your notebook for this. The Assignment is due approximately 15 minutes before your next lab meeting. The Assignment includes a hard copy of the graph described below. This graph can be turned in at the beginning of your next lab meeting. 6

7 1.6 Calculations The information in this section will help you complete the lab assignment in Chem21. You are encouraged to stay and work on this part before you leave the lab.when you click on the assignment in Chem21, you will be asked to enter all your data before proceeding with the calculations. Once your data has been entered, you will be asked to calculate the following: Concentration of solutions 1-5 Density of solutions 1-5 Density of your first unknown Density of your second unknown Then, you will be asked to prepare the calibration curve. There are specific instructions in Chem21 for doing this. The x-axis is always the dependent variable, the one you can control. The y-axis is the independent variable, the value that you measured. When constructing your graph, ask yourself: Which value did I have control over, the density or the concentration? Which value did I measure, the density or the concentration? This will help you determine which axis is which. For this graph, you will add a trendline. Be sure to display the equation of the line on the graph. Also, by clicking in the box of the equation, you can change the default variables of x and y to variables that correspond to what you plotted. Use C for concentration and D for density. The slope and intercept of your equation should also have units. The units for the intercept are the same as the units of the y-axis. For the units of the slope, recall rise over run. The slope has some y-value divided by some x-value, so the units should be the units of y divided by the units of x. Add these units into your equation as well. When you re finished with the graph, sketch its appearance and the equation of the line in your notebook. When you are satisfied with your graph, you should have your instructor look it over. Finally, use the equation from your graph and the densities of your unknowns to determine Concentration of your first unknown Concentration of your second unknown 7

VOLUMETRIC TECHNIQUES

VOLUMETRIC TECHNIQUES REVISED 10/14 CHEMISTRY 1101L VOLUMETRIC TECHNIQUES Volume measurements are important in many experimental procedures. Sometimes volume measurements must be exact; other times they can be approximate.

More information

CHM 100 / Introductory Laboratory Experiment (r10) 1/11

CHM 100 / Introductory Laboratory Experiment (r10) 1/11 CHM 100 / 110 - Introductory Laboratory Experiment (r10) 1/11 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of

More information

Experiment #2. Density and Measurements

Experiment #2. Density and Measurements Experiment #2. Density and Measurements Goals 1. To measure and record length, volume and mass accurately with the correct number of significant figures 2. To use significant figures correctly in calculations.

More information

Target Density Lab SCIENTIFIC. Density Inquiry Lab Activities. Introduction. Concepts. Materials. Safety Precautions. Preparation

Target Density Lab SCIENTIFIC. Density Inquiry Lab Activities. Introduction. Concepts. Materials. Safety Precautions. Preparation Target Density Lab Density Inquiry Lab Activities SCIENTIFIC Introduction The concept of density is reinforced as students measure the volume and mass of an unknown liquid in a graduated cylinder, graph

More information

CHM Introductory Laboratory Experiment (r17sd) 1/13

CHM Introductory Laboratory Experiment (r17sd) 1/13 CHM 110 - Introductory Laboratory Experiment (r17sd) 1/13 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of uncertainty

More information

The use of the analytical balance, and the buret.

The use of the analytical balance, and the buret. 1211L Experiment 1. Density 2015 by H. Patterson Instructor Notes: Students make measurements individually then share data to make the graph. There are four volumetric measurements to be studied; 3.00

More information

Measuring Mass and Volume

Measuring Mass and Volume Measuring Mass and Volume Experiment 2 Expt 2 Measurement.wpd INTENT The purpose of this experiment is to introduce some fundamental aspects of the measurement making process as well as to introduce some

More information

Hands-On Experiment Density and Measurement

Hands-On Experiment Density and Measurement Hands-On Experiment Density and Measurement GOALS: 1. To measure liquid volume as accurately as possible with graduated cylinders. 2. To measure the volume of irregular shaped solid objects by liquid volume

More information

Read ENTIRE lab up to Disposal Section. MAKE NOTES!!! **For Procedures, Highlight equipment used and circle quantities measured out.

Read ENTIRE lab up to Disposal Section. MAKE NOTES!!! **For Procedures, Highlight equipment used and circle quantities measured out. Lab Ch 2 Mass, Volume, & Density Lab Partners: READ Prelab!!! Read ENTIRE lab up to Disposal Section. MAKE NOTES!!! **For Procedures, Highlight equipment used and circle quantities measured out. Density

More information

CONCEPTUAL PHYSICS LAB

CONCEPTUAL PHYSICS LAB PURPOSE The purpose of this lab is to determine the density of an unknown solid by direct calculation and by graphing mass vs. volume for several samples of the solid. INTRODUCTION Which is heavier, a

More information

EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS

EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS Introduction In the following experiment you will be required to use a Bunsen burner, balance, a pipet, graduated cylinder, flask,

More information

Figure 1. Example of volume of water required for an unknown sample

Figure 1. Example of volume of water required for an unknown sample Experiment Three Density Procedure Part 1.The density of a solid Obtain a solid unknown sample from your instructor. Write down the number of the unknown in your notebook. Determine the of your unknown

More information

CHM 2045L Physical Properties

CHM 2045L Physical Properties CHM 2045L Physical Properties Purpose: To observe and record some common physical properties. Background: Physical properties can tell us a lot about an unknown chemical. In this experiment you will look

More information

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8. Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

More information

Lab Equipment ANALYTICAL BALANCE

Lab Equipment ANALYTICAL BALANCE Lab Equipment ANALYTICAL BALANCE Analytical balances are used for very accurate, quantitative measurements of mass to the nearest 0.001 g. (Some read to 0.0001 g.) These are delicate instruments, subject

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-2-16) (See Appendix II: Summary for making Spreadsheets and Graphs with Excel and Appendix III parts C, C1 and C2: Significant figures, scientific notation and rounding)

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

CHEM 321 Experiment 1

CHEM 321 Experiment 1 CHEM 321 Experiment 1 Basics Review and Calibration of Volumetric Glassware There are three types of containers used in lab to contain or deliver liquids: volumetric, ordinary and disposable glassware.

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-6-13) A. WEIGHING The determination of the quantity of matter in a sample is most directly determined by measuring its mass. The process by which we determine the

More information

Experiment 12: MOLAR VOLUME OF AN IDEAL GAS

Experiment 12: MOLAR VOLUME OF AN IDEAL GAS Experiment 1: MOLAR VOLUME OF AN IDEAL GAS Purpose: Determine the molar volume of a gas at standard temperature and pressure (STP, 0 C and pressure of 1 atm) Performance Goals: Collect and measure the

More information

MEASURING VOLUME & MASS

MEASURING VOLUME & MASS MEASURING VOLUME & MASS In this laboratory you will have the opportunity to apply your measuring skills in gathering data, processing it, and interpreting the results. For this experiment you will: 1)

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 1 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Density of Brass: Accuracy and Precision

Density of Brass: Accuracy and Precision Density of Brass: Accuracy and Precision Introduction Density is a measure of a substance s mass-to-volume ratio. For liquids and solids, density is usually expressed in units of g/ml or g/cm 3 ; these

More information

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point.

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Chemistry 1020 Identification of an Unknown Liquid Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Text reference solubility, density,

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

CHM250 Calibration and Measurement Lab. Balance Calibration

CHM250 Calibration and Measurement Lab. Balance Calibration CHM250 Calibration and Measurement Lab Green Profile Balance Calibration Introduction: Balances that are properly operated, calibrated and maintained are crucial for laboratory operations. The accuracy

More information

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement CH2250: Techniques in Laboratory Chemistry Outline Measuring Mass Measuring Volume Significant figures Mass Measurement Mass Measurement Measure mass not weight Mass is measured with a balance (a scale

More information

Any laboratory is equipped with specific tools, equipment,

Any laboratory is equipped with specific tools, equipment, Use of Laboratory Equipment and Supplies 3 When you have completed this exercise, you will be able to: 1. Use a balance. 2. Use pipettes and graduated cylinders to measure the volume of liquids. 3. Use

More information

Inquiry Module 1: Checking the calibration of a micropipette

Inquiry Module 1: Checking the calibration of a micropipette Inquiry Module 1: Checking the calibration of a micropipette 1. Introduction Larger volumes (1mL and more) are usually measured using pipets or measuring cylinders. Such cylinders and pipets are labelled

More information

Purpose. Introduction

Purpose. Introduction Purpose The objective of this experiment is to determine the density of an unknown liquid and solid. The students will become familiar with the techniques for measuring mass and volume of several samples

More information

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS Section A: Intro to the spectrophotometer A commonly used instrument in the analysis of cellular extracts is the Spectrophotometer. Today you

More information

Lab #1: Introduction to Lab Techniques INTRODUCTION

Lab #1: Introduction to Lab Techniques INTRODUCTION Name Lab #1: Introduction to Lab Techniques INTRODUCTION Our goals in this experiment are (1) to make some measurements using a metric ruler, (2) to learn how to determine volumes with a graduated cylinder,

More information

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8 Gas Laws Introduction Although we cannot see gases, we can observe their behavior and study their properties. This lab will apply several concepts from Ideal Gas Laws. You will use your knowledge of chemical

More information

Laboratory Activity Measurement and Density. Average deviation = Sum of absolute values of all deviations Number of trials

Laboratory Activity Measurement and Density. Average deviation = Sum of absolute values of all deviations Number of trials Laboratory Activity Measurement and Density Background: Measurements of mass and volume are very common in the chemistry laboratory. The analytical balance is used to measure mass, and the graduated cylinder,

More information

EXPERIMENT 2. Laboratory Procedures INTRODUCTION

EXPERIMENT 2. Laboratory Procedures INTRODUCTION EXPERIMENT 2 Laboratory Procedures INTRODUCTION Begin each experiment by taking the necessary safety precautions. All materials that will not be used in the lab should be placed out of the laboratory working

More information

Calibration of Volumetric Glassware

Calibration of Volumetric Glassware Calibration of Volumetric Glassware Introduction This set of laboratory experiments is designed to introduce you to some of the apparatus and operations you will be using during the remainder of this course,

More information

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt Experiment 13 Molar Mass of a Gas Purpose In this experiment you will use the ideal gas law to calculate the molar mass of a volatile liquid compound by measuring the mass, volume, temperature, and pressure

More information

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

Cell Respiration Laboratory PSI Biology

Cell Respiration Laboratory PSI Biology Cell Respiration Laboratory PSI Biology Name Objective Students will understand the relationship between temperature, pressure, and gas volume and will predict the effect of temperature and germination

More information

QAM-I-117 Volumetric Equipment Calibration Verification

QAM-I-117 Volumetric Equipment Calibration Verification 1. Applicability and Purpose This procedure applies to all adjustable and fixed volume pipetters and any labware used to deliver measured volumes of liquid by laboratory analysts at the Texas Institute

More information

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks =

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Lab Problem 1 Design and carry out an experiment to determine the density of the plastic object you have been given. You may

More information

The Decomposition of Hydrogen Peroxide

The Decomposition of Hydrogen Peroxide The Decomposition of Hydrogen Peroxide Calculator 12 The decomposition of hydrogen peroxide in aqueous solution proceeds very slowly. A bottle of 3% hydrogen peroxide sitting on a grocery store shelf is

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

download instant at Experiment 2 A Submarine Adventure: Density Saves the Day

download instant at  Experiment 2 A Submarine Adventure: Density Saves the Day Experiment 2 A Submarine Adventure: Density Saves the Day Instructor Notes and Lab Preparation: Chemicals and Equipment: various metal shapes of copper, nickel, lead, aluminum, brass, iron and magnesium

More information

Read over Techniques #2, 4, 5, 6, and 9 in the Demonstrations of Nine Practical Lab Techniques booklet.

Read over Techniques #2, 4, 5, 6, and 9 in the Demonstrations of Nine Practical Lab Techniques booklet. Practical Assessment 1 includes: Technique #2 - Use of a Pipette Technique #4 Weighing Technique #5 Use of a Bottle-Top Dispenser Technique #6 Gravity Filtration Technique # 9 Rotary Evaporator Student

More information

CHM 317H1S Winter Section P Procedures and Tables

CHM 317H1S Winter Section P Procedures and Tables CHM 317H1S Winter 2018 Section P Procedures and Tables Procedures Page 1 Standard Operating Procedures Throughout the laboratory portion of this course, you will be required to perform a number of operations

More information

Lab 1: Precision and Accuracy in Measurement (Using the right tool for the Job) and Density of Metals

Lab 1: Precision and Accuracy in Measurement (Using the right tool for the Job) and Density of Metals Lab 1: Precision and Accuracy in Measurement (Using the right tool for the Job) and Density of Metals Objectives: - To understand the meaning of accuracy and precision You will determine the relative precision

More information

Salt Lowers the Freezing Point of Water

Salt Lowers the Freezing Point of Water Salt Lowers the Freezing Point of Water Topic Sodium chloride (NaCl), salt, lowers the freezing point of water. Introduction Salt is added to ice in ice cream freezers because salt lowers the freezing

More information

Experiment 1, Measurement and Density Chemistry 201, Wright College, Department of Physical Science and Engineering

Experiment 1, Measurement and Density Chemistry 201, Wright College, Department of Physical Science and Engineering Name Date Experiment 1, Measurement and Density Chemistry 201, Wright College, Department of Physical Science and Engineering Making measurements in the laboratory involves equipment and instrumentation.

More information

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS!

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! EXPERIMENT # 6 Name: PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! 1. Calculate the height of a corresponding column of mercury (in mm) that is at

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

Solubility Unit. Solubility Unit Teacher Guide L1-3. Introduction:

Solubility Unit. Solubility Unit Teacher Guide L1-3. Introduction: Solubility Unit Introduction: In this unit the students will learn about solubility. Students should already be familiar with the basic chemistry concepts. They should know that some substances are soluble

More information

00 Experiment: Basic Lab Techniques, Compliance of GLP and Calibration of Glassware

00 Experiment: Basic Lab Techniques, Compliance of GLP and Calibration of Glassware 00 Experiment: Basic Lab Techniques, Compliance of GLP and Calibration of Glassware OBJECTIVE: In this experiment you will learn the basic techniques when carrying out chemical analysis. You will learn

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

Scientific Measurements and Errors: Determination of Density of Glass

Scientific Measurements and Errors: Determination of Density of Glass Experiment Scientific Measurements and Errors: Determination of Density of Glass II Purposes This experiment has three purposes: 1. Making anumber of measurements, including length, weight, and liquid

More information

Blue Thumb Test Procedures

Blue Thumb Test Procedures Blue Thumb Test Procedures Items to take to Creek with you: 1. DO Kit (with scissors & thermometer) 2. Sample Bottle 3. Secchi Disk 4. Clip Board (with pen, instructions, and data sheet) 5. Goggles, Gloves,

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT

EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT INTRODUCTION A course in chemistry, one of the physical sciences, differs from a course in, say, literature or history. A main difference is that chemistry usually

More information

Measurements. Metric System

Measurements. Metric System Measurements Measurements are basic to any scientific pursuit. A measurement has both a magnitude (numeric value) and a unit. Metric units are used in the sciences. Metric System In science, the metric

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

How to Measure R7.1. Reference. I. Linear dimensions

How to Measure R7.1. Reference. I. Linear dimensions How to Measure Written by Connie Russell I. Linear dimensions Measuring linear dimensions (the distance between two points) is usually associated with using a ruler or a tape measure. For measuring objects

More information

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES:

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: Good News! Flinn Scientific Inc. has developed a classroom kit of experiments based on these activities. The Kit Catalog # is AP6599. Ordering

More information

Experiment #12. Gas Laws.

Experiment #12. Gas Laws. Goal To observe gas laws in the laboratory. Experiment #12. Gas Laws. Introduction All ideal gases, regardless of molar mass or chemical properties, follow the same gas laws under most conditions. Gas

More information

MiSP Solubility L2 Teacher Guide. Introduction

MiSP Solubility L2 Teacher Guide. Introduction MiSP Solubility L2 Teacher Guide Introduction In this unit students will learn about solubility. Students should already be familiar with the basic chemistry concepts. They should know that some substances

More information

R: The Ideal Gas Constant Pre-Lab Assignment

R: The Ideal Gas Constant Pre-Lab Assignment R: The Ideal Gas Constant Pre-Lab Assignment Read the entire laboratory investigation and the relevant pages in your textbook, then answers the questions that follow in the space provided below. 1 Describe

More information

BIL 151 Laboratory Enzymes: Practicing the Protocol

BIL 151 Laboratory Enzymes: Practicing the Protocol BIL 151 Laboratory Enzymes: Practicing the Protocol Bring a laptop, electronic pad, or other USB-equipped device for recording and storing data. Today you will learn a technique for measuring the rate

More information

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

More information

LABORATORY TECHNIQUES. Pouring Liquids

LABORATORY TECHNIQUES. Pouring Liquids LABORATORY TECHNIQUES Working in the chemistry laboratory you will be handling potentially dangerous substances and performing unfamiliar tasks. This section provides you with a guide to the safe laboratory

More information

Lab 1. Instrumentation Familiarity: Using Micropipetters and Serological Pipettes

Lab 1. Instrumentation Familiarity: Using Micropipetters and Serological Pipettes Instrumentation Familiarity: Using Micropipetters and Serological Pipettes Introduction: In molecular biology we sometimes need to measure volumes as small as one millionth of a liter (a liter is about

More information

Experimental Procedure

Experimental Procedure 1 of 6 10/3/2018, 1:37 PM https://www.sciencebuddies.org/science-fair-projects/project-ideas/microbio_p009/microbiology/yeast-metabolism-aerobic-anaerobic (http://www.sciencebuddies.org /science-fair-projects/project-ideas/microbio_p009/microbiology/yeast-metabolism-aerobic-anaerobic)

More information

Physics 1021 Experiment 4. Buoyancy

Physics 1021 Experiment 4. Buoyancy 1 Physics 1021 Buoyancy 2 Buoyancy Apparatus and Setup Materials Force probe 1000 ml beaker Vernier Calipers Plastic cylinder String or paper clips Assorted bars and clamps Water Attach the force probe

More information

PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES I: Carbon Dioxide and Oxygen

PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES I: Carbon Dioxide and Oxygen PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES I: Carbon Dioxide and Oxygen.... :O = C = O:.... :O = O: INTRODUCTION The atmosphere consists predominantly of three gases -- nitrogen (N 2 ) 78%, oxygen

More information

Eric Sheagley, Lab Supervisor Fall, 2015

Eric Sheagley, Lab Supervisor Fall, 2015 CH 107, Intro to Chemistry Lab Portland State University Eric Sheagley, Lab Supervisor Fall, 2015 Description: CH 107 is the laboratory associated with the CH 104 Intro to Chemistry lecture. Concurrent

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

Worksheet: Solubility

Worksheet: Solubility 1. According to your Reference Tables, which substance forms an unsaturated solution when 80 grams of the substance is dissolved in 100 grams of H 2 O at 10 C? (A) KI (B) KNO 3 (C) NaNO 3 (D) NaCl 2. The

More information

The Determination of the Value for Molar Volume

The Determination of the Value for Molar Volume Name AP Chemistry The Determination of the Value for Molar Volume Objective Using a chemical reaction that produces a gas, measure the appropriate values to allow a determination of the value for molar

More information

Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts

Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts Objectives: Upon completion of this unit, the student should be able to: 1. List and describe 3 categories of pipets. 2. List

More information

NAME BLOCK Density Lab PROBLEM: How can we determine the densities of different substances?

NAME BLOCK Density Lab PROBLEM: How can we determine the densities of different substances? NAME BLOCK Density Lab PROBLEM: How can we determine the densities of different substances? PART 1 Determining relative density procedure 1. Designate an eyedropper for each beaker. Do not mix them up

More information

CHM111 Lab Gas Laws Grading Rubric

CHM111 Lab Gas Laws Grading Rubric Name Team Name CHM111 Lab Gas Laws Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal procedures

More information

Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15)

Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15) Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15) Introduction Which weighs more, a pound of lead or a pound of feathers? If your answer to this question is "a pound of lead", then you are confusing

More information

LABORATORY SAFETY EQUIPMENT Final Grade: /45

LABORATORY SAFETY EQUIPMENT Final Grade: /45 LABORATORY SAFETY EQUIPMENT Final Grade: /45 CH.lbSg - Identify, locate, and know how to use laboratory safety equipment including laboratory aprons, lab safety goggles, lab gloves, fire extinguishers,

More information

Experiment 1 Basic Laboratory Operations

Experiment 1 Basic Laboratory Operations Experiment 1 Basic Laboratory Operations INTRODUCTION LECTURE OUTLINE This is the first experiment that most students perform in the laboratory. Oftentimes, the stone is cast in this first laboratory session.

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure 1, it

More information

Part A How Many Drops Are in 1 ml of Water?

Part A How Many Drops Are in 1 ml of Water? Investigation: Tools and Measurements Name(s): Introduction: This investigation requires you to use various scientific tools to measure volume, mass, and dimensions of objects. The goal is to become familiar

More information

Determination of Sodium using Atomic Emission

Determination of Sodium using Atomic Emission Determination of Sodium using Atomic Emission 1. Purpose The purpose of this procedure is to determine the concentration of sodium ion in parts per million in an unknown sample. 2. Background Atomic emission

More information

General Laboratory Rules Graphing Data...13

General Laboratory Rules Graphing Data...13 iii TABLE OF CONTENTS LAB INFORMATION General Laboratory Rules................................. 1 Common Laboratory Equipment............................ 4 Directions for the Laboratory Notebook........................

More information

Inquiry Investigation: Factors Affecting Photosynthesis

Inquiry Investigation: Factors Affecting Photosynthesis Inquiry Investigation: Factors Affecting Photosynthesis Background Photosynthesis fuels ecosystems and replenishes the Earth's atmosphere with oxygen. Like all enzyme-driven reactions, the rate of photosynthesis

More information

The Gas Laws: Boyle's Law and Charles Law

The Gas Laws: Boyle's Law and Charles Law Exercise 6 Page 1 Illinois Central College CHEMISTRY 130 Name The Gas Laws: Boyle's Law and Charles Law Objective The simple laws governing the properties of gases can be readily demonstrated experimentally.

More information

Fun with Gas Laws. Prepared by Vance O. Kennedy and Ross S. Nord, Eastern Michigan University PURPOSE

Fun with Gas Laws. Prepared by Vance O. Kennedy and Ross S. Nord, Eastern Michigan University PURPOSE Experiment 2 Fun with Gas Laws Prepared by Vance O. Kennedy and Ross S. Nord, Eastern Michigan University PURPOSE The purpose of this laboratory experience is to explore the gas law relationships between

More information

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks =

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Lab Problem 1 One way of using solar energy is to capture heat from the sun in a reservoir to be released later. You have been

More information

PREPARING GAS SAMPLES IN LARGE PLASTIC SYRINGES

PREPARING GAS SAMPLES IN LARGE PLASTIC SYRINGES PREPARING GAS SAMPLES IN LARGE PLASTIC SYRINGES A wide variety of gases can be prepared safely inside a 60 ml plastic syringe. Here you will practice making carbon dioxide, so that you know the technique

More information

Lab Session #4 AN Physical Properties

Lab Session #4 AN Physical Properties Lab Session #4 AN Physical Properties The main goal of this laboratory session is to provide a practical experience in the determination of the physical properties for AN and ANFO. The students will determine

More information

The Decomposition of Potassium Chlorate

The Decomposition of Potassium Chlorate The Decomposition of Potassium Chlorate Small quantities of molecular oxygen (O 2 ) can be obtained from the thermal decomposition of certain oxides, peroxides, and salts of oxoacids. Some examples of

More information

11.1 Dumas Method - Pre-Lab Questions

11.1 Dumas Method - Pre-Lab Questions 11.1 Dumas Method - Pre-Lab Questions Name: Instructor: Date: Section/Group: Show all work for full credit. 1. If a 275-mL gas container has pressure of 732.6 mm Hg at -28 C, how many moles of gas are

More information

Determination of Zn using Atomic Absorption with Multiple Standard Additions

Determination of Zn using Atomic Absorption with Multiple Standard Additions 1. Purpose Determination of Zn using Atomic Absorption with Multiple Standard Additions This procedure will determine the concentration of zinc at the parts-per-million level using flame atomic absorption

More information

In case of emergency or accident: 1. Call the instructor immediately. Describe the nature of the accident or injury.

In case of emergency or accident: 1. Call the instructor immediately. Describe the nature of the accident or injury. INTRODUCTION TO SAFETY These guidelines for student safety in the laboratory are excerpted from "Safety in Academic Chemistry Laboratories", published by the American Chemical Society, 1990. To the best

More information

Remedies for Common Laboratory Ailments

Remedies for Common Laboratory Ailments Remedies for Common Laboratory Ailments Cindy Graham Brittain, Ph.D. Why do you need a Chemistry Lab? As a student of the allied health, environmental, biological, or textile sciences, you might question

More information

Reinforce design of experiments theory Make individual factorial designs and conduct analysis on responses

Reinforce design of experiments theory Make individual factorial designs and conduct analysis on responses Design of Experiments Lab #2 Developed by: Mike Evangelista, Nathan Haden, Alex Jannini, Rowan University, Department of Chemical Engineering Edited by: C. Stewart Slater and Mariano Savelski, Rowan University,

More information

The Rules. 1. Conduct yourself in a responsible manner at all times in the laboratory.

The Rules. 1. Conduct yourself in a responsible manner at all times in the laboratory. The Rules 1. Conduct yourself in a responsible manner at all times in the laboratory. 2. Follow all written and verbal instructions carefully. If you do not understand a direction or part of a procedure,

More information

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas?

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas? MOLECULAR MASS OFA VOLATILE LIQUID A lab to study the ideal gas law Introduction The ideal gas law indicates that the observed properties of a gas sample are directly related to the number of moles of

More information